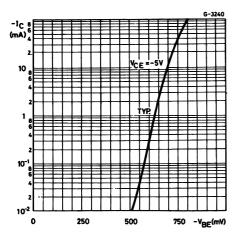
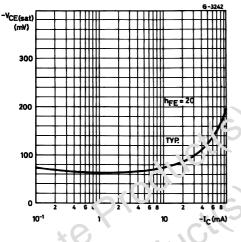
THERMAL DATA

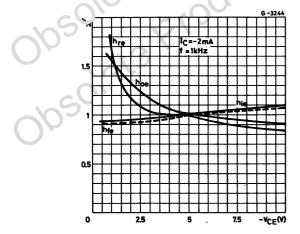
R _{thj-case}	Thermal Resistance Junction-Case	Max	200	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	500	°C/W

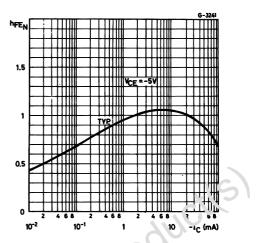

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified)

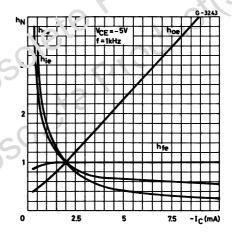
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Uni
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} =-20 V V _{CE} =-20 V T _C = 150 °C		-1	-100 -10	nΑ μΑ
$V_{(BR)CES}$	Collector-Emitter Breakdown Voltage (V _{BE} = 0)	I _C = -10 μA	-50			V
V(br)ceo*	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = -2 mA	-45		Cil	bv
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = -10 μA	-5	00,		V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_{C} = -10 \text{ mA}$ $I_{B} = -0.5 \text{ mA}$ $I_{C} = -100 \text{ mA}$ $I_{B} = -5 \text{ mA}$		-75 -200	-250	m∨ m∨
$V_{\text{BE}(\text{sat})^{\ast}}$	Base-Emitter Saturation Voltage		~	-720 -860		m\ m\
$V_{BE(on)}*$	Base-Emitter On Voltage	$I_{C} = -2 \text{ mA}$ $V_{CE} = 5 \text{ V}$	-550	-640	-750	m۱
h _{fe} *	Small Signal Current Gain	Ic = -2 mA V _{CE} = -5 V f = 1KHz for BC1.77 for BC177 B	125 240		500 500	
f _T	Transition Frequency	$r_{C} = -10 \text{ mA V}_{CE} = -5 \text{ V f} = 100 \text{ MHz}$		200		МН
Ссво	Collector-Base Capacitance	$V_{CB} = -10 V f = 100 KHz$		5		pF
NF	Noise Figure	$ \begin{array}{ll} I_{C} = -0.2 \text{ mA} & V_{CE} = -5 \text{ V} \\ f = 1 \text{ KHz} & R_{g} = 2 \text{ K} \Omega & \text{B} = 200 \text{ Hz} \end{array} $		2	10	dB
h _{ie}	mpedance יו ממו	$I_{C} = -2 \text{ mA}$ $V_{CE} = -5 \text{ V}$ f = 1KHz		5		KΩ
h _{re}	Keverse Voltage Ratio	$I_C = -2 \text{ mA}$ $V_{CE} = -5 \text{ V}$ f = 1KHz		4		10
hon	Output Admittance	$I_{C} = -2 \text{ mA}$ $V_{CE} = -5 \text{ V}$ $f = 1 \text{ KHz}$		30		μS

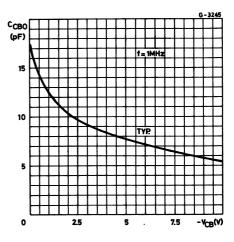

57

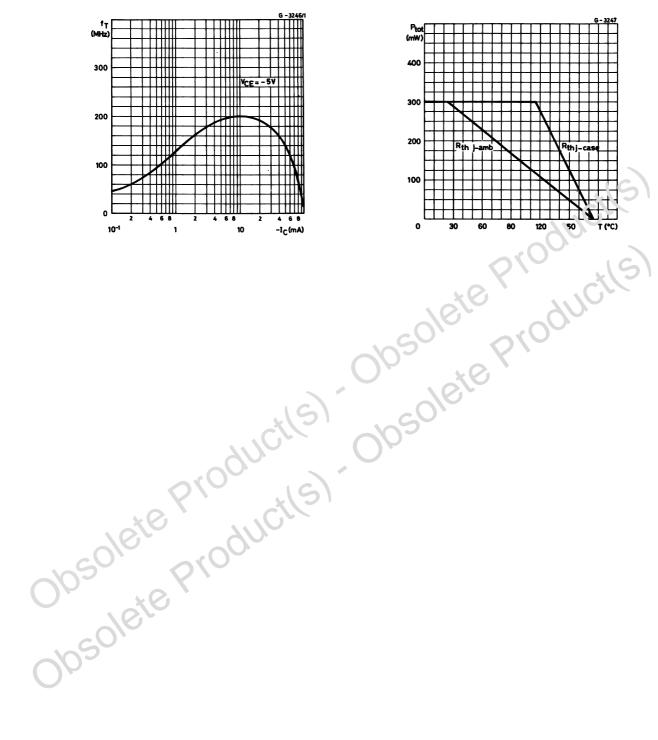
2/6


DC Transconductance.


Collector-emitter Saturation Voltage.

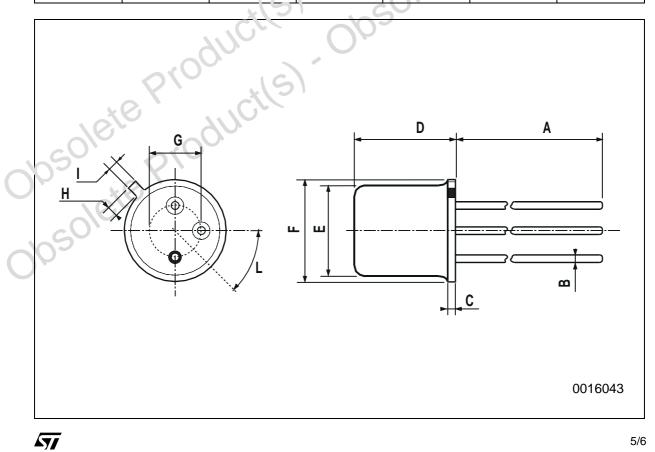

Normalize 12, Parameters.


DC Normalized Current Gain.


Collector-base Capacitance.

57

Transition Frequency.


Power Rating Chart.

57

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		12.7			0.500	
В			0.49			0.019
D			5.3			0.203
E			4.9		20	0.193
F			5.8		5,00	0.228
G	2.54			0.100		CIL
Н			1.2	0/6		0.047
I			.16	. 0.	<`	0.045
L	45 [°]			45°		

TO-18 MECHANICAL DATA

Obsolete Product(s) Obsolete Product(s) Obsolete Product(s) Obsolete Product(s) of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

۲/

6/6