TABLE OF CONTENTS

Features 1	-
Applications 1	
Functional Block Diagram 1	
General Description 1	
Product Highlights 1	
Revision History 2	2
Specifications	5
Absolute Maximum Ratings5	,
ESD Caution5	;

REVISION HISTORY

6/11—Rev. A to Rev. B

Updated Format	Universal
Changes to Features Section	1
Changes to Absolute Maximum Ratings Table	5
Changes to Ordering Guide	14
Added Automotive Products Section	14
3/04—Rev. 0 to Rev. A	
Added Applications	1
Changes to Ordering Guide	
Updated Outline Dimensions	10

SPECIFICATIONS

 V_{DD} = +5 V \pm 10%, GND = 0 V. All specifications –40°C to +85°C, unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On Resistance (R _{ON})	2.5		Ωtyp	$V_{s} = 0 V$ to V_{DD} , $I_{s} = -10 mA$;
	4	4.5	Ωmax	See Figure 11
On Resistance Match Between		0.05	Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
Channels (ΔR _{ON})		0.3	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.5		Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
		1.0	Ωmax	
LEAKAGE CURRENTS				$V_{DD} = +5.5 V$
Source Off Leakage Is (Off)	±0.01		nA typ	$V_{S} = 4.5 \text{ V/1 V}, V_{D} = 1 \text{ V/4.5 V}$
	±0.1	±0.2	nA max	See Figure 12
Drain Off Leakage I _D (Off)	±0.01		nA typ	$V_{S} = 4.5 \text{ V/1 V}, V_{D} = 1 \text{ V/4.5 V}$
	±0.1	±0.2	nA max	See Figure 12
Channel On Leakage I _D , I _S (On)	±0.01		nA typ	$V_{S} = V_{D} = 1 V$, or 4.5 V
	±0.1	±0.2	nA max	See Figure 13
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.1	μA max	
DYNAMIC CHARACTERISTICS ¹				
ton	11		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		16	ns max	Vs = 3 V; see Figure 14
toff	6		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		10	ns max	Vs = 3 V; see Figure 14
Break-Before-Make Time Delay, t _D	6		ns typ	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$
(ADG713 Only)		1	ns min	$V_{S1} = V_{S2} = 3 V$; see Figure 15
Charge Injection	3		pC typ	$V_s = 2 V$; $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 16
Off Isolation	-58		dB typ	$R_L = 50 \ \Omega$, $C_L = 5 \ pF$, $f = 10 \ MHz$
	-78		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 17
Channel-to-Channel Crosstalk	-90		dB typ	$R_L=50~\Omega,C_L=5$ pF, $f=10$ MHz; see Figure 18
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 19
Cs	10		pF typ	
CD	10		pF typ	
C _D , C _s (On)	22		pF typ	
POWER REQUIREMENTS				$V_{DD} = +5.5 V$
I _{DD}	0.001		μA typ	Digital inputs = 0 V or 5 V
		1.0	μ max	

¹ Guaranteed by design, not subject to production test.

 $V_{\rm DD}$ = +3 V \pm 10%, GND = 0 V. All specifications –40°C to +85°C, unless otherwise noted.

Table 2.

Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On Resistance (R _{ON})	5	5.5	Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = -10 \text{ mA}$;
		8	Ωmax	See Figure 11
On Resistance Match Between	0.1		Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
Channels (ΔR _{ON})		0.3	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})		2.5	Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = -10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = +3.3 V$
Source Off Leakage Is (Off)	±0.01		nA typ	$V_{s} = 3 V/1 V, V_{D} = 1 V/3 V$
-	±0.1	±0.2	nA max	See Figure 12
Drain Off Leakage I _D (Off)	±0.01		nA typ	$V_{s} = 3 V/1 V, V_{D} = 1 V/3 V$
-	±0.1	±0.2	nA max	See Figure 12
Channel On Leakage I _D , I _S (On)	±0.01		nA typ	$V_{\rm S} = V_{\rm D} = 1$ V, or 3 V
-	±0.1	±0.2	nA max	See Figure 13
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.4	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	µA max	
DYNAMIC CHARACTERISTICS ¹				
ton	13		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		20	ns max	$V_s = 2 V$; see Figure 14
toff	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		12	ns max	$V_s = 2 V$; see Figure 14
Break-Before-Make Time Delay, t _D	7		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
(ADG713 Only)		1	ns min	$V_{s1} = V_{s2} = 2V$; see Figure 15
Charge Injection	3		pC typ	$V_{s} = 1.5 V; R_{s} = 0 \Omega, C_{L} = 1 nF;$ see Figure 16
Off Isolation	-58		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-78		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 17
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 18
Bandwidth –3 dB	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 19
Cs	10		pF typ	
CD	10		pF typ	
C _D , C _s (On)	22		pF typ	
POWER REQUIREMENTS				$V_{DD} = +3.3 V$
IDD	0.001		μA typ	Digital inputs = $0 \text{ V} \text{ or } 3 \text{ V}$
		1.0	μ max	

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

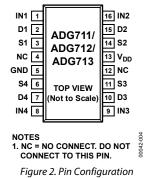
 $T_A = +25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to GND	–0.3 V to +6 V
Analog, Digital Inputs ¹	-0.3 V to V _{DD} +0.3 V or
	30 mA, whichever occurs
	first
Continuous Current, S or D	30 mA
Peak Current, S or D	100 mA (Pulsed at 1 ms,
	10% duty cycle maximum)
Operating Temperature Range	–40°C to +85°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
TSSOP Package, Power Dissipation	430 mW
θ_{JA} Thermal Impedance	150°C/W
θ_{JC} Thermal Impedance	27°C/W
SOIC Package, Power Dissipation	520 mW
θ_{JA} Thermal Impedance	125°C/W
θ_{JC} Thermal Impedance	42°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C
Soldering(Pb-Free)	
Reflow, Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	20 sec to 40 sec
ESD	2 kV

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

¹ Overvoltages at IN, S or D will be clamped by internal diodes. Currents should be limited to the maximum ratings given.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4.		
Pin Number	Mnemonic	Description
1	IN1	Digital Control Input. Its logic state controls the status of the Switch S1-D1.
2	D1	Drain Pin. Can be used as input or output.
3	S1	Source Pin. Can be used as input or output.
4	NC	Not internally connected.
5	GND	The most negative power supply pin.
6	S4	Source Pin. Can be used as input or output.
7	D4	Drain Pin. Can be used as input or output.
8	IN4	Digital Control Input. Its logic state controls the status of the Switch S4-D4.
9	IN3	Digital Control Input. Its logic state controls the status of the Switch S3-D3.
10	D3	Drain Pin. Can be used as input or output.
11	S3	Source Pin. Can be used as input or output.
12	NC	Not internally connected.
13	V _{DD}	The most positive power supply pin.
14	S2	Source Pin. Can be used as input or output.
15	D2	Drain Pin. Can be used as input or output.
16	IN2	Digital Control Input. Its logic state controls the status of the Switch S3-D3.

Table 5. Truth Table (ADG711/ADG712)

ADG711 In	ADG712 In	Switch Condition
0	1	On
1	0	Off

Table 6. Truth Table (ADG713)

Logic	Switch 1, 4	Switch 2, 3
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

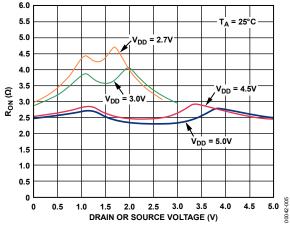


Figure 3. On Resistance as a Function of V_D (V_S)

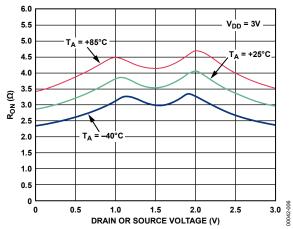


Figure 4. On Resistance as a Function of $V_{\rm D}$ (V_s) for Different Temperatures $V_{\rm DD}$ = 3 V

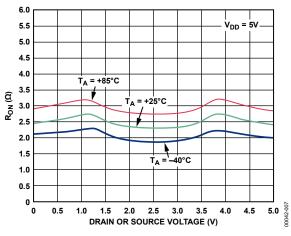


Figure 5. On Resistance as a Function of V_D (V_s) for Different Temperatures V_{DD} = 5 V

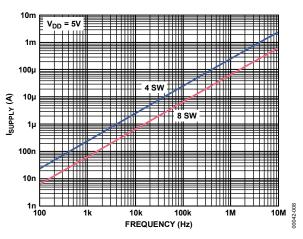


Figure 6. Supply Current vs. Input Switching Frequency

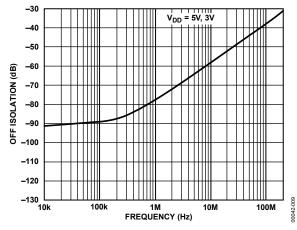


Figure 7. Off Isolation vs. Frequency

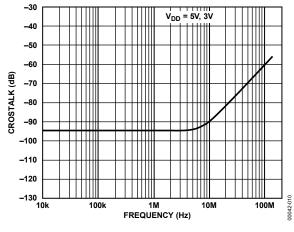
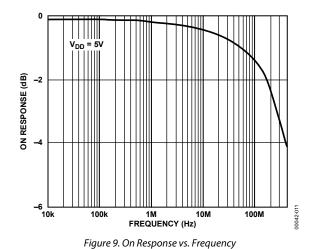
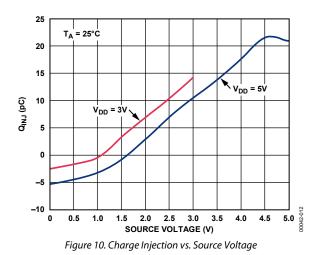
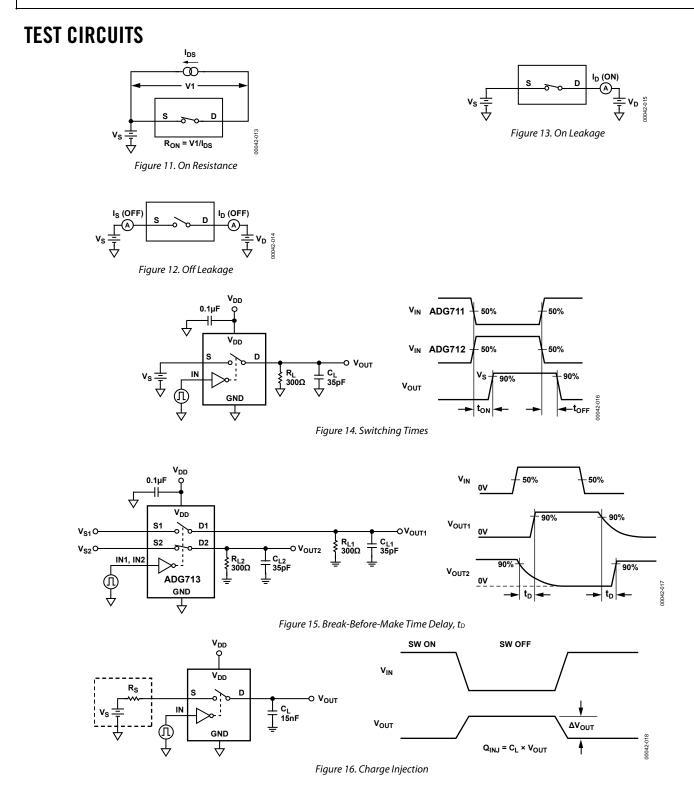





Figure 8. Crosstalk vs. Frequency

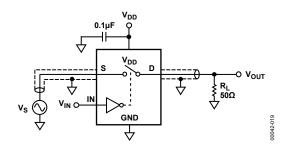


Figure 17. Off Isolation

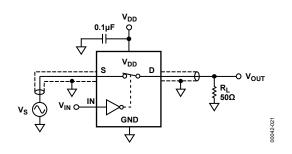


Figure 19. Bandwidth

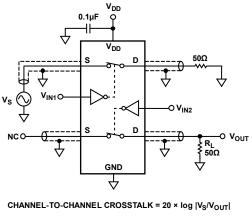


Figure 18. Channel-to-Channel Crosstalk

00042-020

TERMINOLOGY

Ron

Ohmic resistance between D and S.

ΔR_{ON}

On resistance match between any two channels, ie., $R_{\rm ON}max-R_{\rm ON}min.$

R_{FLAT}(ON)

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (OFF) Source leakage current with the switch off.

 I_D (OFF) Drain leakage current with the switch off.

 $\mathbf{I}_{\mathrm{D}},\,\mathbf{I}_{\mathrm{S}}\left(\mathbf{ON}\right)$ Channel leakage current with the switch on.

 $V_D(V_S)$ Analog voltage on Terminals D, S.

Cs (OFF) Off switch source capacitance.

C_D (OFF)

Off switch drain capacitance. C_D, C_s (ON)

C_D, C_s (ON) On switch capacitance.

ton

Delay between applying the digital control input and the output switching on.

toff

Delay between applying the digital control input and the output switching off.

t_D

Off time or on time measured between the 90% points of both switches, when switching from one address state to another (ADG713 only).

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

APPLICATIONS INFORMATION

Figure 20 illustrates a photodetector circuit with programmable gain. An AD820 is used as the output operational amplifier. With the resistor values shown in the circuit, and using different combinations of the switches, gain in the range of 2 to 16 can be achieved.

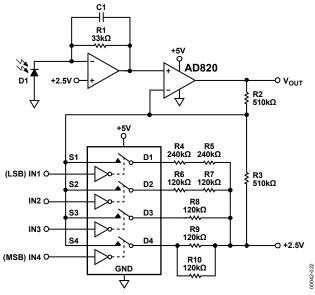
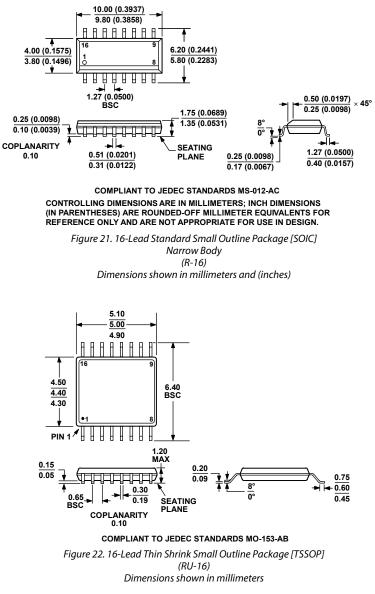



Figure 20. Photodetector Circuit with Programmable Gain

060606-A

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ^{1, 2}	Temperature range	Package Description	Package Option
ADG711BR	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG711BR-REEL	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG711BR-REEL7	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG711BRZ	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG711BRZ-REEL	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG711BRZ-REEL7	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG711BRU	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG711BRU-REEL	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG711BRU-REEL7	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG711BRUZ	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG711BRUZ-REEL	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG711BRUZ-REEL7	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG711WBRUZ-REEL	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG712BR	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG712BR-REEL	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG712BR-REEL7	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG712BRZ	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG712BRZ-REEL	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG712BRZ-REEL7	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG712BRU	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG712BRU-REEL	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG712BRU-REEL7	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG712BRUZ	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG712BRUZ-REEL	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG712BRUZ-REEL7	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG713BR	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG713BRZ	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG713BRZ-REEL	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG713BRZ-REEL7	-40°C to +85°C	Standard Small Outline(SOIC)	R-16
ADG713BRU	−40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG713BRU-REEL	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG713BRU-REEL7	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG713BRUZ	−40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG713BRUZ-REEL	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16
ADG713BRUZ-REEL7	-40°C to +85°C	Thin Shrink Small Outline(TSSOP)	RU-16

 1 Z = RoHS Compliant Part.

 2 W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The AD711W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

NOTES

NOTES

©2004–2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00042-0-6/11(B)

www.analog.com

Rev. B | Page 16 of 16

Downloaded from Arrow.com.