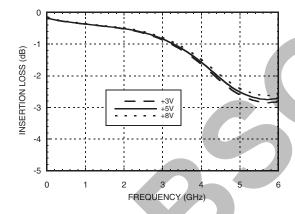
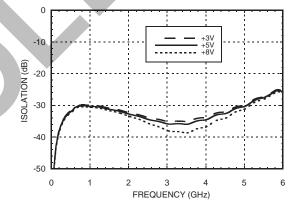


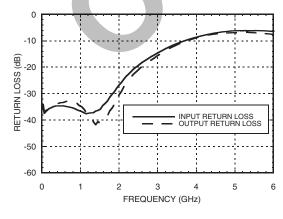

# GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz


## Insertion Loss vs. Temperature

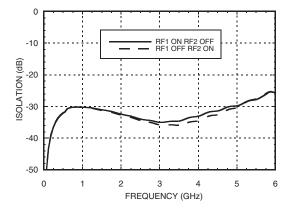



#### Isolation




#### Insertion Loss vs. Vdd



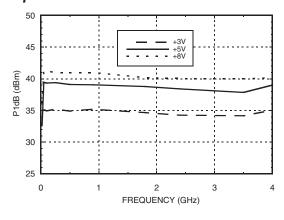

#### Isolation vs. Vdd



#### Return Loss



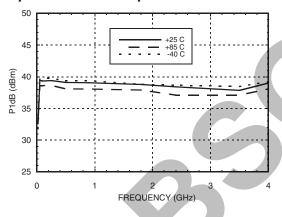
#### RF1 to RF2 Isolation



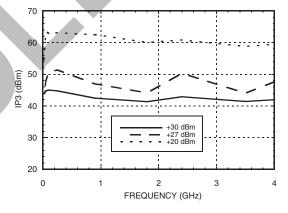

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

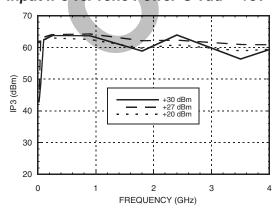
# GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz


#### Input P1dB vs. Vdd

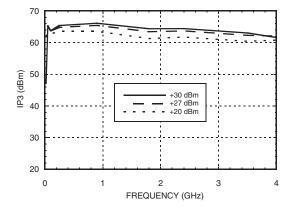



## Input P0.1dB vs. Vdd




## Input P1dB vs. Temperature @ Vdd = +5V



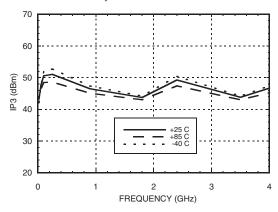

Input IP3 vs. Tone Power @ Vdd = +3V



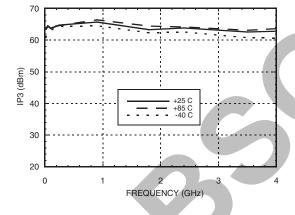
#### Input IP3 vs. Tone Power @ Vdd = +5V



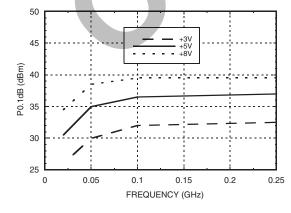
Input IP3 vs. Tone Power @ Vdd = +8V




11 - 226

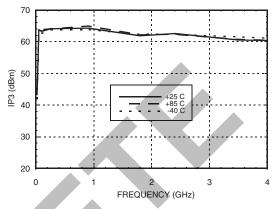




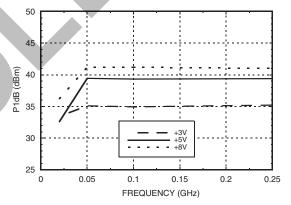


Input IP3 vs. Temperature 27 dBm Tones, Vdd = +3V



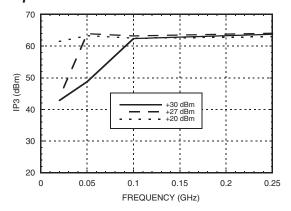
Input IP3 vs. Temperature 27 dBm Tones, Vdd = +8V




# Input P0.1dB vs. Vdd




# GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz


Input IP3 vs. Temperature 27 dBm Tones, Vdd = +5V



Input P1dB vs. Vdd



## Input IP3 vs. Tone Power @ Vdd = +5V



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D





# GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

## Bias Voltage & Current

| Vdd (V) | Typical Idd (μA) |  |
|---------|------------------|--|
| +3      | 0.5              |  |
| +5 2    |                  |  |
| +8      | 20               |  |

#### **Truth Table**

| Control Input (Vctl) |      | Signal Path State |            |
|----------------------|------|-------------------|------------|
| Α                    | В    | RFC to RF1        | RFC to RF2 |
| High                 | Low  | Off               | On         |
| Low                  | High | On                | Off        |

## **Control Voltages & Currents**

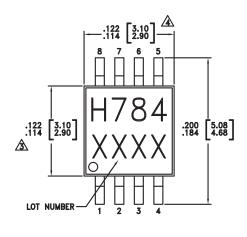
| State            | Vdd = +3V<br>(μA) | Vdd = +5V<br>(μA) | Vdd = +8V<br>(μA) |
|------------------|-------------------|-------------------|-------------------|
| Low (0 to +0.2V) | 0.5               | 2                 | 20                |
| High (Vdd ±0.2V) | 0.1               | 0.1               | 0.1               |

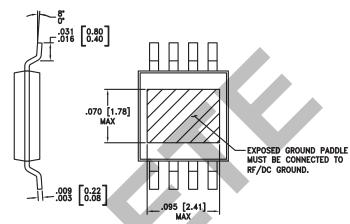
## **Absolute Maximum Ratings**

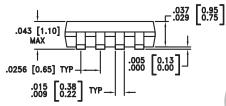
| RF Input Power (Vdd = +8V, 50 Ohm source & load impedances)   | +39 dBm (T = +85 °C) |  |  |
|---------------------------------------------------------------|----------------------|--|--|
| Supply Voltage Range<br>(Vdd) (Vctl = 0V)                     | -0.2 to +9V          |  |  |
| Control Voltage Range (A & B)                                 | -0.2 to Vdd +0.5V    |  |  |
| Channel Temperature                                           | 150 °C               |  |  |
| Continuous Pdiss (T = 85 °C)<br>(derate 25 mW/°C above 85 °C) | 1.217 W              |  |  |
| Thermal Resistance (Channel to ground paddle)                 | 53.4 °C/W            |  |  |
| Storage Temperature                                           | -65 to +150 °C       |  |  |
| Operating Temperature                                         | -40 to +85 °C        |  |  |
| ESD Rating                                                    | Class 1A HBM         |  |  |

Note: DC blocking capacitors are required at ports RFC, RF1 and RF2. Their value will determine the lowest transmission frequency.




**ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS** 




# GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

## **Outline Drawing**







#### NOTES

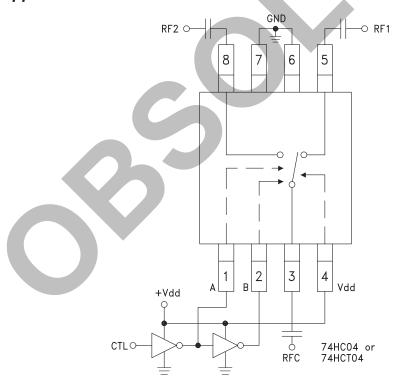
- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

## **Package Information**

| Part Number | Package Body Material                              | Lead Finish   | MSL Rating | Package Marking [1] |
|-------------|----------------------------------------------------|---------------|------------|---------------------|
| HMC784MS8GE | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2]   | <u>H784</u><br>XXXX |

- [1] 4-Digit lot number XXXX
- [2] Max peak reflow temperature of 260 °C






# GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

## **Pin Descriptions**

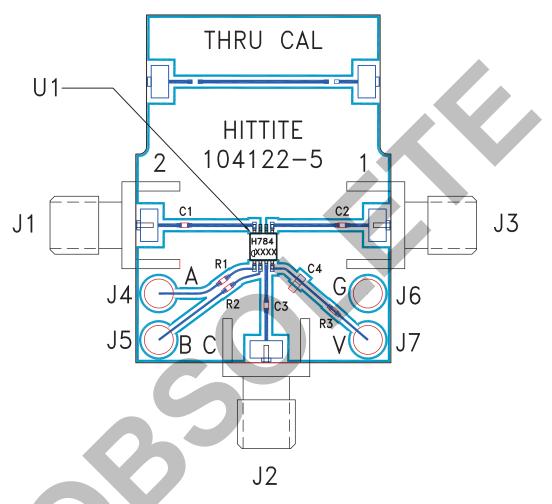
| Pin Number | Function      | Description                                                                      | Interface Schematic                       |
|------------|---------------|----------------------------------------------------------------------------------|-------------------------------------------|
| 1          | А             | See truth table and control voltage table.                                       | A,B O———————————————————————————————————— |
| 2          | В             | See truth table and control voltage table.                                       | c                                         |
| 3, 5, 8    | RFC, RF1, RF2 | This pin is DC coupled and matched to 50 Ohms. Blocking capacitors are required. |                                           |
| 4          | Vdd           | Supply Voltage                                                                   |                                           |
| 6, 7       | GND           | Package bottom must also<br>be connected to PCB RF ground.                       | GND<br>=                                  |

## **Typical Application Circuit**



#### Notes:

- 1. Set logic gate and switch Vdd = +3V to +8V and use HCT series logic to provide a TTL driver interface.
- 2. Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of +3 to +8 Volts applied to the CMOS logic gates and to pin 4 of the RF switch.
- 3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
- 4. Highest RF signal power capability is achieved with V set to +8V. The switch will operate properly (but at lower RF power capability) at bias voltages down to +3V.


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.





# GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

#### **Evaluation Circuit Board**



#### List of Materials for Evaluation PCB 104124 [1]

| Item    | Description                 |  |
|---------|-----------------------------|--|
| J1 - J3 | PCB Mount SMA RF Connector  |  |
| J4 - J7 | DC Pin                      |  |
| C1 - C3 | 100 pF capacitor, 0402 Pkg. |  |
| C4      | 10 KpF capacitor, 0603 Pkg. |  |
| R1 - R3 | 100 Ohm Resistor, 0402 Pkg. |  |
| U1      | HMC784MS8GE T/R Switch      |  |
| PCB [2] | 104122 Evaluation PCB       |  |

<sup>[1]</sup> Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.