

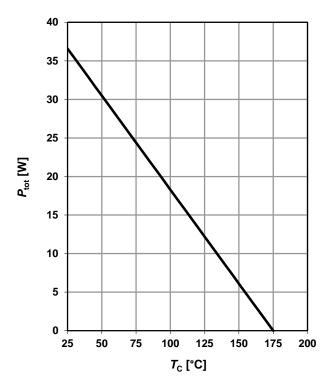
Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Thermal characteristics	•					
Thermal resistance, junction - case	R_{thJC}		-	-	3.6	K/W
Thermal resistance, junction - ambient	R _{thJA}	SMD version, device on PCB, minmal footprint	-	-	75	
		SMD Version, device on PCB, 6 cm ² cooling ³⁾	-	-	50	
Soldering temperature reflowsoldering	T _{sold}	reflow MSL 3	-	-	260	°C
Electrical characteristics, at $T_j=25$	°C, unless	otherwise specified				•
Static characteristics						
DC blocking voltage	V _{DC}	/ _R =0.05 mA	600	-	-	V
Diode forward voltage	V _F	I _F =4 A, T _j =25 °C	-	1.7	1.9	
		I _F =4 A, T _j =150 °C	-	2	2.4	
		<i>I_F=_</i> A <i>, T_j=25°</i> C		1.9	2.1	-
		<i>I_F=_</i> A <i>, T_j=150°</i> C		2.3	2.9	
Reverse current	I _R	V _R =600 V, <i>T</i> _j =25 °C	-	0.5	50	μA
		V _R =600 V, <i>T</i> _j =150 °C	-	2	500	
AC characteristics	-					
Total capacitive charge	Q _c	V _R =400 V,/ _F ≤/ _{F,max} , d <i>i_F</i> /d <i>t</i> =200 A/µs,	-	8	-	nC
Switching time ⁴⁾	t _c	$T_j=150 \text{ °C}$	-	-	<10	ns
Total capacitance	С	$V_{\rm R}$ =1 V, f = MHz	-	130	-	pF
		V _R =300 V, <i>f</i> =1 MHz	-	20	-	
		V _R =600 V, <i>f</i> =1 MHz	-	20	-	1

¹⁾ J-STD20 and JESD22

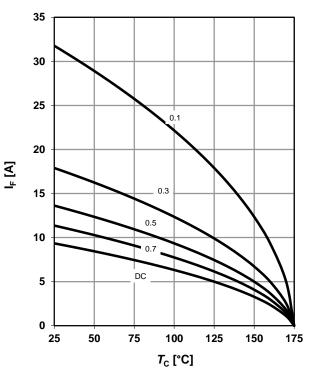
 $^{2)}$ All devices tested under avalanche conditions, for a time periode of 5ms at 20 mA.

⁵⁾ Only capacitive charge occuring, guaranteed by design.

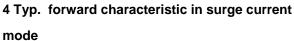
⁶⁾ Repetitive condition defined by $T_i \le 175^{\circ}C$


³⁾ Device on 40mm*40mm*1.5mm epox PCB FR4 with 6cm² (one layer, 70µm thick) copper area for drain connection. PCB is vertikal with out blown air.

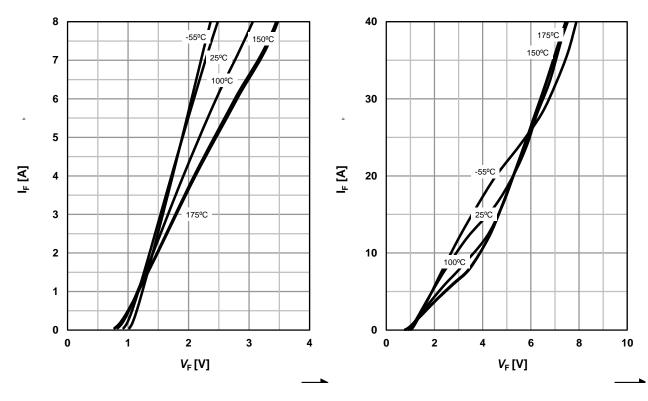
 $^{^{(4)}}$ t_c is the time constant for the capacitive displacement current waveform (independent from T_j, I_{LOAD} and di/dt), different from t_{rr}, which is dependent on T_j, I_{LOAD}, di/dt. No reverse recovery time constant t_{rr} due to absence of minority carrier injection.


1 Power dissipation

 $P_{tot}=f(T_C)$


2 Diode forward current

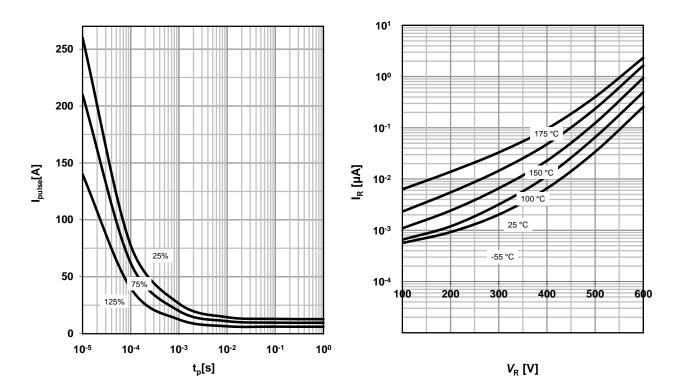
 $I_{\rm F}$ =f($T_{\rm C}$)⁴; $T_{\rm j}$ ≤175 °C; parameter: D= t_p/T



3 Typ. forward characteristic

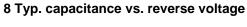
 $I_{F}=f(V_{F}); t_{p}=400 \ \mu s; \text{ parameter: } T_{j}$

 $I_{\rm F}$ =f($V_{\rm F}$); $t_{\rm p}$ =400 µs; parameter: T_j

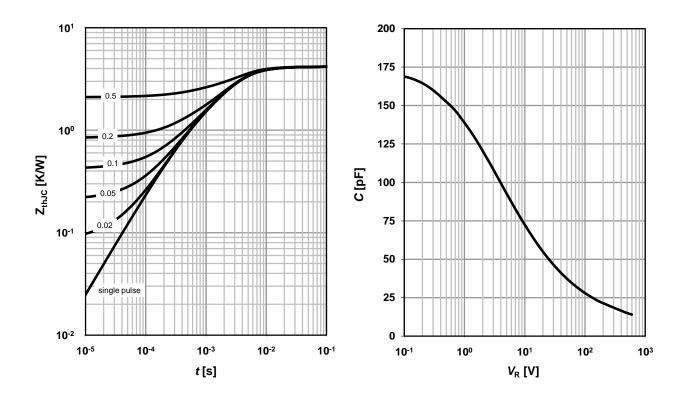


5 Max. repetitive pulse current

 $I_{pulse} = f(t_P)^{4(5)}$; parameter T_C


6 Typ. reverse current vs. reverse voltage

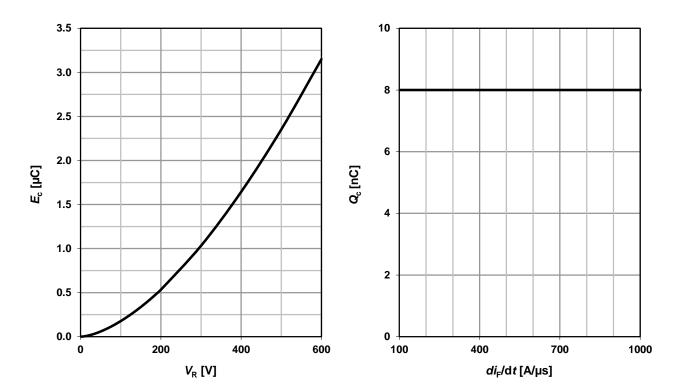
 $I_R=f(V_R)$; parameter: T_j



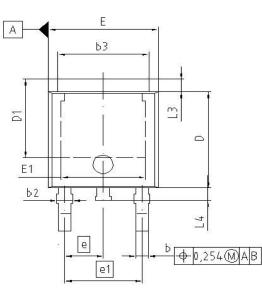
7 Transient thermal impedance

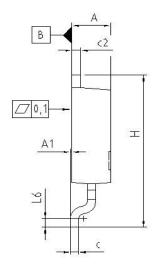
 $Z_{\text{thJC}}=f(t_p)$; parameter: $D = t_P/T$

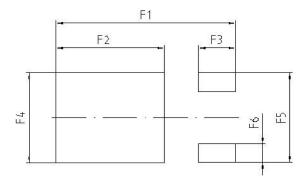
 $C=f(V_R)$; $T_C=25$ °C, f=1 MHz

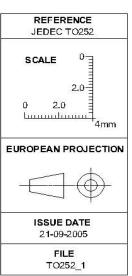


9 Typ. C stored energy


10 Typ. capacitance charge vs. current slope


 $Q_{C} = f(di_{F}/dt)^{5}; T_{j} = 150 \text{ °C}; I_{F} \leq I_{F,max}$




Package Outline:PG-TO252-3-1/TO252-3-11/TO252-3-21

DIM	MILLIM	ETERS	INC		
	MIN	MAX	MIN	MAX	1
Α	2.159	2.413	0.085	0.095	1
A1	0.000	0.150	0.000	0.006	
b	0.635	0.889	0.025	0.035	
b2	0.650	1.150	0.026	0.045	
b3	5.004	5.500	0.197	0.217	
C	0.457	0.580	0.018	0.023	
c2	0.460	0.980	0.018	0.039	1
D	5.969	6.223	0.235	0.245	
D1	5.020	5.842	0.198	0.230	1
Е	6.400	6.731	0.252	0.265	
E1	4.850	5.207	0.191	0.205	
e	2.286		0.090		
e1	4.572		0.180		1
N	3		3		EU
Н	9.400	10.480	0.370	0.413	
L3	0.900	1.143	0.035	0.045	1
L4	0.584	0.950	0.023	0.037	
L6	0.510	0.686	0.020	0.027	
F1	10.500	10.700	0.413	0.421	
F2	6.300	6.500	0.248	0.256	
F3	2.100	2.300	0.083	0.091	
F4	5.700	5.900	0.224	0.232	—
F5	5.660	5.860	0.222	0.231	1
F6	1.100	1.300	0.043	0.051	1

Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support systems are intended to be implanted in the human body and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.