

Selection Guides

		7C265-15	7C265-25	7C265-40	7C265-50	Unit
Minimum Address Set-Up Time		15	25	40	50	ns
Maximum Clock to Output		12	15	20	25	ns
Maximum Operating Current	Aximum Operating Current Com'l		120	100		mA
	Mil				120	mA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied.....-55°C to +125°C Supply Voltage to Ground Potential.....-0.5V to +7.0V DC Voltage Applied to Outputs in High Z State-0.5V to +7.0V DC Input Voltage....-3.0V to +7.0V

DC Program Voltage	
UV Exposure	7258 Wsec/cm ²
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ±10%
Military ^[1]	–55°C to +125°C	5V ±10%

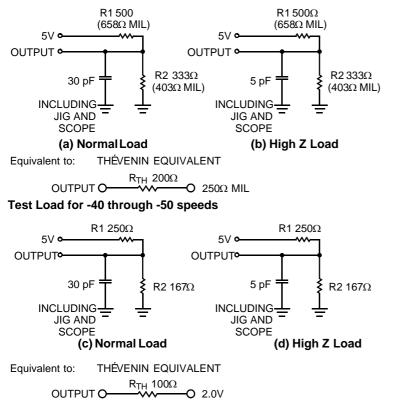
Note 1. T_A is the "instant on" case temperature.

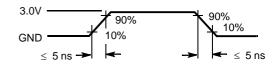
				7C265	7C265-15, 25		7C265-40		7C265-50	
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -2.0 mA								V
		$V_{CC} = Min., I_{OH} = -4.0 mA$	١			2.4		2.4		
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 mA	Com'l		0.4					V
		V _{CC} = Min., I _{OL} = 12.0 mA					0.4		0.4	
		V_{CC} = Min., I_{OL} = 6.0 mA	Mil		0.4					
		V_{CC} = Min., I_{OL} = 8.0 mA							0.4	
V _{IH}	Input HIGH Voltage			2.0		2.0		2.0		V
V _{IL}	Input LOW Voltage				0.8		0.8		0.8	V
I _{IX}	Input Load Current	$GND \leq V_{IN} \leq V_{CC}$		-10	+10	-10	+10	-10	+10	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}$, Output Disabled		-40	+40	-40	+40	-40	+40	μΑ
I _{OS} ^[3]	Output Short Circuit Current	V _{CC} = Max., V _{OUT} = GND			90		90		90	mA
I _{CC}	V _{CC} Operating Supply	V _{CC} = Max., I _{OUT} = 0 mA	Com'l		120		100			mA
	Current		Mil						120	
V _{PP}	Programming Supply Voltage			12	13	12	13	12	13	V
I _{PP}	Programming Supply Current				50		50		50	mA
V _{IHP}	Input HIGH Programming Voltage			3.0		3.0		3.0		V
V _{ILP}	Input LOW Programming Voltage				0.4		0.4		0.4	V

Electrical Characteristics Over the Operating Range^[2]

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	V _{CC} = 5.0V	10	pF

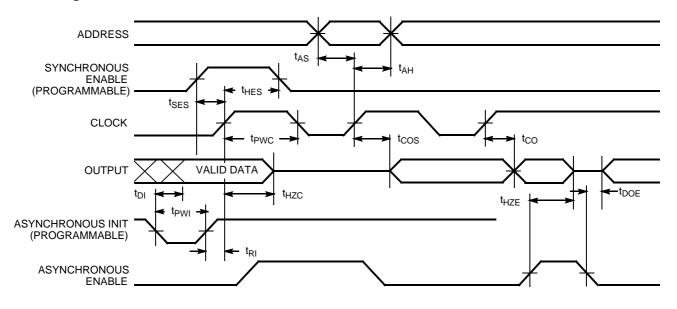

Notes


- Notes
 See the last page of this specification for Group A subgroup testing information.
 For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
 See Introduction to CMOS PROMs in this Data Book for general information on testing.

AC Test Loads and Waveforms

Test Load for -15 through -25 speeds

Switching Characteristics Over the Operating Range^[2, 4]


		7C2	65-15	7C20	65-25	7C20	65-40	7C2	7C265-50	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{AS}	Address Set-Up to Clock	15		25		40		50		ns
t _{HA}	Address Hold from Clock	0		0		0		0		ns
t _{CO}	Clock to Output Valid		12		15		20		25	ns
t _{PWC}	Clock Pulse Width	12		15		15		20		ns
t _{SES}	E _S Set-Up to Clock (Sync. Enable Only)	12		15		15		15		ns
t _{HES}	E _S Hold from Clock	5		5		5		5		ns
t _{DI}	INIT to Output Valid		15		18		25		35	ns
t _{RI}	INIT Recovery to Clock	12		15		20		25		ns
t _{PWI}	INIT Pulse Width	12		15		25		35		ns
t _{COS}	Output Valid from Clock (Sync. Mode)		12		15		20		25	ns
t _{HZC}	Output Inactive from Clock (Sync. Mode)		12		15		20		25	ns
t _{DOE}	Output Valid from E LOW (Async. Mode)		12		15		20		25	ns

Switching Characteristics Over the Operating Range^[2, 4] (continued)

		7C265-15		7C26	7C265-25 7C265-40		65-40	7C265-50		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{HZE}	Output Inactive from \overline{E} HIGH (Async. Mode)		12		15		20		25	ns

Switching Waveform

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the 7C265 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity • exposure time) of 25 Wsec/cm². For an ultraviolet lamp with a 12 mW/cm² power rating the exposure time would be approximately 45 minutes. The 7C265 needs to be within one inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. 7258 Wsec/cm² is the recommended maximum dosage.

Bit Map Data

Programmer A	Programmer Address (Hex.)					
Decimal	Hex	Contents				

Bit Map Data

0	0	Data
	•	•
8191 8192 8193	1FFF 2000 2001	Data INIT Byte Control Byte

Control Byte

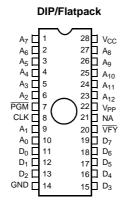
- 00 Asynchronous output enable (default condition)
- 01 Synchronous output enable
- 02 Asynchronous initialize

Programming Modes

The 7C265 offers a limited selection of programmed architectures. Programming these features should be done with a single 10-ms-wide pulse in place of the intelligent algorithm, mainly because these features are verified operationally, not with the VFY pin. Architecture programming is implemented by applying the supervoltage to two additional pins during programming. In programming the 7C265 architecture, VPP is applied to pins 3, 9, and 22. The choice of a particular mode depends on the states of the other pins during programming, so it is important that the condition of the other pins be met as set forth in the mode table. The considerations that apply with

respect to power-up and power-down during intelligent programming also apply during architecture programming. Once the supervoltages have been established and the correct logic states exist on the other device pins,

programming may begin. Programming is accomplished by pulling PGM from HIGH to LOW and then back to HIGH with a pulse width equal to 10 ms.


Table 1. Mode Selection

		Pin Function									
	Read or Output Disable	A ₁₂	A ₁₁	A ₁₀ –A ₇	A ₆	A ₅	$A_4 - A_3$	A ₂			
Mode	Other	A ₁₂	A ₁₁	A ₁₀ –A ₇	A ₆	A ₅	A ₄ –A ₃	A ₂			
Asynchron	A ₁₂	A ₁₁	A ₁₀ –A ₇	A ₆	A ₅	A ₄ -A ₃	A ₂				
Synchronous Enable Read			A ₁₁	A ₁₀ –A ₇	A ₆	A ₅	A ₄ -A ₃	A ₂			
Asynchron	A ₁₂	A ₁₁	A ₁₀ –A ₇	A ₆	A ₅	A ₄ -A ₃	A ₂				
Program M	lemory	A ₁₂	A ₁₁	A ₁₀ –A ₇	A ₆	A ₅	A ₄ -A ₃	A ₂			
Program V	'erify	A ₁₂	A ₁₁	A ₁₀ –A ₇	A ₆	A ₅	A ₄ -A ₃	A ₂			
Program Ir	nhibit	A ₁₂	A ₁₁	A ₁₀ –A ₇	A ₆	A ₅	A ₄ -A ₃	A ₂			
Program S	synchronous Enable	V _{IHP}	V _{IHP}	A ₁₀ –A ₇	V _{IHP}	V _{PP}	A ₄ -A ₃	V _{IHP}			
Program Initialize		V _{ILP}	V _{IHP}	A ₁₀ –A ₇	V _{IHP}	V _{PP}	$A_4 - A_3$	V _{ILP}			
Program Initial Byte		A ₁₂	V _{ILP}	$A_{10} - A_7$	V _{IHP}	V _{PP}	$A_4 - A_3$	V _{ILP}			

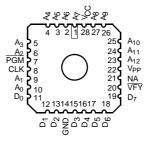
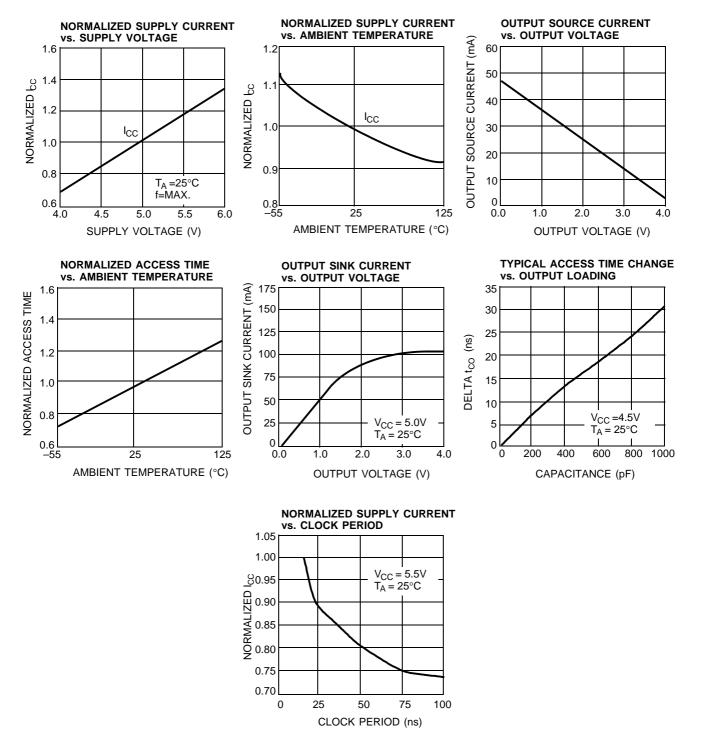

					Pin Fu	Inction		
	Read or Output Disable	A ₁	A ₀	GND	CLK	GND	Ē, Ī	0 ₇ –0 ₀
Mode	Other	A ₁	A ₀	PGM	CLK	VFY	V _{PP}	D ₇ D ₀
Asynchron	ous Enable Read	A ₁	A ₀	GND	V _{IL}	GND	V _{IL}	O ₇ –O ₀
Synchrono	us Enable Read	A ₁	A ₀	GND	V _{IL} /V _{IH}	GND	V _{IL}	O ₇ –O ₀
Asynchron	ous Initialization Read	A ₁	A ₀	GND	V _{IL}	GND	V _{IL}	O ₇ –O ₀
Program M	lemory	A ₁	A ₀	V _{ILP}	V _{ILP}	V _{IHP}	V _{PP}	D ₇ –D ₀
Program V	erify	A ₁	A ₀	V _{IHP}	V _{ILP}	V _{ILP}	V _{PP}	O ₇ –O ₀
Program Ir	hibit	A ₁	A ₀	V _{IHP}	V _{ILP}	V _{IHP}	V _{PP}	High Z
Program S	ynchronous Enable	V _{PP}	V _{ILP}	V _{ILP}	V _{ILP}	V _{IHP}	V _{PP}	D ₇ D ₀
Program Ir	nitialize	V _{PP}	V _{ILP}	V _{ILP}	V _{ILP}	V _{IHP}	V _{PP}	D ₇ D ₀
Program Ir	nitial Byte	V _{PP}	V _{IHP}	V _{ILP}	V _{ILP}	V _{IHP}	V _{PP}	D ₇ D ₀

Figure 1. Programming Pinout

LCC/PLCC (Opaque Only)


Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed

programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	I _{CC} (mA)	Ordering Code	Package Name	Package Type	Operating Range
15	120	CY7C265-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C265-15WC	W22	28-Lead (300-Mil) Windowed CerDIP	
25	120	CY7C265-25WC	W22	28-Lead (300-Mil) Windowed CerDIP	Commercial
40	100	CY7C265-40PC	P21	28-Lead (300-Mil) Molded DIP	Commercial

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
t _{AS}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{CO}	7, 8, 9, 10, 11
t _{PW}	7, 8, 9, 10, 11
t _{SES}	7, 8, 9, 10, 11
t _{HES}	7, 8, 9, 10, 11
t _{COS}	7, 8, 9, 10, 11

Package Diagrams

Figure 2. 28-Lead (300-Mil) CerDIP D22

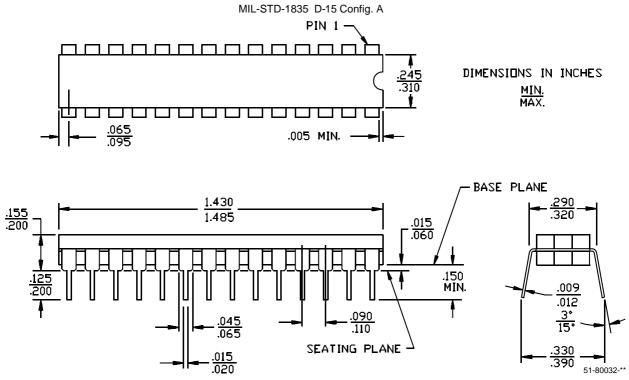
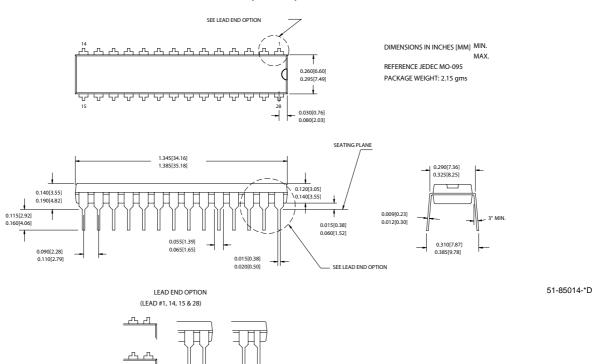
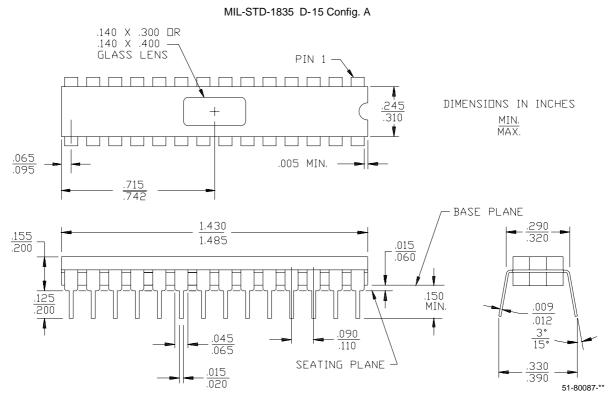



Figure 3. 28-Lead Plastic Leaded Chip Carrier J64

Package Diagrams (continued) Figure 4. 28-Lead (300-Mil) Molded DIP P21



28-Lead (300-Mil) PDIP P21

Package Diagrams (continued)

Figure 5. 28-Lead (300-Mil) Windowed CerDIP W22

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-04012 Rev. *B

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY7C265 8K x 8 Registered PROM Document Number: 38-04012				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	114139	03/18/02	DSG	Changed from Spec number: 38-00084 to 38-04012
*A	118896	10/09/02	GBI	Updated ordering information
*В	499562	See ECN	PCI	Updated ordering information