N Channel Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units			
STATIC PARAMETERS										
BV_{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		40			V			
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =40V, V_{GS} =0V	T 5500			1	μΑ			
		\/ O\/ \/ OO\/	T _J =55°C			5				
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V$, $V_{GS}=\pm20V$				±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		1.7	2.5	3	V			
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V		30			Α			
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_{D} =12A			24	30				
			T _J =125°C		37	46	$m\Omega$			
		V_{GS} =4.5V, I_{D} =8A			31	40				
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=12A$			25		S			
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.76	1	V			
I _S	Maximum Body-Diode Continuous Curre	dy-Diode Continuous Current H				12	Α			
DYNAMIC	PARAMETERS		•							
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =20V, f=1MHz			516	650	pF			
C _{oss}	Output Capacitance				82		pF			
C _{rss}	Reverse Transfer Capacitance				43		pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			4.6	6.9	Ω			
SWITCHING PARAMETERS										
Q _q (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =20V, L _D =12A			8.3	10.8	nC			
Q_{gs}	Gate Source Charge				2.3		nC			
Q_{gd}	Gate Drain Charge				1.6		nC			
t _{D(on)}	Turn-On DelayTime				6.4		ns			
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =20V, R_L =1.4 Ω , R_{GEN} =3 Ω			3.6		ns			
t _{D(off)}	Turn-Off DelayTime				16.2		ns			
t _f	Turn-Off Fall Time				6.6		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =12A, dI/dt=100A/μs			18	24	ns			
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =12A, dI/dt=100A/μs			10		nC			
•	, ,	•								

A: The value of R_{BJA} is measured with the device in a still air environment with T $_A$ =25° C. The power dissipation P_{DSM} and current rating I_{DSM} are based on T_{JIMAXI} =150° C, using the steady state junction-to-ambient thermal resistance.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175° C.

D. The R_{BJA} is the sum of the thermal impedence from junction to case R_{BJC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175° C. The SOA curve provides a single pulse rating.

G. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

H. The maximum current rating is limited by bond-wires.

P-Channel Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units				
STATIC PARAMETERS										
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-40			V				
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -40V, V _{GS} =0V			-1	μΑ				
		T _J =55	°C		-5					
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			±100	nA				
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-1.7	-2	-3	V				
$I_{D(ON)}$	On state drain current	V_{GS} = -10V, V_{DS} = -5V	-30			Α				
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} = -10V, I_{D} = -12A		36	45					
		T _J =125	,C	52	65	mΩ				
		V_{GS} = -4.5V, I_{D} = -8A		51	66					
g _{FS}	Forward Transconductance	$V_{DS} = -5V, I_{D} = -12A$		22		S				
V_{SD}	Diode Forward Voltage	I_S = -1A, V_{GS} =0V		-0.76	-1	V				
Is	Maximum Body-Diode Continuous Curre	ent ^H			-12	Α				
DYNAMIC	PARAMETERS									
C_{iss}	Input Capacitance			900	1125	pF				
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} = -20V, f=1MHz		97		pF				
C_{rss}	Reverse Transfer Capacitance			68		pF				
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		14		Ω				
SWITCHII	NG PARAMETERS									
Q _g (-10V)	Total Gate Charge			16.2	21	nC				
Q _g (-4.5V)	Total Gate Charge	V_{GS} = -10V, V_{DS} = -20V,		7.2	9.4	nC				
Q_{gs}	Gate Source Charge	I _D = -12A		3.8		nC				
Q_{gd}	Gate Drain Charge			3.5		nC				
t _{D(on)}	Turn-On DelayTime			6.2		ns				
t _r	Turn-On Rise Time	V_{GS} = -10V, V_{DS} = -20V,		8.4		ns				
$t_{D(off)}$	Turn-Off DelayTime	$R_L=1.4\Omega$, $R_{GEN}=3\Omega$		44.8		ns				
t _f	Turn-Off Fall Time			41.2		ns				
t _{rr}	Body Diode Reverse Recovery Time	I _F = -12A, dI/dt=100A/μs		21	27	ns				
Q _{rr}	Body Diode Reverse Recovery Charge	I _F = -12A, dI/dt=100A/μs		14		nC				

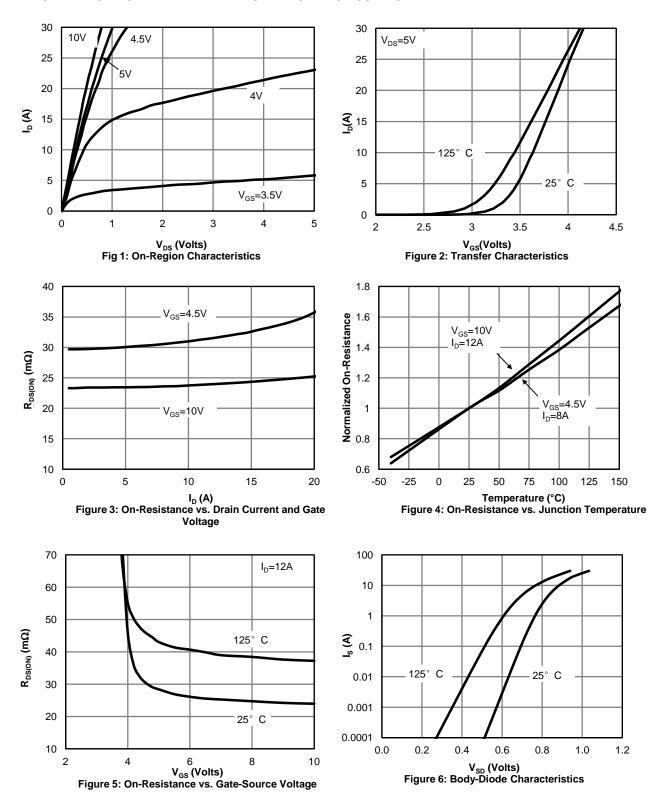
A: The value of $R_{\theta JA}$ is measured with the device in a still air environment with T $_A$ =25 $^\circ$ C. The power dissipation P_{DSM} and current rating I_{DSM} are based on $T_{J(MAX)}$ =150 $^\circ$ C, using t \leq 10s junction-to-ambient thermal resistance.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C: Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.


E. The static characteristics in Figures 1 to 6 are obtained using $<300~\mu s$ pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}=175^{\circ}$ C. The SOA curve provides a single pulse rating.

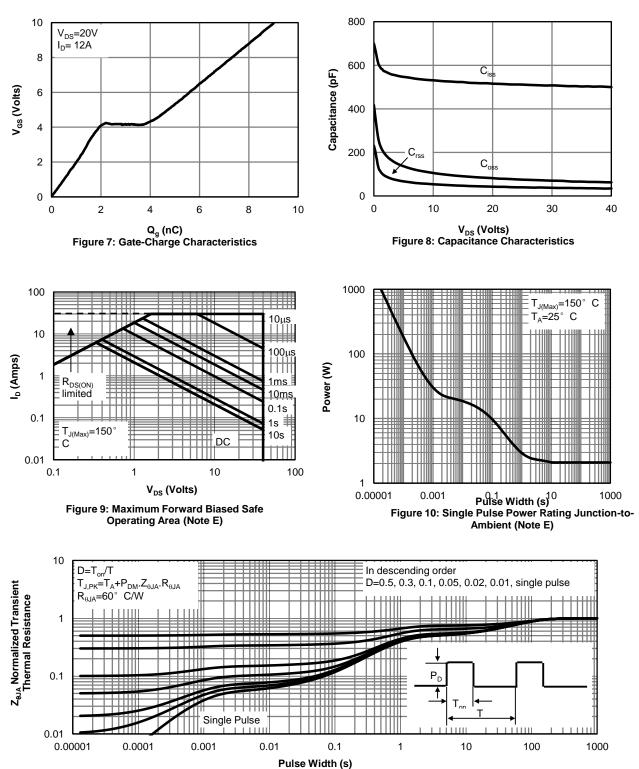
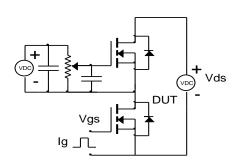
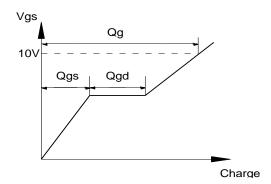
G. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

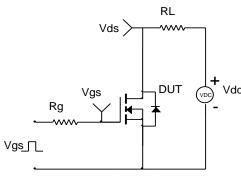
H. The maximum current rating is limited by bond-wires.

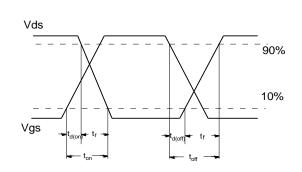
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

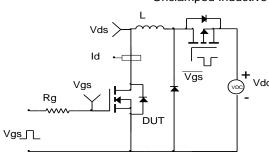
Page 5 of 9

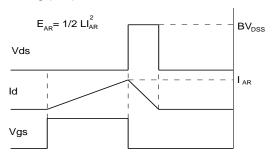
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

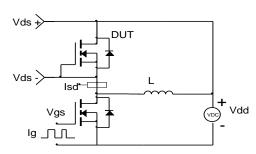




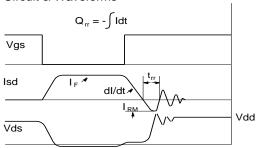

Figure 11: Normalized Maximum Transient Thermal Impedance

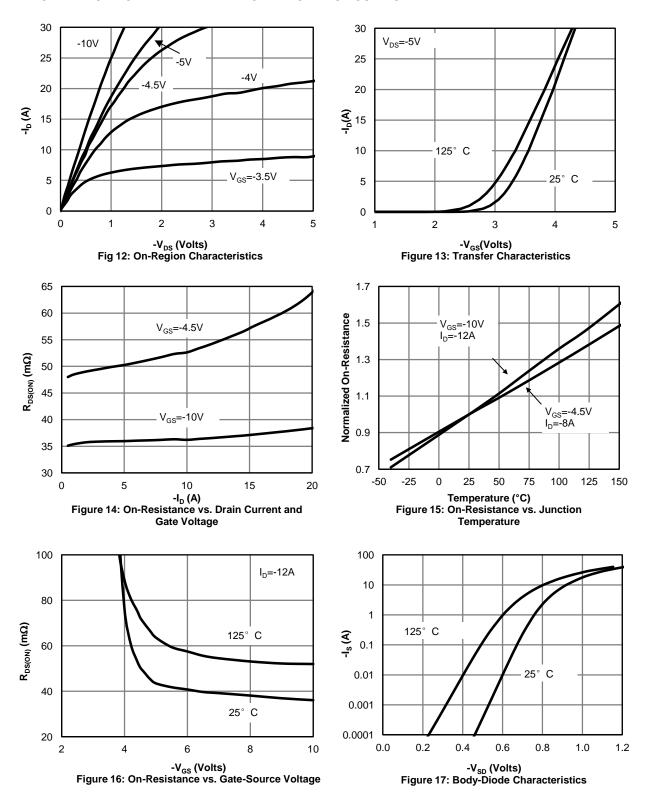

Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms



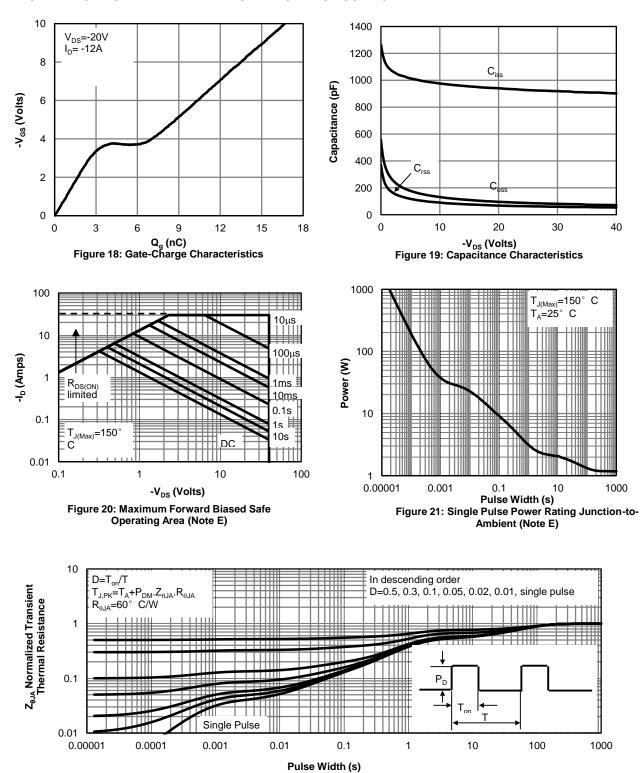
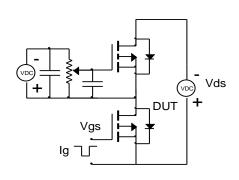
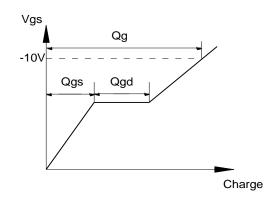

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

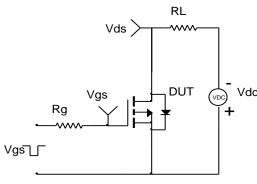


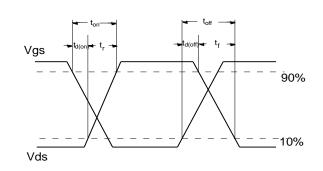
Diode Recovery Test Circuit & Waveforms

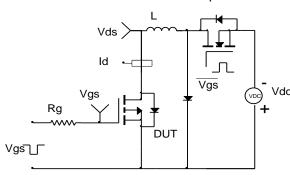
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

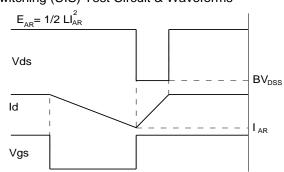
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

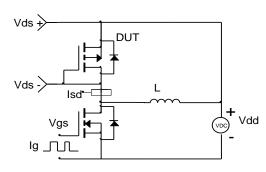




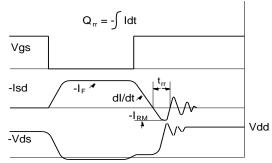

Figure 22: Normalized Maximum Transient Thermal Impedance


Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

