MODULE OVERVIEW

ARTIK 710

The Samsung ARTIK™ 710/710s Module is a highly-integrated System-in-Module that combines an eight-core ARM® Cortex®-A53 processor packaged with DRAM and Flash memory, a Security Subsystem, and a wide range of wireless communication options—such as 802.11a/b/g/n/ac for Wi-Fi®, Bluetooth® 4.0 (BLE+Classic), and 802.15.4 for Zigbee—all into an extremely compact footprint. The many standard digital control interfaces support external sensors and higher performance peripherals to expand the module's capabilities. With the combination of 802.11, Bluetooth® and 802.15.4, the ARTIK 710/710s Module is the perfect choice for home automation and home hub devices, while also supporting a rich UI/UX capability for camera and display requirements. The inclusion of a hardware-based Secure Element works with the ARM® TrustZone® and Trustware's Trusted Execution Environment (TEE) to provide end-to-end security.

ARTIK 710s

Figure 1. ARTIK™ 710/710s Modules Top View

Processor					
CPU	Octa-core ARM® Cortex®-A53@1.4GHz				
GPU	3D graphics accelerator				
Media					
Camera I/F	4-lane MIPI CSI up to 5M (1920x1080@30fps)				
Display	4-lane MIPI DSI and HDMI1.4a (1920x1080p@60fps) or LVDS (1280×720p@60fps)				
Audio	Two I ² S audio interfaces				
Memory					
DRAM	1GB DDR3 @ 800MHz				
FLASH	4GB eMMC v4.5				
Security					
Secure Element	Secure point to point authentication and data transfer				
Trusted Execution Environment	Trustware				
Radio					
WLAN	IEEE 802.11a/b/g/n/ac, dual-band SISO				
Bluetooth®	4.0 (Classic+BLE)				
LR_WPAN	IEEE 802.15.4				
Power Management					
PMIC	Provides all power of the ARTIK 710/710s Module using onboard bucks and LDOs				
Interfaces					
Ethernet	10/100/1000Base-T MAC (External PHY required)				
Analog and Digital I/O	GPIO, UART, I ² C, SPI, SDIO, USB Host, USB OTG, HSIC, ADC, PWM, I ² S, JTAG,				

TABLE OF CONTENTS

Module Overview	2
Version History	9
Block Diagram and Module Features	10
ARTIK 710/710s Module Features	
ADC	
GPIO	
I ² S	
PWM	
SPI	12
UART	12
I ² C	13
Power Management	13
Wi-Fi®	13
Bluetooth®	
802.15.4 for Zigbee	14
PCM	14
USB OTG	
USB HOST	
HSIC	
MIPI CSI	
MIPI DSI	
HDMI	
LVDS	
Gigabit EMAC	
SD/MMC	
Memory Controller	
JTAG	
Timer	
Interrupt Controller	
DMA	
RTC	
Video Input Processor	
Scaler Multiformat Codec	
Graphics Pipeline	
Security Subsystem	
Eight-Core Processor System	
Module Pads	
Ball Table Column Definitions	
North Ball Array	
South Ball Array	
East Ball Array	
West Ball Array	
Center Ball Array	.31

Functional Interfaces	33
ADC	
Booting	33
Bluetooth PCM	
MIPI CSI	
MIPI DSI	
GMAC	
GPIO	
HDMI	
HSIC	
I ² C	
l ² S	
JTAG	
AliveGPIO	
LVDS	
PWM	
SD/MMC	
SPI	39
UART	
USB HOST/USB OTG	
802.15.4 for Zigbee	40
Miscellaneous	
Power	41
GPIO Alternate Functions	42
Booting Selection	46
Power Sequence	
Power States	
Antenna Connections	
Electrical Specifications	
Absolute Maximum Ratings	
Power Supply Operating Voltage Range	
Power Supply Requirements	
Power/Current Consumption	
DC Electrical Characteristics	
AC Electrical Characteristics	
SD/MMC AC Electrical Characteristics	
SPI AC Electrical Characteristics	
I2C AC Electrical Characteristics	
RF Electrical Characteristics	
Wi-Fi, 2.4GHz Receiver RF Specifications	
Wi-Fi, 2.4GHz Transmitter RF Specifications	65
Wi-Fi, 5GHz Receiver RF Specifications	66
Wi-Fi, 5GHz Transmitter RF Specifications	
Bluetooth RF Specifications	
802.15.4 Receiver RF Specifications	
Thermal and Environmental Specifications	
Recommended Operating Conditions	
Temperature Thresholds for Operating Frequency Throttling	
ESD Ratings	
Mechanical Specifications	72

Certifications and Compliance	75
Bluetooth	75
CE	
FCC	75
IC	
KCC	76
SRRC	76
HDMI Compliance	
RoHS Compliance	76
FCC Regulatory Disclosures	
Industry Canada Regulatory Disclosures	78
Industry Canada Statement	
EU Regulatory Disclosures	
Statement*	78
Wi-Fi Interoperability	79
Zigbee	79
Ordering Information	80

LIST OF FIGURES

Figure 1. ARTIK™ 710/710s Modules Top View	2
Figure 2. ARTIK 710/710s Module Functional Block Diagram	10
Figure 3. ARTIK 710/710s Module Top View Ball Organization	
Figure 4. ARTIK 710/710s Module Power-On Sequence (Timing) Diagram	47
Figure 5. ARTIK 710/710s Module Power Management State Diagram	
Figure 6. RF Connector for Bluetooth/Wi-Fi and Zigbee	49
Figure 7. ARTIK 710/710s Module Power Distribution	51
Figure 8. High-Speed SD/MMC Interface Timing	
Figure 9. SPI Interface Timing (CPHA = 0, CPOL = 1 (Format A))	60
Figure 10. I2C Interface Timing	63
Figure 11. ARTIK 710/710s Module Component Layout Top View	72
Figure 12. ARTIK 710/710s Module Mechanical Dimensions Top View	
Figure 13. ARTIK 710/710s Module Mechanical Dimensions Bottom ViewView	73
Figure 14. L-Shaped Pad Pins (Top View)	74

LIST OF TABLES

Table 1. Ball Table Column Definition	24
Table 2. North Ball Array	24
Table 3. South Ball Array	26
Table 4. East Ball Array	28
Table 5. West Ball Array	30
Table 6. Center Ball Array	31
Table 7. ADC	33
Table 8. Booting	33
Table 9. Bluetooth PCM	33
Table 10. MIPI CSI	34
Table 11. MIPI DSI	34
Table 12. GMAC	34
Table 13. GPIO	35
Table 14. HDMI	36
Table 15. HSIC	37
Table 16. I ² C	37
Table 17. I ² S	37
Table 18. JTAG	
Table 19. Key	38
Table 20. LVDS	38
Table 21. PWM	
Table 22. SD/MMC	
Table 23. SPI	39
Table 24. UART	
Table 25. USB Host/USB OTG	4C
Table 26. 802.15.4	
Table 27. Miscellaneous	
Table 28. Power	
Table 29. GPIO Alternate Functions—North Part	
Table 30. GPIO Alternate Functions—South Part	
Table 31. GPIO Alternate Functions—East Part	
Table 32. GPIO Alternate Functions—West Part	
Table 33. Boot Selection Configuration	
Table 34. Absolute Maximum Ratings	
Table 35. Power Supply Operating Voltage Range	
Table 36. DC-DC/LDOs Description	
Table 37. AC/DC Characteristics LDO1 and LDO2	
Table 38. AC/DC Characteristics LDO1 and LDO2 Eco Mode	
Table 39. AC/DC Characteristics LDO5	
Table 40. AC/DC Characteristics LDO5 Eco Mode	
Table 41. AC/DC Characteristics LDO8 and LDO9	
Table 42. ARTIK 710/710s Module Power/Current Consumption	
Table 43. I/O DC Electrical Characteristics GPIO	
Table 44. I/O DC Electrical Characteristics 802.15.4	
Table 45. I/O DC Electrical Characteristics PMIC	
Table 46. I/O DC Electrical Characteristics PCM Signals	
Table 47. GPIO Pull-up Resistor Current	
Table 48. Power-on Reset Timing Specifications	
Table 49. High-Speed SD/MMC Interface Transmit/Receive Timing Constants	
Table 50. SPI Interface Transmit/ Receive Timing Constants with 15pF Load	
Table 51. SPI Interface Transmit/Receive Timing Constants with 30pF Load	
Table 52. I2C BUS Controller Module Signal Timing	63

ARTIK 710/710s Module Datasheet

Samsung Semiconductor, Inc.

Table 53. Wi-Fi, 2.4GHz Receiver RF Specifications	64
Table 54. Wi-Fi, 2.4GHz Transmitter RF Specifications	65
Table 55. Wi-Fi, 5GHZ Receiver RF Specifications	66
Table 56. Wi-Fi, 5GHz Transmitter RF Specifications	68
Table 57. Bluetooth Receiver RF Specifications	
Table 58. Bluetooth Transmitter RF Specifications	
Table 59. Bluetooth Low Energy (BLE) RF Specifications	69
Table 60. 802.15.4 Receiver RF Specifications	70
Table 61. 802.15.4 Transmitter RF Specifications	
Table 62. Recommended Operating Conditions	71
Table 63. Application Processor Die Temperature vs Maximum Operating Frequency	
Table 64. ESD Ratings	
Table 65. Shock and Vibration Ratings	71
Table 66. L-Shaped Ball Locations	
Table 67. Wi-Fi Certifications	79

Version History

Revision	Date	Description				
V1.0	October 17, 2016	Initial release.				
V1.01	November 15, 2016	Updated Page 1 ARTIK 710/710s Module Picture. Updated Figure 2, Figure 3. Updated Mechanical Specification section. Updated Front Page. Updated ARTIK 710/710s Module ZigBee or Thread section. Updated ARTIK 710/710s Module Wi-Fi/Bluetooth section.				
V1.02	November 20, 2017	Updated block diagram.				
		In <u>Functional Interfaces</u> , each subsection describing an interface that has alternate functions clarifies which are selected by hardware at power-on reset. Changed specifications in <u>Wi-Fi®</u> . Cross references added to the appropriate tables in <u>GPIO Alternate Functions</u> .				
		Secure Element and Secure IP reorganized into <u>Memory Controller</u> section.				
		Changed format of default functions in tables of <u>GPIO Alternate Functions</u> to make it easier to see which function number is the default.				
		Changed direction of LVDS signals in <u>Table 20</u> from IO to O.				
		Booting Selection section rewritten for clarity.				
		Power Sequence section divided into <u>Power Sequence</u> and <u>Power States</u> . Simplified power management state diagram.				
		Section Power/Current Consumption added.				
		Changed storage temperature range in <u>Absolute Maximum Ratings</u> .				
		Updated standards compliance in <u>CE</u> and <u>EU Regulatory Disclosures</u> .				
V1.03	November 30, 2017	Added ARTIK 710s features in <u>Module Overview</u> , <u>Block Diagram and Module Features</u> , and, <u>Security Subsystem</u>				
V1.04	December 20, 2017	<u>Mechanical Specifications</u> : Changed pad names in <u>Figure 14</u> and <u>Table 66</u> to correlate with pad organization shown in <u>Figure 3</u> . Note that the changes address a labeling consistency issue only; no electrical or layout changes are required.				
V1.05	February 2, 2018	<u>Module Overview</u> : Corrected inconsistent information about Bluetooth specification support.				
V1.06	February 20, 2018	<u>Table 28</u> : Corrected note about VCC3P3_SYS pads. Deleted text indicating that the pads are switched off during sleep mode, which does not apply to this product family. The note still indicates these pads should not be used to drive external devices.				
V1.07	March 22, 2018	$\underline{I}^2\underline{C}$: Removed support for slave mode.				
		<u>Table 3</u> : Changed UART port from port 0 to port 5 so that the data for this pad is now consistent in the datasheet. Marked pad PAL15 for internal use only.				
		<u>Table 26</u> : Marked pad PAL15 for internal use only.				
		<u>Table 30</u> : Corrected GPIO functions associated with pad PAL24. Removed pad PAL15 because it is reserved for internal use only.				
V1.08	April 5, 2018	Added <u>Temperature Thresholds for Operating Frequency Throttling</u> under new section <u>Thermal and Environmental Specifications</u> .				

BLOCK DIAGRAM AND MODULE FEATURES

<u>Figure 2</u> shows the functional block diagram of the ARTIK 710/710s Module. It consists of an octa-core ARM® Cortex®-A53 application processor with 1GBof DDR3 and 4GB eMMC Flash, PMIC power management, Security Subsystem, 802.11 for Wi-Fi®, Bluetooth®, 802.15.4 for Zigbee, and RF connectors.

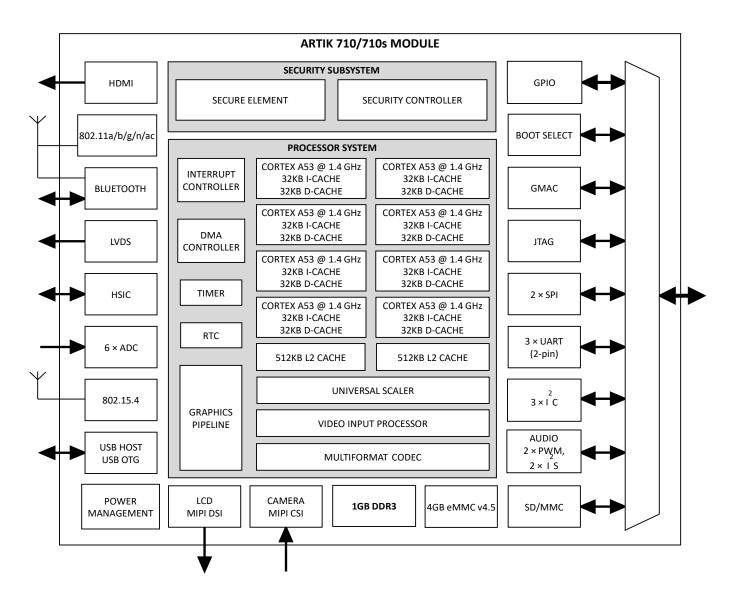


Figure 2. ARTIK 710/710s Module Functional Block Diagram

ARTIK 710/710s Module Features

The following subsections describe the functions of the various ARTIK 710/710s Module blocks depicted in Figure 2.

ADC

The ADC interface controls one 28nm low-power CMOS 1.8V 12-bit ADC. The key features of the ADC sub-system are

- · Up to six channels of analog input can be selected
- Conversion of analog input into 12-bit binary code up to 1 Mega Sample Per Second (MSPS)
- 1.0mW power consumption when running 1MSPS
- Input frequency up to 100kHz

GPIO

The ARTIK 710/710s Module provides a GPIO system with up to 110 GPIOs multiplexed with other I/O interface lines, as shown in *Figure 2* to support a wide variety of use-cases. The key features of the GPIO system are as follows:

- Programmable pull-up control
- Both edge detect and level detect functionality
- Support for programmable pull-up resistors
- Support for fast or normal slew operation
- Drive strength can be set from a register:

Value	Drive Strength *				
0	2.6mA approximately (default)				
1	5.2mA approximately				
2	10.4mA approximately				
3	15.6mA approximately				

^{*.} Assumes the reference I/O voltage is 3.3V. All drive-strength values are approximate.

- Support for interrupt generation that can be triggered on one of the following:
 - Rising edge
 - Falling edge
 - High level detection
 - Low level detection
- The I/O data is clocked up to 50MHz

I²S

The ARTIK 710/710s Module provides two 5-line Inter-IC Sound (I^2S) channels. I^2S is one of the most popular digital audio interfaces. The I^2S bus handles audio data and other signals, such as subcoding and control. It is possible to transmit data between two I^2S buses. The key features of the I^2S sub-system are

- One-port stereo (1 channel) I²S-bus for audio with DMA based operation
- Serial data transfer of 16/24 bits per channel in Master and Slave mode
- A variety of interface modes:
 - I²S, Left justified, Right justified, DSP mode

PWM

The ARTIK 710/710s Module provides two pulse width modulation (PWM) instances with the following key features:

- Two individual PWM channels with independent duty control and polarity
- Two 32-bit PWM timers, one per channel
- · Support for static as well as dynamic setup
- Support for auto-reload and one shot pulse mode
- Dead zone generator
- · Level interrupt generation

SPI

The ARTIK 710/710s Module provides two Serial Peripheral Interface (SPI) portsthat transfer serial data. SPI support includes 8-bit/16-bit shift registers to transmit and receive data. During an SPI transfer, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). The SPI implementation adheres to the protocols described by Texas Instruments Synchronous Serial Interface, National Semiconductor's Microwire, and Motorola's Serial Peripheral Interface. The key features of the SPI sub-system are

- Support for full-duplex
- 8-bit/16-bit shift register for Tx and Rx
- Compliant with the SPI protocol described by Texas Instruments, National Semiconductor and Motorola
- Support for independent 16-bit wide transmit and receive FIFOs 8 locations deep
- Support for master mode and slave mode
- Support for receive-without-transmit operation
- Max operating frequency :
 - Master Mode: Supports Tx up to 50MHz, Rx up to 20MHz
 - Slave Mode: Supports Tx up to 8MHz, Rx up to 8MHz

UART

The ARTIK 710/710s Module provides three 2-pin universal asynchronous receiver transmitters (UARTs). The key features of the UART sub-system are

- Separate 64×8 Tx and 64×8 Rx FIFO memory buffers
- Support for DMA-mode and interrupt-based mode of operation
- All independent channels support IrDA 1.0
- Each UART channel contains:
 - Programmable baud-rates
 - 1 or 2 stop bit insertion
 - 5-bit, 6-bit, 7-bit, or 8-bit data width
 - Parity checking

I²C

The ARTIK 710/710s Module provides three generic I^2C blocks supporting both 100kb/s and 400kb/s speed modes. The key features of the I^2C sub-system are

- · Support for multi-master mode
- 7-bit addressing mode only
- Serial, 8-bit oriented and bi-directional data transfer
- Up to 100 kb/s in the standard mode
- Up to 400 kb/s in the fast mode
- Support for both interrupt and polling events

Power Management

The ARTIK 710/710s Module power requirements are managed using a power management integrated circuit (PMIC). This PMIC device has five fully-integrated fixed-frequency current-mode synchronous PWM step-down converters that can achieve peak efficiencies of up to 97%. The regulators operate at a fixed high frequency, minimizing noise in sensitive applications and allowing the use of small form factor components. These five regulators fully satisfy the power and control requirements of the ARTIK 710/710s Module. Dynamic Voltage Scaling (DVS) of the various core voltages is supported using I²C control.

In addition, the ARTIK 710/710s Module provides up to five low-noise LDOs for external use.

Wi-Fi®

The ARTIK 710/710s Module has a fully integrated WLAN block covering IEEE 802.11 a/b/g/n/ac. The most important hardware features of the module are

- 802.11 a/b/g/n/ac dual-band SISO that is 2.4GHz/5GHz-compliant
- 1T1R 2.4GHz/5GHz band
- Support for 20MHz, 40MHz, and 80MHz bandwidth (86.7/433.3Mbps PHY rate)
- Enhanced 802.11/Bluetooth coexistence control to improve transmission quality in different profiles
- · Use of an SDIO interface

Bluetooth®

The ARTIK 710/710s Module has a fully integrated 4.0 block (BLE+Classic). The most important hardware features of the module are

- Bluetooth 4.0 (BLE+Classic)
- Enhanced 802.11/Bluetooth Coexistence control to improve transmission quality in different profiles

802.15.4 for Zigbee

The ARTIK 710/710s Module carries fully-integrated 802.15.4 functionality. The most important hardware features are

- Fully integrated 2.4 GHz, IEEE 802.15.4-compliant transceiver
- Complete system-on-chip using 32-bit ARM® Cortex®-M3 processor
- Flash and RAM memory and peripherals.
- Extremely low power consumption.
- Excellent RF performance.
- Supported Protocols:
 - ZigBee®
 - Thread

PCM

The ARTIK 710/710s Module provides one PCM channel. The PCM interface provides a bi-directional serial interface that can be connected to an external audio codec. The key features of the PCM subsystem are

- Supports both Master and Slave mode external audio codecs
- Supports both short and long frame synchronization
- Supports a variety of data formats with a default format of 13-bit 2's complement, left justified, clock MSB first

USB OTG

The ARTIK 710/710s Module provides one USB2.0 OTG interface supporting both device and host functionality. The key features of the USB2.0 OTG sub-system are

- Compliant with the USB 2.0 on-the-go specification revision 1.3a and 2.0
- High-speed (480Mbps) mode
- Full-speed (12Mbps) mode
- Low-speed (1.5Mbps) mode (host only)
- Support for session request protocol (SRP) and host negotiation protocol (HNP)
- One control endpoint 0 for control transfer

- Up to 15 device-programmable endpoints:
 - Programmable endpoint type: Bulk, Isochronous, Interrupt
 - Programmable In/Out direction
- 16 host channels

USB HOST

The ARTIK 710/710s Module provides one USB2.0 controller that is fully compliant with the USB 2.0 Host specifications, and the enhanced host controller Interface (EHCI) specification. The key features of the USB2.0 Host sub-system are

- Detecting the attachment and removal of USB devices
- Collecting status and activity statistics
- Controlling power supply to attached USB devices
- In compliance with the UTMI+ Level 3 revision 1.0
- Controlling the association to either the open host controller interface (OHCI) or the EHCI via a port router
- Root Hub functionality to support upstream/downstream port

HSIC

The ARTIK 710/710s Module provides one high-speed inter-chip (HSIC) version 1.0 module. The key features of the HSIC sub-system are

- Support for ping and split transactions
- Up to 30MHz operation for a 16-bit interface
- Up to 60MHz operation for a 8-bit interface
- Support for HSIC version 1.0

MIPI CSI

The ARTIK 710/710s Module provides one 4-lane mobile industry processor interface (MIPI) interface that complies with the MIPI camera serial interface (CSI) standard specification V1.01r06 and D-PHY standard specification v1.0. The key features of the MIPI CSI sub-system are

- 1, 2, 3 or 4 data lanes
- Support for the following image formats:
 - YUV420, YUV420 (Legacy), YUV420 (CSPS), 8-bit YUV422, 10-bit YUV422
 - User-defined byte-based data packet
 - Compatible to PPI (Protocol to PHY interface)

MIPI DSI

The ARTIK 710/710s Module provides one 4-lane MIPI interface that complies with the MIPI DSI standard specification V1.01r11. The key features of the MIPI DSI sub-system are

- Maximum resolution ranges up to 1920×1080
- Supports 1, 2, 3 or 4 data lanes
- Supports pixel format:
 - 16bpp, 18bpp packed, 18bpp loosely packed (3 byte), 24bpp
- · Supported interfaces are
 - Protocol-to-PHY Interface (PPI) up to 1.5Gbps, in MIPI D-PHY
 - RGB Interface for video image input from display controller
 - PMS control interface for PLL to configure byte clock frequency
 - Prescaler to generate escape clock from byte clock

HDMI

The ARTIK 710/710s Module provides one HDMI v1.4a interface. The key features of the HDMI sub-system are

- Support for v1.4a spec
- Up to 1080p video resolution
- HDMI Link + HDMI PHY
- Support for the following video formats:
 - 480p@59.94/60Hz
 - 576p@50Hz
 - 720p@50/59.94/60Hz
 - 1080p@50/59.94/60Hz (No support for interlaced format)
- Support for 4:4:4 RGB
- · Support for up to 8-bits per color

LVDS

The ARTIK 710/710s Module provides five low voltage differential signaling (LVDS) output channels with one clock channel. The key features of the LVDS channel system are

- Output clock range 30–125MHz
- Support for 630 Mbps per channel
- Up to 393.75MB/s data transport
- Support for power down mode

Gigabit EMAC

The ARTIK 710/710s Module provides one Gigabit EMAC interface. The most important features of the Ethernet MAC module are

- Standard compliance
 - IEEE 802.3az-2010: energy efficient Ethernet (EEE)
 - RGMII v2.6
- MAC supports the following features:
 - 10/100/1000 Mbps data transfer rates with an RGMII interface to communicate with external Gigabit PHY
 - Full duplex operation
 - Half duplex operation
 - Flexible address filtering
 - Additional frame filtering

SD/MMC

The ARTIK 710/710s Module provides one SD/MMC interface. The Mobile Storage Host is an interface between the system and the SD/MMC. The key features of mobile storage host sub-system are as follows:

SD

- Support for Secure Digital I/O (SDIO version 3.0)
- Support for Secure Digital Memory (SDMEM version 3.0)
- Consumer Electronics Advanced Transport Architecture (CE-ATA-version 1.1)
- Support 4-bit SDR mode up to 50MHz
- Support for PIO and DMA mode data transfer
- Support for 4- bit data bus width

MMC

- Support for Multimedia Cards (MMC version 4.41)
- Support for Embedded Multimedia Cards (eMMC version 4.5)
- Support for 4-bit SDR mode up to 50MHz
- Support for PIO and DMA mode data transfer
- Support for 4- bit data bus width

Memory Controller

The ARTIK 710/710s Module has one DDR3 memory interface. The key features are

- One 32-bit DDR3 memory interface
- Two 512MB DDR3 16-bit memory chips, for a total of 1GB
- Up to 800MHz DDR3 speed with a maximum throughput of 6.4GB/s

JTAG

The JTAG core provides debug capabilities for the developer and is compliant with the IEEE 1149 standard.

Timer

The ARTIK 710/710s Module has four dedicated timer channels. The most important features of the Timer module are

- Timer or watchdog timer modes
- Four dedicated Timer channels with watchdog timer
- Normal interval timer mode with interrupt request
- Reset on timer countdown
- Level-triggered interrupt mechanism

Interrupt Controller

The ARTIK 710/710s Module has one interrupt controller module. The most important features of the interrupt module are

- Vectored interrupt controller
- Support for four interrupt types
 - Sixteen software generated interrupts
 - Six external Private Peripheral Interrupts (PPIs) per processor
 - One internal PPI for each processor
 - 128 shared peripheral interrupts
- For each interrupt source the following properties are available:
 - Fixed hardware interrupt priority level
 - Programmable interrupt priority level
 - Hardware interrupt priority level masking
 - IRQ and FIQ generation
 - Software interrupt generation
 - Test registers
 - Raw interrupt status
 - Interrupt request status

DMA

The ARTIK 710/710s Module has one scatter-gather DMA module. The most important features of the DMA module are

- 16 channels of dedicated DMA
- 16 DMA request lines
- Various operating modes
 - Single DMA mode
 - Burst DMA mode
 - Memory-to-memory transfer
 - Memory-to-peripheral transfer
 - Peripheral-to-memory transfer
 - Peripheral-to-peripheral transfer
- Support for 8/16/32 bit wide transactions
- Big endian and little endian (default) support

RTC

The ARTIK 710/710s Module has one real time clock (RTC) module. The most important features are

- Four spread-spectrum PLLs
- Two external crystals: one 24MHz crystal for the PLLs and one 32.768KHz crystal for the RTC
- One 32-bit RTC counter
- · Support for alarm interrupt using RTC
- Support for various power modes:
 - Normal, Idle, and Sleep (Suspend to RAM)

Video Input Processor

The ARTIK 710/710s Module provides one video input processor (VIP). The key features of the VIP sub-system are

- Support for external 8-bit and 16-bit MIPI
- Support for internal MIPI-CSI
- Support for images up to 8192×8192
- Support for clipping and scale-down
- Support for YUV420 memory format

Scaler

The ARTIK 710/710s Module provides one universal scaler. The key features of the scaler are

- Support for different input formats:
 - YUV420, YUV422, YUV444

- Flexible size, from 8×8 up to 1920×1080 with a granularity of 8
- Upscale ratio from 8×8 to 1920×1080
- Downscale ratio from 1920×1080 to 8×8
- Low pass filter available after upscale or before downscale
- Horizontal 5-tab filter with 64 sets of coefficients
- Vertical 3-tab filter with 32 sets of coefficients.

Multiformat Codec

The ARTIK 710/710s Module provides one integrated Multiformat Codec (MFC) module. The key features of the MFC sub-system are

- Decoder:
 - H.264: BP, MP, HP Level 4.2 up to 1920×1080, up to 50MBps
 - MPEG4: Advanced Simple Profile (ASP) up to 1920×1080, at up to 40Mbps
 - H.263: Profile 3 up to 1920×1080, up to 20Mbps
 - MPEG 1,2: Main Profile, High Level up to 1920×1080, up to 80MBps
- Encoder:
 - H.264: Baseline profile, Level 4.0 up to 1080p, up to 20Mbps
 - MPEG4 : Simple profile, Level 5.6 up to 1080p, up to 20Mbps
 - H.263: Profile 3, Level 70 up to 1080p, up to 20Mbps

Graphics Pipeline

The ARTIK 710/710s Module provides one 2D and 3D graphics pipeline module. The key features of the graphics pipeline are

- Two pixel processors:
 - Tile oriented processing
 - Alpha blending
 - Texture support, non-power-of-2
 - Cube mapping
 - Fast dynamic branching
 - Trigonometric acceleration
 - Full floating-point arithmetic
 - Line, quad, triangle and point sprites
 - Perspective correct texturing
 - Point sampling, bilinear and trilinear filtering
 - 8-bit stencil buffering
 - 4-level hierarchical Z and stencil operation

- · Geometry processor:
 - Programmable vertex shader
 - Flexible input and output formats
 - Autonomous operation tile list generation
 - Indexed and non-indexed geometry input
 - Primitive constructions with points, lines, triangles and quads
- Support for OpenGL ES 1.0 and 2.0

Security Subsystem

In addition to the Secure Element, the main processor on the module provides additional security features. The key features of the Security Controller sub-system are

- Secure 128-bit die ID (available to the ARTIK 710s Module only)
- Secure JTAG featuring a secure 128-bit JTAG ID (available to the ARTIK 710s Module only)
- Secure boot featuring a 128-bit boot ID (available to the ARTIK 710s Module only)
- Security Controller (available to the ARTIK 710s Module only)
- Secure Element (all features in ARTIK 710s Module; limited features in ARTIK 710 Module)

Security Controller

The Security Controller provides ARM TrustZone features and hardware cryptographic accelerators as follows:

- ARM TrustZone
 - TZPC (TrustZone Platform Controller)
 - TZASC (TrustZone Address Space Controller)
 - TZMA (TrustZone Memory Adapter)
- Hardware cryptographic accelerators
 - DES, Triple DES
 - AES
 - SHA-1
 - MD5

Secure Element

The ARTIK 710/710s Module has a dedicated Secure Element to assure end-to-end authentication and communication between nodes in an IoT setting. The most important hardware features of the Secure Element are

- An ISO/IEC 7816 14443-compliant interface.
- · Dedicated 16-bit SecuCalm CPU core
- Crypto co-processor
 - Modular exponential accelerator
 - RSA 2080 bits
 - ECC 512 bits

- Data security
 - Memory encryption for all memory
 - 256B read-only and 256B nonerasable Flash area
 - Selective reset operation if abnormal voltages/frequencies are detected
- Embedded tamper-free memory
 - 32KB ROM
 - 264KB Flash
 - 2.5KB cryptographic memory
- Serial interfaces:
 - ISO 7816-3-compliant interface
 - Asynchronous half-duplex character receive/transmit serial interface

Eight-Core Processor System

The processor system architecture that resides on the ARTIK 710/710s Module is a system-on-a-chip (SoC) based on a 32/64-bit RISC architecture. Designed using the 28nm low power process, the processor system architecture provides superior performance using an eight-core CORTEX®-A53 CPU. The key features of the ARTIK 710/710s Module are

- Eight-core ARM® Cortex®-A53, RISC architecture
- Maximum core speed 1.4GHz
- 32KB I-Cache per core
- 32KB D-Cache per core
- 1024KB L2-Cache shared between eight cores
- Support for dynamic virtual-address mapping

MODULE PADS

The ARTIK 710/710s Module utilizes signal and ground balls providing all the relevant signaling. <u>Figure 3</u> shows how the balls are oriented and how signal coordinates are assigned to the PADs of the ARTIK 710/710s Module. <u>Table 2-Table 6</u> describe the relation between the ball coordinates and the ball signal names. These tables also provide detailed characteristics for each ball signal name.

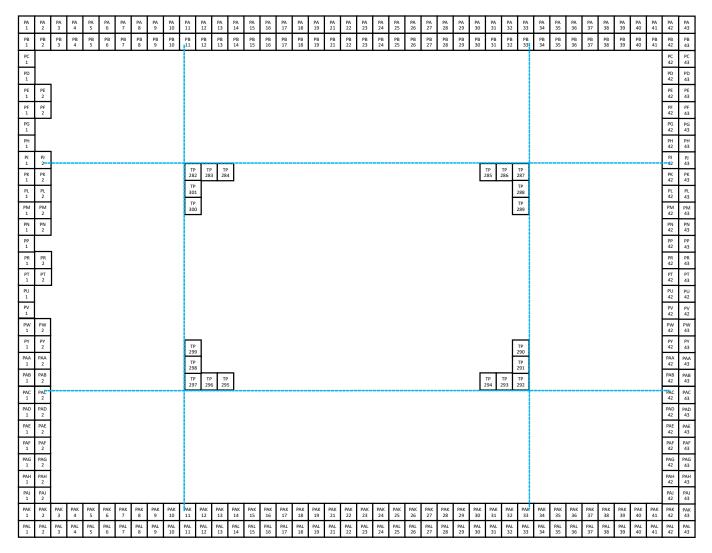


Figure 3. ARTIK 710/710s Module Top View Ball Organization

Ball Table Column Definitions

The meaning of the various columns used in <u>Table 2</u> - <u>Table 6</u> is explained in <u>Table 1</u>.

Table 1. Ball Table Column Definition

Column Name	Column Definition
Ball Loc.	Ball location on the ARTIK 710/710s Module as shown in <i>Figure 3</i> .
Ball Name	The ball name on the ARTIK 710/710s Module.
Voltage	Voltage level on the ball.
Default	Default function of the main SoC at hardware power-on.
Туре	S: Signal ball, P: Power ball, G: GND ball.
I/O	I: Input, O: Output, IO: Input/Output to/from module
PU/PD	Indicates the presence of module-internal pull-up or pull-down. PU: Pull-Up, PD: Pull-Down, N: No Pull-Up/Pull-Down.
Group	Nominal function group set according to pad name. For more information see the ARTIK 710/710s Module Hardware User Guide. Usually the function of the pin can be reprogrammed.
Function	Explanation on the function of the ball.

North Ball Array

Table 2. North Ball Array

Ball Loc.	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function
PA1	GMAC_TXEN	3.3V	S	Ю	N	GMAC	GMAC Transmit Enable
PA2	GMAC_TXD1	3.3V	S	Ю	N	GMAC	GMAC Transmit Data 1
PA3	GMAC_TXD3	3.3V	S	Ю	N	GMAC	GMAC Transmit Data 3
PA4	GND	0.0V	G	-	-	GND	Ground
PA5	GMAC_GTXCLK	3.3V	S	Ю	N	GMAC	GMAC Transmit Clock
PA6	GMAC_RXDV	3.3V	S	Ю	N	GMAC	GMAC Receive Enable
PA7	GMAC_RXD2	3.3V	S	Ю	N	GMAC	GMAC Receive Data 2
PA8	GMAC_RXD0	3.3V	S	Ю	N	GMAC	GMAC Receive Data 0
PA9	GND	0.0V	G	-	-	GND	Ground
PA10	AP_MIPICSI_DNCLK	1.8V	S	Ю	N	CSI	MIPI CSI Data Negative Clock
PA11	AP_MIPICSI_DNO	1.8V	S	Ю	N	CSI	MIPI CSI Data Negative 0
PA12	AP_MIPICSI_DN1	1.8V	S	Ю	N	CSI	MIPI CSI Data Negative 1
PA13	AP_MIPICSI_DN2	1.8V	S	Ю	N	CSI	MIPI CSI Data Negative 2
PA14	AP_MIPICSI_DN3	1.8V	S	Ю	N	CSI	MIPI CSI Data Negative 3
PA15	NO BALL	-	-	-	-	NO BALL	-
PA16	AP_MIPIDSI_DNCLK	1.8V	S	Ю	N	DSI	MIPI DSI Data Negative Clock
PA17	AP_MIPIDSI_DNO	1.8V	S	Ю	N	DSI	MIPI DSI Data Negative 0
PA18	AP_MIPIDSI_DN1	1.8V	S	Ю	N	DSI	MIPI DSI Data Negative 1
PA19	AP_MIPIDSI_DN2	1.8V	S	Ю	N	DSI	MIPI DSI Data Negative 2
PA20	AP_MIPIDSI_DN3	1.8V	S	Ю	N	DSI	MIPI DSI Data Negative 3
PA21	GND	0.0V	G	-	-	GND	Ground
PA22	AP_LVDS_TNO	1.8V	S	0	N	LVDS	LVDS Transmit Channel O Negative
PA23	AP_LVDS_TN1	1.8V	S	0	N	LVDS	LVDS Transmit Channel 1 Negative

Table 2. North Ball Array (Continued)

Ball Loc.	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function
PA24	AP_LVDS_TN2	1.8V	S	0	N	LVDS	LVDS Transmit Channel 2 Negative
PA25	AP_LVDS_TNCLK	1.8V	S	0	N	LVDS	LVDS Transmit Negative Clock
PA26	AP_LVDS_TN3	1.8V	S	0	N	LVDS	LVDS Transmit Channel 3 Negative
PA27	AP_LVDS_TN4	1.8V	S	0	N	LVDS	LVDS Transmit Channel 4 Negative
PA28	GND	0.0V	G	-	-	GND	Ground
PA29	AP_HDMI_CEC	3.3V	S	Ю	N	HDMI	HDMI Consumer Electronics Control
PA30	AP_HDMI_TX2N	1.8V	S	0	N	HDMI	HDMI Transmit Channel 2 Negative
PA31	AP_HDMI_TX1N	1.8V	S	0	N	HDMI	HDMI Transmit Channel 1 Negative
PA32	AP_HDMI_TXON	1.8V	S	0	N	HDMI	HDMI Transmit ChannelO Negative
PA33	AP_HDMI_TXCN	1.8V	S	0	N	HDMI	HDMI Transmit Negative Clock
PA34	GND	0.0V	G	_	-	GND	Ground
PA35	AP_OTG_DM	3.3V	S	Ю	N	USB OTG	USB OTG Data Minus
PA36	AP_USBH_DM	3.3V	S	Ю	N	USB HOST	USB HOST Data Minus
PA37	AP_GPA13	3.3V	S	Ю	N	GPIO	Generic GPIO
PA38	AP_HSIC_STROBE	1.2V	S	Ю	N	HSIC	HSIC Strobe
PA39	AP_GPA14	3.3V	S	Ю	N	GPIO	Generic GPIO
PA40	AP_GPA9	3.3V	S	Ю	N	GPIO	Generic GPIO
PA41	AP_GPA15	3.3V	S	Ю	N	GPIO	Generic GPIO
PA42	AP_GPA12	3.3V	S	Ю	N	GPIO	Generic GPIO
PA43	GND	0.0V	G	_	-	GND	Ground
PB1	GND	0.0V	G	-	-	GND	Ground
PB2	GMAC_TXD0	3.3V	S	Ю	N	GMAC	GMAC Transmit Data 0
PB3	GMAC_TXD2	3.3V	S	Ю	N	GMAC	GMAC Transmit Data 2
PB4	GMAC_MDC	3.3V	S	Ю	N	GMAC	GMAC MDC
PB5	GMAC_RXCLK	3.3V	S	Ю	N	GMAC	GMAX Receive Clock
PB6	GMAC_RXD3	3.3V	S	Ю	N	GMAC	GMAC Receive Data 3
PB7	GMAC_RXD1	3.3V	S	Ю	N	GMAC	GMAC Receive Data 1
PB8	GMAC_MDIO	3.3V	S	Ю	N	GMAC	GMAC MDIO
PB9	GND	0.0V	G	-	-	GND	Ground
PB10	AP_MIPICSI_DPCLK	1.8V	S	Ю	N	CSI	MIPI CSI Data Positive Clock
PB11	AP_MIPICSI_DP0	1.8V	S	Ю	N	CSI	MIPI CSI Data Positive 0
PB12	AP_MIPICSI_DP1	1.8V	S	Ю	N	CSI	MIPI CSI Data Positive 1
PB13	AP_MIPICSI_DP2	1.8V	S	Ю	N	CSI	MIPI CSI Data Positive 2
PB14	AP_MIPICSI_DP3	1.8V	S	Ю	N	CSI	MIPI CSI Data Positive 3
PB15	GND	0.0V	G	-	-	GND	Ground
PB16	AP_MIPIDSI_DPCLK	1.8V	S	Ю	N	DSI	MIPI DSI Data Positive Clock
PB17	AP_MIPIDSI_DPO	1.8V	S	Ю	N	DSI	MIPI DSI Data Positive 0
PB18	AP_MIPIDSI_DP1	1.8V	S	Ю	N	DSI	MIPI DSI Data Positive 1
PB19	AP_MIPIDSI_DP2	1.8V	S	Ю	N	DSI	MIPI DSI Data Positive 2
PB20	AP_MIPIDSI_DP3	1.8V	S	Ю	N	DSI	MIPI DSI Data Positive 3
PB21	GND	0.0V	G	_	_	GND	Ground
PB22	AP_LVDS_TP0	1.8V	S	0	N	LVDS	LVDS Transmit Channel O Positive

Table 2. North Ball Array (Continued)

Ball Loc.	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function	
PB23	AP_LVDS_TP1	1.8V	S	0	N	LVDS	LVDS Transmit Channel 1 Positive	
PB24	AP_LVDS_TP2	1.8V	S	0	N	LVDS	LVDS Transmit Channel 2 Positive	
PB25	AP_LVDS_TPCLK	1.8V	S	0	N	LVDS	LVDS Transmit Positive Clock	
PB26	AP_LVDS_TP3	1.8V	S	0	N	LVDS	LVDS Transmit Channel 3 Positive	
PB27	AP_LVDS_TP4	1.8V	S	0	N	LVDS	LVDS Transmit Channel 4 Positive	
PB28	GND	0.0V	G	-	-	GND	Ground	
PB29	AP_HDMI_HPD	3.3V	S	I	N	HDMI	HDMI Hot Plug Detect	
PB30	AP_HDMI_TX2P	1.8V	S	0	N	HDMI	HDMI Transmit Channel 2 Positive	
PB31	AP_HDMI_TX1P	1.8V	S	0	N	HDMI	HDMI Transmit Channel 1 Positive	
PB32	AP_HDMI_TXOP	1.8V	S	0	N	HDMI	HDMI Transmit Channel O Positive	
PB33	AP_HDMI_TXCP	1.8V	S	0	N	HDMI	HDMI Transmit Positive Clock	
PB34	GND	0.0V	G	-	-	GND	Ground	
PB35	AP_OTG_DP	3.3V	S	Ю	N	USB OTG	USB OTG Data Plus	
PB36	AP_USBH_DP	3.3V	S	Ю	N	USB HOST	USB HOST Data Plus	
PB37	AP_OTG_ID	-	S	I	N	USB HOST	USB HOST ID	
PB38	AP_HSIC_DATA	1.2V	S	Ю	N	HSIC	HSIC Data	
PB39	AP_GPA4	3.3V	S	Ю	N	GPIO	Generic GPIO	
PB40	AP_GPA5	3.3V	S	Ю	N	GPIO	Generic GPIO	
PB41	AP_GPA16	3.3V	S	Ю	N	GPIO	Generic GPIO	
PB42	AP_GPA11	3.3V	S	Ю	N	GPIO	Generic GPIO	
PB43	GND	0	G	-	-	GND	Ground	

South Ball Array

Table 3. South Ball Array

Ball Loc.	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function	
PAK1	AP_I2SO_DOUT	3.3V	S	Ю	N	12SO	I ² S O Data Out	
PAK2	AP_I2SO_BCLK	3.3V	S	Ю	Ν	1280	I ² S O Bit Clock	
PAK3	AP_GPC11_SPI2_MISO	3.3V	S	Ю	Ν	SPI2	SPI 2 Receive Data	
PAK4	AP_GPC9_SPI2_CLK	3.3V	S	Ю	N	SPI2	SPI 2 Clock	
PAK5	AP_SPIO_MISO	3.3V	S	Ю	N	SPIO	SPI O Receive Data *	
PAK6	AP_SPIO_CLK	3.3V	S	Ю	Ν	SPIO	SPI 0 Clock *	
PAK7	AP_GPC14_PWM2	3.3V	S	Ю	N	PWM	PWM 2	
PAK8	AP_GPD6_SCL2	3.3V	S	Ю	PU	I ² C	I ² C SCL 2	
PAK9	AP_GPD4_SCL1	3.3V	S	Ю	PU	I ² C	I ² C SCL 1	
PAK10	AP_GPD2_SCL0	3.3V	S	Ю	PU	I ² C	I ² C SCL 0	
PAK11	AP_GPA23_HDMI_I2C_SCL	3.3V	S	Ю	N	I ² C	HDMI I ² C SCL *	
PAK12	ZB_JTMS	3.3V	S	Ю	-	ZIGBEE	ZIGBEE JTAG TMS	
PAK13	ZB_JTCK	3.3V	S	Ю	-	ZIGBEE	ZIGBEE JTAG TCK	
PAK14	ZB_PCO	3.3V	S	Ю	-	ZIGBEE	ZIGBEE Control	

Table 3. South Ball Array (Continued)

Ball Loc.	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function	
PAK15	ZB_PA4	3.3V	S	Ю	_	ZIGBEE	ZIGBEE Control	
PAK16	GND	0.0V	G	_	_	GND	Ground	
PAK17	VCC3P3_SYS	3.3V	Р	0	-	POWER	VCC 3.3V Power: voltage reference only	
PAK18	VCC3P3_SYS	3.3V	Р	0	_	POWER	VCC 3.3V Power: voltage reference only	
PAK19	AP_nBATTF	3.3V	-	-	N	MISC	Battery	
PAK20	AP_GPE2	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK21	AP_GPE1	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK22	AP_UARTTX3	3.3V	S	Ю	N	UART	UART Transmit Data 3	
PAK23	AP_UARTTX4	3.3V	S	Ю	N	UART	UART Transmit Data 4	
PAK24	AP_UARTTX5	3.3V	S	Ю	N	UART	UART Transmit Data 5 *	
PAK25	AP_GPBO_VID1_1_I2SLRCK1	3.3V	S	Ю	PU	I2S1	I ² S 1 Left Right Clock *	
PAK26	AP_GPA28_I2SMCLK1	3.3V	S	Ю	N	I2S1	I ² S 1 Master Clock *	
PAK27	AP_GPA30_VID1_0_I2SBCLK1	3.3V	S	Ю	PU	12S1	I ² S 1 Bit Clock *	
PAK28	AP_SDO_CMD	3.3V	S	Ю	N	SD/MMC	SD Command	
PAK29	AP_SDO_D1	3.3V	S	Ю	N	SD/MMC	SD Data 1	
PAK30	AP_SDO_CLK	3.3V	S	Ю	N	SD/MMC	SD Clock	
PAK31	NO CONNECTION	-	-	-	-	NC	NA	
PAK32	AP_GPB13_SD0_BOOT	3.3V	S	I	PU	BOOTING	Select Booting Scenario	
PAK33	AP_GPC17	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK34	AP_GPC0	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK35	AP_GPC26	3.3V	S	0	PU	GPIO	Generic GPIO	
PAK36	AP_GPB8	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK37	AP_GPB14	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK38	AP_GPA20	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK39	AP_GPA18	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK40	AP_GPA21	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK41	AP_GPA10	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK42	AP_GPA6	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAK43	BT_PCM_D_IN	3.3V	S	ı	-	BT	PCM Data In	
PAL1	AP_I2SO_DIN	3.3V	S	Ю	N	12SO	I ² S O Data In	
PAL2	AP_I2SO_MCLK	3.3V	S	Ю	N	12SO	I ² S 0 Master Clock	
PAL3	AP_GPC12_SPI2_MOSI	3.3V	S	Ю	N	SPI2	SPI 2 Transmit Data	
PAL4	AP_GPC10_SPI2_CS	3.3V	S	Ю	PU	SPI2	SPI 2 Frame	
PAL5	AP_SPIO_MOSI	3.3V	S	Ю	N	SPI0	SPI 0 Transmit Data *	
PAL6	AP_SPIO_CS	3.3V	S	Ю	N	SPI0	SPI 0 Frame *	
PAL7	AP_GPD1_PWM0	3.3V	S	Ю	N	PWM	PWM O	
PAL8	AP_GPD7_SDA2	3.3V	S	Ю	PU	I ² C	I ² C SDA 2	
PAL9	AP_GPD5_SDA1	3.3V	S	Ю	PU	I ² C	I ² C SDA 1	
PAL10	AP_GPD3_SDA0	3.3V	S	Ю	PU	I ² C	I ² C SDA 0	
PAL11	AP_GPA24_HDMI_I2C_SDA	3.3V	S	Ю	N	I ² C	HDMI I ² C SDA *	
PAL12	ZB_JTDI	3.3V	-	-	_	ZIGBEE	ZIGBEE JTAG TDI	
PAL13	ZB_JTDO	3.3V	_	-	_	ZIGBEE	ZIGBEE JTAG TDO	

Table 3. South Ball Array (Continued)

Ball Loc.	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function
PAL14	ZB_RSTn	3.3V	S	Ю	N	ZIGBEE	ZIGBEE Reset
PAL15	ZB_PA5	3.3V	S	Ю	N	ZIGBEE	ZIGBEE Control (for internal use only)
PAL16	GND	0.0V	G	-	-	GND	Ground
PAL17	VCC3P3_SYS	3.3V	Р	0	-	POWER	VCC 3V3 Power: voltage reference only
PAL18	VCC3P3_SYS	3.3V	Р	0	-	POWER	VCC 3V3 Power: voltage reference only
PAL19	AP_VDDPWRON	3.3V	S	0	N	MISC	VDD Power On
PAL20	AP_GPE3	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL21	AP_GPEO	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL22	AP_UARTRX3	3.3V	S	Ю	N	UART	UART Receive Data 3
PAL23	AP_UARTRX4	3.3V	S	Ю	N	UART	UART Receive Data 4
PAL24	AP_UARTRX5	3.3V	S	Ю	N	UART	UART Receive Data 5 *
PAL25	AP_GPD31	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL26	AP_GPB9_I2SDIN1	3.3V	S	Ю	N	12S1	I ² S 1 Data In *
PAL27	AP_GPB6_VID1_4_I2SDOUT1	3.3V	S	Ю	PD	12S1	I ² S 1 Data Out *
PAL28	AP_SDO_D3	3.3V	S	Ю	N	SD/MMC	SD Data 3
PAL29	AP_SDO_D2	3.3V	S	Ю	N	SD/MMC	SD Data 2
PAL30	AP_SDO_DO	3.3V	S	Ю	N	SD/MMC	SD Data 0
PAL31	AP_GPB4_VID1_3_BOOT	3.3V	S	I	PU	BOOTING	Select Booting Scenario
PAL32	AP_GPB15_SD1_BOOT	3.3V	S	I	PD	BOOTING	Select Booting Scenario
PAL33	AP_GPD8	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL34	AP_GPE30	3.3V	S	Ю	PU	GPIO	Generic GPIO
PAL35	AP_GPC27	3.3V	S	Ю	PU	GPIO	Generic GPIO
PAL36	AP_GPB22	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL37	AP_GPB16	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL38	AP_GPB23	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL39	AP_GPA22	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL40	AP_GPA19	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL41	AP_GPA17	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL42	AP_GPA3	3.3V	S	Ю	N	GPIO	Generic GPIO
PAL43	BT_PCM_CLK	3.3V	S	Ю	-	ВТ	PCM Clock

^{*.} Functions as general-purpose GPIO by default

East Ball Array

Table 4. East Ball Array

Ball	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function
PC1	GND	0.0V	G	_	-	GND	Ground
PC2	NO BALL	_	-	-	-	NO BALL	-
PD1	GND	0.0V	G	-	-	GND	Ground
PD2	NO BALL	-	-	-	-	NO BALL	-

Table 4. East Ball Array (Continued)

Ball	Ball Name	Voltage	Type	I/O	PU/PD	Group	Function	
PE1	GND	0.0V	G	-	-	GND	Ground	
PE2	GND	0.0V	G	-	-	GND	Ground	
PF1	GND	0.0V	G	-	-	GND	Ground	
PF2	GND	0.0V	G	-	-	GND	Ground	
PG1	GND	0.0V	G	-	-	GND	Ground	
PG2	NO BALL	-	-	-	-	NO BALL	-	
PH1	GND	0.0V	G	_	-	GND	Ground	
PH2	NO BALL	_	-	-	-	NO BALL	-	
PJ1	GND	0.0V	G	-	-	GND	Ground	
PJ2	GND	0.0V	G	-	-	GND	Ground	
PK1	GND	0.0V	G	-	-	GND	Ground	
PK2	GND	0.0V	G	-	-	GND	Ground	
PL1	GND	0.0V	G	-	-	GND	Ground	
PL2	GND	0.0V	G	-	-	GND	Ground	
PM1	GND	0.0V	G	-	-	GND	Ground	
PM2	GND	0.0V	G	-	-	GND	Ground	
PN1	GND	0.0V	G	-	-	GND	Ground	
PN2	GND	0.0V	G	-	-	GND	Ground	
PP1	GND	0.0V	G	_	-	GND	Ground	
PP2	NO BALL	_	-	-	-	NO BALL	-	
PR1	GND	0.0V	G	-	-	GND	Ground	
PR2	GND	0.0V	G	-	-	GND	Ground	
PT1	VCC1P8_LDO4 *	1.8V	Р	0	-	POWER	LDO4: Do not use-voltage reference only	
PT2	GND	0.0V	G	-	-	GND	Ground	
PU1	VCC1P8_LDO4	1.8V	Р	0	-	POWER	LDO4: Do not use-voltage reference only	
PU2	NO BALL	-	-	-	-	NO BALL	-	
PV1	VCC1P8_LDO4	1.8V	Р	0	_	POWER	LDO4: Do not use-voltage reference only	
PV2	NO BALL	_	-	-	-	NO BALL	-	
PW1	AP_ADC4	1.8V	S	I	N	ADC	ADC Channel 4	
PW2	AP_ADC5	1.8V	S	I	N	ADC	ADC Channel 5	
PY1	AP_ADCO	1.8V	S	I	N	ADC	ADC Channel 0	
PY2	AP_ADC1	1.8V	S	I	N	ADC	ADC Channel 1	
PAA1	AP_ADC2	1.8V	S	I	N	ADC	ADC Channel 2	
PAA2	AP_ADC3	1.8V	S	I	N	ADC	ADC Channel 3	
PAB1	GND	0.0V	G	-	-	GND	Ground	
PAB2	GND	0.0V	G	-	-	GND	Ground	
PAC1	AP_TCK	3.3V	S	Ю	N	JTAG	JTAG TCK	
PAC2	AP_TMS	3.3V	S	Ю	N	JTAG	JTAG TMS	
PAD1	AP_TDO	3.3V	S	Ю	N	JTAG	JTAG TDO	
PAD2	AP_TDI	3.3V	S	Ю	N	JTAG	JTAG TDI	
PAE1	AP_NTRST	3.3V	S	Ю	PD	JTAG	JTAG NTRST	
PAE2	AP_AGP2_RTC_INT_N	3.3V	S	Ю	N	KEY/ ALIVE	AliveGPIO	

Table 4. East Ball Array (Continued)

Ball	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function	
PAF1	AP_PWRKEY	3.3V	S	Ю	N	KEY/ ALIVE	Power Key part of AliveGPIO	
PAF2	AP_AGP1	3.3V	S	Ю	N	ALIVE	AliveGPIO	
PAG1	AP_NRESET	3.3V	S	I	N [†]	KEY	Reset	
PAG2	AP_GPA25	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAH1	AP_GPA26	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAH2	AP_GPAO	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAJ1	AP_I2SO_LRCLK	3.3V	S	Ю	N	12SO	I ² S 0 Left Right Clock	
PAJ2	AP_GPA27	3.3V	S	Ю	N	12SO	Generic GPIO	

^{*.} LDO4 should not be used to source power to any external components or devices. This LDO can only be used as a voltage reference.

West Ball Array

Table 5. West Ball Array

Ball	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function
PC42	GND	0.0V	G	-	_	GND	Ground
PC43	GND	0.0V	G	-	_	GND	Ground
PD42	VCC5P0_OTGVBUS	-	Р	I	_	POWER	USB2.0 OTG BUS Power
PD43	VCC5PO_OTGVBUS	5.0V	Р	I	_	POWER	USB2.0 OTG BUS Power
PE42	NO CONNECTION	-	-	-	_	NC	-
PE42	VCC3P3_LDO7 *	3.3V	Р	0	_	POWER	LDO7: Do not use—voltage reference only
PE43	VCC3P3_LDO7 *	3.3V	Р	0	-	POWER	LDO7: Do not use—voltage reference only
PF42	VCC3P3_LDO7 *	3.3V	Р	0	-	POWER	LDO7: Do not use—voltage reference only
PF43	GND	0	G	-	-	GND	Ground
PG42	GND	0.0V	G	-	-	GND	Ground
PG43	GND	0.0V	G	-	-	GND	Ground
PH42	VCC_LDO5 [†]	0.6-3.5V	Р	0	-	POWER	LDO5: User available, 3.3V default, 30mA max
PH43	VCC_LDO5 [†]	0.6-3.5V	Р	0	-	POWER	LDO5: User available, 3.3V default, 30mA max
PJ42	VCC_LDO5 [†]	0.6-3.5V	Р	0	-	POWER	LDO5: User available, 3.3V default, 30mA max
PJ43	VCC_LDO2 [†]	0.9-3.5V	Р	0	-	POWER	LDO2: User available, 3.3V default, 30mA max
PK42	VCC_LDO2 [†]	0.9-3.5V	Р	0	-	POWER	LDO2: User available, 3.3V default, 30mA max
PK43	VCC_LDO2 [†]	0.9-3.5V	Р	0	_	POWER	LDO2: User available, 3.3V default, 30mA max
PL42	GND	0.0V	G	-	_	GND	Ground
PL43	GND	0.0V	G	-	_	GND	Ground
PM42	VCC_LDO1 [†]	0.9-3.5V	Р	0	_	POWER	LDO1: User available, 3.3V default, 30mA max
PM43	VCC_LDO1 [†]	0.9-3.5V	Р	0	_	POWER	LDO1: User available, 3.3V default, 30mA max
PN42	VCC_LDO1 [†]	0.9-3.5V	Р	0	-	POWER	LDO1: User available, 3.3V default, 30mA max
PN43	GND	0.0V	G	-	_	GND	Ground
PP42	VCC1P2_LDO10 *	1.2V	Р	0	-	POWER	LDO10: Do not use—voltage reference only
PP43	GND	0	G	-	-	GND	Ground

^{†.} External $100k\Omega$ pull-up resistor required.

Table 5. West Ball Array (Continued)

Ball	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function	
PR42	VCC1P2_LDO10 *	1.2V	Р	0	_	POWER	LDO10: Do not use—voltage reference only	
PR43	VCC1P2_LDO10 *	1.2V	P	0	_	POWER	LDO10: Do not use—voltage reference only	
PT42	VCC_LDO9 [†]	0.6-3.5V	P	0	_	POWER	LDO9: User available, 1.8V default, 20mA ma	
PT43	GND	0.0V	G	_	_	GND	Ground	
PU42	VCC LDO9 [†]	0.6-3.5V	Р	0	_	POWER	LDO9: User available, 1.8V default, 20mA max	
PU43	VCC LDO9 [†]	0.6-3.5V	Р	0	_	POWER	LDO9: User available, 1.8V default, 20mA max	
PV43	VIN	3.7~5.0V	Р	ı	_	POWER	Main Power Supply for Module	
PW42	VIN	3.7~5.0V	Р	ı	_	POWER	Main Power Supply for Module	
PW43	VIN	3.7~5.0V	Р	ı	_	POWER	Main Power Supply for Module	
PY42	VIN	3.7~5.0V	Р	ı	_	POWER	Main Power Supply for Module	
PY43	VIN	3.7~5.0V	Р	ı	_	POWER	Main Power Supply for Module	
PAA42	VIN	3.7~5.0V	Р	ı	_	POWER	Main Power Supply for Module	
PAA43	VIN	3.7~5.0V	Р	ı	_	POWER	Main Power Supply for Module	
PAB42	VIN	3.7~5.0V	Р	I	_	POWER	Main Power Supply for Module	
PAB43	VIN	3.7~5.0V	Р	I	_	POWER	Main Power Supply for Module	
PAC42	GND	0.0V	G	_	_	GND	Ground	
PAC43	GND	0.0V	G	_	_	GND	Ground	
PAD42	VCC3P3_LDO8 [†]	0.6-3.5V	Р	0	_	POWER	LDO8: User available, 3.3V default, 10mA max	
PAD43	VCC3P3_LDO8 [†]	0.6-3.5V	Р	0	_	POWER	LDO8: User available, 3.3V default, 10mA max	
PAE42	GND	0.0V	G	_	_	GND	Ground	
PAE43	VCC3P3_LDO8 [†]	0.6-3.5V	Р	0	_	POWER	LDO8: User available, 3.3V default, 10mA max	
PAF42	GND	0.0V	G	_	_	GND	Ground	
PAF43	GND	0.0V	G	_	_	GND	Ground	
PAG42	AP_GPB11	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAG43	AP_GPB18	3.3V	S	Ю	N	GPIO	Generic GPIO	
PAH42	AP_GPC25	3.3V	S	Ю	PU	GPIO	Generic GPIO	
PAH43	AP_GPE31	3.3V	S	Ю	PU	GPIO	Generic GPIO	
PAJ42	BT_PCM_D_OUT	3.3V	S	0	N	BT PCM	PCM Data Out	
PAJ43	BT_PCM_LRCK	3.3V	S	Ю	N	BT PCM	PCM LR Clock	

^{*.} LDO7 and LDO10 should not be used to source power to any external components or devices. These LDOs can only be used as a voltage reference.

Center Ball Array

Table 6. Center Ball Array

Ball	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function
TP282	GND	0.0V	NA	-	-	GND	Ground
TP283	GND	0.0V	NA	-	-	GND	Ground
TP284	GND	0.0V	NA	-	-	GND	Ground

[†]. The current consumption for user-available LDOs (LDO1, LDO2, LDO5, LDO8, and LDO9) should not exceed the maximum limits specified in this table, as heavier usage may cause internal power sequencing issues, latch-up problems, or overheating problems.

Table 6. Center Ball Array (Continued)

Ball	Ball Name	Voltage	Туре	I/O	PU/PD	Group	Function
TP285	GND	0.0V	NA	-	_	GND	Ground
TP286	GND	0.0V	NA	-	_	GND	Ground
TP287	GND	0.0V	NA	-	-	GND	Ground
TP288	GND	0.0V	NA	-	-	GND	Ground
TP289	GND	0.0V	NA	-	-	GND	Ground
TP290	GND	0.0V	NA	-	-	GND	Ground
TP291	GND	0.0V	NA	-	-	GND	Ground
TP292	GND	0.0V	NA	-	-	GND	Ground
TP293	GND	0.0V	NA	-	-	GND	Ground
TP294	GND	0.0V	NA	-	-	GND	Ground
TP295	GND	0.0V	NA	-	-	GND	Ground
TP296	GND	0.0V	NA	-	-	GND	Ground
TP297	GND	0.0V	NA	-	-	GND	Ground
TP298	GND	0.0V	NA	-	-	GND	Ground
TP299	GND	0.0V	NA	-	_	GND	Ground
TP300	GND	0.0V	NA	-	_	GND	Ground
TP301	GND	0.0V	NA	-	-	GND	Ground

FUNCTIONAL INTERFACES

This section shows the functional interfaces that are available at the pads of the ARTIK 710/710s Module. The functions provided are related to the development environment used. Depending on your project you can always choose to reprogram some of the GPIOs that are currently assigned to the predefined functional interfaces.

ADC

Table 7. ADC

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
ADC Channel 0	PY1	AP_ADCO	1.8V	I	N
ADC Channel 1	PY2	AP_ADC1	1.8V	- 1	N
ADC Channel 2	PAA1	AP_ADC2	1.8V	I	N
ADC Channel 3	PAA2	AP_ADC3	1.8V	I	N
ADC Channel 4	PW1	AP_ADC4	1.8V	- 1	N
ADC Channel 5	PW2	AP_ADC5	1.8V	I	N

Booting

Table 8. Booting

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
Booting Configuration 1	PAK32	AP_GPB13_SD0_BOOT	3.3V	ı	PU
Booting Configuration 2	PAL32	AP_GPB15_SD1_BOOT	3.3V	I	PD
Booting Configuration 3	PAL31	AP_GPB4_VID1_3_BOOT	3.3V	I	PU

If a preferred boot device fails, the above pins select whether secondary and/or tertiary boot options are available. For details, see <u>Booting Selection</u>.

The above signals can be reassigned by software to alternate functions; see <u>Table 30</u> for details.

Bluetooth PCM

Table 9. Bluetooth PCM

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
PCM Clock	PAL43	BT_PCM_CLK	3.3V	Ю	N
PCM LR Clock	PAJ43	BT_PCM_LRCK	3.3V	O	N
PCM Data In	PAK43	BT_PCM_D_IN	3.3V	Ι	N
PCM Data Out	PAJ42	BT_PCM_D_OUT	3.3V	0	N

MIPI CSI

Table 10. MIPI CSI

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
MIPI CSI Data Negative Clock	PA10	AP_MIPICSI_DNCLK	1.8V	Ю	N
MIPI CSI Data Negative 0	PA11	AP_MIPICSI_DN0	1.8V	Ю	N
MIPI CSI Data Negative 1	PA12	AP_MIPICSI_DN1	1.8V	Ю	N
MIPI CSI Data Negative 2	PA13	AP_MIPICSI_DN2	1.8V	Ю	N
MIPI CSI Data Negative 3	PA14	AP_MIPICSI_DN3	1.8V	Ю	N
MIPI CSI Data Positive Clock	PB10	AP_MIPICSI_DPCLK	1.8V	Ю	N
MIPI CSI Data Positive 0	PB11	AP_MIPICSI_DP0	1.8V	Ю	N
MIPI CSI Data Positive 1	PB12	AP_MIPICSI_DP1	1.8V	Ю	N
MIPI CSI Data Positive 2	PB13	AP_MIPICSI_DP2	1.8V	Ю	N
MIPI CSI Data Positive 3	PB14	AP_MIPICSI_DP3	1.8V	Ю	N

MIPI DSI

Table 11. MIPI DSI

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
MIPI DSI Data Negative Clock	PA16	AP_MIPIDSI_DNCLK	1.8V	Ю	N
MIPI DSI Data Negative 0	PA17	AP_MIPIDSI_DNO	1.8V	Ю	N
MIPI DSI Data Negative 1	PA18	AP_MIPIDSI_DN1	1.8V	Ю	N
MIPI DSI Data Negative 2	PA19	AP_MIPIDSI_DN2	1.8V	Ю	N
MIPI DSI Data Negative 3	PA20	AP_MIPIDSI_DN3	1.8V	Ю	N
MIPI DSI Data Positive Clock	PB16	AP_MIPIDSI_DPCLK	1.8V	O	N
MIPI DSI Data Positive 0	PB17	AP_MIPIDSI_DP0	1.8V	Ю	N
MIPI DSI Data Positive 1	PB18	AP_MIPIDSI_DP1	1.8V	Ю	N
MIPI DSI Data Positive 2	PB19	AP_MIPIDSI_DP2	1.8V	Ю	N
MIPI DSI Data Positive 3	PB20	AP_MIPIDSI_DP3	1.8V	IO	N

GMAC

Table 12. GMAC

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
GMAC MDC	PB4	GMAC_MDC	3.3V	Ю	N
GMAC MDIO	PB8	GMAC_MDIO	3.3V	Ю	N
GMAC Receive Clock	PB5	GMAC_RXCLK	3.3V	Ю	N
GMAC Receive Data 0	PA8	GMAC_RXD0	3.3V	Ю	N
GMAC Receive Data 1	PB7	GMAC_RXD1	3.3V	Ю	N
GMAC Receive Data 2	PA7	GMAC_RXD2	3.3V	Ю	N
GMAC Receive Data 3	PB6	GMAC_RXD3	3.3V	Ю	N

Table 12. GMAC (Continued)

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
GMAC Receive Enable	PA6	GMAC_RXDV	3.3V	Ю	N
GMAC Transmit Clock	PA5	GMAC_GTXCLK	3.3V	Ю	N
GMAC Transmit Data 0	PB2	GMAC_TXD0	3.3V	Ю	N
GMAC Transmit Data 1	PA2	GMAC_TXD1	3V3	Ю	N
GMAC Transmit Data 2	PB3	GMAC_TXD2	3.3V	Ю	N
GMAC Transmit Data 3	PA3	GMAC_TXD3	3.3V	Ю	N
GMAC Transmit Enable	PA1	GMAC_TXEN	3.3V	Ю	N

The above signals can be reassigned by software to alternate functions; see <u>Table 29</u> for details.

GPIO

Table 13. GPIO

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD *
Generic GPIO	PAH2	AP_GPAO	3.3V	Ю	N
Generic GPIO	PAL42	AP_GPA3	3.3V	Ю	N
Generic GPIO	PB39	AP_GPA4	3.3V	Ю	N
Generic GPIO	PB40	AP_GPA5	3.3V	Ю	N
Generic GPIO	PAK42	AP_GPA6	3.3V	Ю	N
Generic GPIO		AP_GPA7	3.3V	Ю	N
Generic GPIO		AP_GPA8	3.3V	Ю	N
Generic GPIO	PA40	AP_GPA9	3.3V	Ю	N
Generic GPIO	PAK41	AP_GPA10	3.3V	Ю	N
Generic GPIO	PB42	AP_GPA11	3.3V	Ю	N
Generic GPIO	PA42	AP_GPA12	3.3V	Ю	N
Generic GPIO	PA37	AP_GPA13	3.3V	Ю	N
Generic GPIO	PA39	AP_GPA14	3.3V	Ю	N
Generic GPIO	PA41	AP_GPA15	3.3V	Ю	N
Generic GPIO	PB41	AP_GPA16	3.3V	Ю	N
Generic GPIO	PAL41	AP_GPA17	3.3V	Ю	N
Generic GPIO	PAK39	AP_GPA18	3.3V	Ю	N
Generic GPIO	PAL40	AP_GPA19	3.3V	Ю	N
Generic GPIO	PAK38	AP_GPA20	3.3V	Ю	N
Generic GPIO	PAK40	AP_GPA21	3.3V	Ю	N
Generic GPIO	PAL39	AP_GPA22	3.3V	Ю	N
Generic GPIO	PAG2	AP_GPA25	3.3V	Ю	N
Generic GPIO	PAH1	AP_GPA26	3.3V	Ю	N
Generic GPIO	PAJ2	AP_GPA27	3.3V	Ю	N
Generic GPIO	PAJ2	AP_GPA28	3.3V	Ю	N
Generic GPIO	PAK36	AP_GPB8	3.3V	Ю	N
Generic GPIO	PAG41	AP_GPB11	3.3V	Ю	N
Generic GPIO	PAK37	AP_GPB14	3.3V	Ю	N

Table 13. GPIO (Continued)

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD *
Generic GPIO	PAL37	AP_GPB16	3.3V	Ю	N
Generic GPIO	PAG42	AP_GPB18	3.3V	Ю	N
Generic GPIO	PAL36	AP_GPB22	3.3V	Ю	N
Generic GPIO	PAL38	AP_GPB23	3.3V	Ю	N
Generic GPIO	PAK34	AP_GPC0	3.3V	Ю	N
Generic GPIO	PAK33	AP_GPC17	3.3V	Ю	N
Generic GPIO	PAH42	AP_GPC25	3.3V	Ю	PU
Generic GPIO	PAK35	AP_GPC26	3.3V	Ю	PU
Generic GPIO	PAL35	AP_GPC27	3.3V	Ю	PU
Generic GPIO	PAL33	AP_GPD8	3.3V	Ю	N
Generic GPIO	PAL25	AP_GPD31	3.3V	Ю	N
Generic GPIO	PAL21	AP_GPE0	3.3V	Ю	N
Generic GPIO	PAK21	AP_GPE1	3.3V	Ю	N
Generic GPIO	PAK20	AP_GPE2	3.3V	Ю	N
Generic GPIO	PAL20	AP_GPE3	3.3V	Ю	N
Generic GPIO	PAL34	AP_GPE30	3.3V	Ю	PU
Generic GPIO	PAH43	AP_GPE31	3.3V	Ю	PU

^{*.} The GPIO lines can be pulled up or down by $100k\Omega$ internal registers under register control. By default, the pull-ups and pull-downs are disabled. For details about reconfiguring the GPIO lines, refer to the ARTIK 530/710 System Design Guide.

The above signals can be reassigned by software to alternate functions; see <u>Table 29-Table 32</u> for details.

HDMI

Table 14. HDMI

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
HDMI Consumer Electronics Control *	PA29	AP_HDMI_CEC	3.3V	Ю	N
HDMI Hot Plug Detect	PB29	AP_HDMI_HPD	3.3V	ı	N
HDMI Transmit Channel O Negative	PA32	AP_HDMI_TXON	1.8V	0	N
HDMI Transmit Channel O Positive	PB32	AP_HDMI_TXOP	1.8V	0	N
HDMI Transmit Channel 1 Negative	PA31	AP_HDMI_TX1N	1.8V	0	N
HDMI Transmit Channel 1 Positive	PB31	AP_HDMI_TX1P	1.8V	0	N
HDMI Transmit Channel 2 Negative	PA30	AP_HDMI_TX2N	1.8V	0	N
HDMI Transmit Channel 2 Positive	PB30	AP_HDMI_TX2P	1.8V	0	N
HDMI Transmit Negative Clock	PA33	AP_HDMI_TXCN	1.8V	0	N
HDMI Transmit Positive Clock	PB33	AP_HDMI_TXCP	1.8V	0	N

^{*.} Alternate GPIO function that can be selected by software but is not selected by hardware at power-on. See <u>Table 29</u> for details.

HSIC

Table 15. HSIC

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
HSIC Data	PB38	AP_HSIC_DATA	1.2V	Ю	N
HSIC Strobe	PA38	AP_HSIC_STROBE	1.2V	Ю	N

I²C

Table 16. I²C

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
HDMI I ² C SCL *	PAK11	AP_GPA23_HDMI_I2C_SCL	3.3V	Ю	N
HDMI I ² C SDA *	PAL11	AP_GPA24_HDMI_I2C_SDA	3.3V	Ю	N
I ² C SCL 0 [†]	PAK10	AP_GPD2_SCL0	3.3V	Ю	PU
I ² C SDA 0 [†]	PAL10	AP_GPD3_SDA0	3.3V	Ю	PU
I ² C SCL 1 [†]	PAK9	AP_GPD4_SCL1	3.3V	Ю	PU
I ² C SDA 1 [†]	PAL9	AP_GPD5_SDA1	3.3V	Ю	PU
I ² C SCL 2 [†]	PAK8	AP_GPD6_SCL2	3.3V	Ю	PU
I ² C SDA 2 [†]	PAL8	AP_GPD7_SDA2	3.3V	Ю	PU

- *. Not selected by default by hardware at power-on. The signal can be reassigned by software. See <u>Table 30</u> for details.
- [†]. Selected by default by hardware at power on, but can be reassigned to an alternate function by software. See <u>Table 30</u> for details.

I²S

Table 17. I²S

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
I ² S O Bit Clock *	PAK2	AP_I2SO_BCLK	3.3V	Ю	N
I ² S O Data In *	PAL1	AP_I2SO_DIN	3.3V	Ю	N
I ² S O Data Out *	PAK1	AP_I2SO_DOUT	3.3V	Ю	N
I ² S O Left Right Clock *	PAJ1	AP_I2SO_LRCLK	3.3V	Ю	N
I ² S O Master Clock *	PAL2	AP_I2SO_MCLK	3.3V	Ю	N
I ² S 1 Bit Clock [†]	PAK27	AP_GPA30_VID1_0_I2SBCLK1	3.3V	Ю	PU
I ² S 1 Data In [†]	PAL26	AP_GPB9_I2SDIN1	3.3V	Ю	N
I ² S 1 Data Out [†]	PAL27	AP_GPB6_VID1_4_I2SDOUT1	3.3V	Ю	PD
I ² S 1 Left Right Clock [†]	PAK25	AP_GPBO_VID1_1_I2SLRCK1	3.3V	Ю	PU
I ² S 1 Master Clock [†]	PAK26	AP_GPA28_I2SMCLK1	3.3V	Ю	N

^{*.} Selected by default by hardware at power on, but can be reassigned to an alternate function by software. See <u>Table 30</u> and <u>Table 31</u> for details.

[†]. Alternate GPIO function that can be selected by software but is not selected by hardware at power-on. See <u>Table 30</u> for details.

JTAG

Table 18. JTAG

Function	Ball Loc. Ball Name		Voltage	I/O	PU/PD
JTAG NTRST	PAE1	PAE1 AP_NTRST		Ю	PU
JTAG TCK	PAC1	PAC1 AP_TCK		Ю	N
JTAG TDI	PAD2	AP_TDI	3.3V	Ю	N
JTAG TDO	PAD1	AP_TDO	3.3V	Ю	N
JTAG TMS	PAC2	AP_TMS	3.3V	Ю	N

The above signals can be reassigned by software to alternate functions; see <u>Table 31</u> for details.

AliveGPIO

Table 19. Key

Function	Ball Loc.	Ball Loc. Ball Name		I/O	PU/PD
AliveGPIO 1	PAF2	PAF2 AP_AGP1		Ю	N
AliveGPIO 2	PAE2	PAE2 AP_AGP2_RTC_INT_N		Ю	N
Power Key part of AliveGPIO	PAF1	AP_PWRKEY	3.3V	Ю	N

LVDS

Table 20. LVDS

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
LVDS Transmit Channel O Negative	PA22	PA22 AP_LVDS_TNO		0	N
LVDS Transmit Channel O Positive	PB22	AP_LVDS_TP0	1.8V	0	N
LVDS Transmit Channel 1 Negative	PA23	AP_LVDS_TN1	1.8V	0	N
LVDS Transmit Channel 1 Positive	PB23	AP_LVDS_TP1	1.8V	0	N
LVDS Transmit Channel 2 Negative	PA24	AP_LVDS_TN2	1.8V	0	N
LVDS Transmit Channel 2 Positive	PB24	AP_LVDS_TP2	1.8V	0	N
LVDS Transmit Channel 3 Negative	PA26	AP_LVDS_TN3	1.8V	0	N
LVDS Transmit Channel 3 Positive	PB26	AP_LVDS_TP3	1.8V	0	N
LVDS Transmit Channel 4 Negative	PA27	AP_LVDS_TN4	1.8V	0	N
LVDS Transmit Channel 4 Positive	PB27	AP_LVDS_TP4	1.8V	0	N
LVDS Transmit Negative Clock	PA25	25 AP_LVDS_TNCLK 1.8V		0	N
LVDS Transmit Positive Clock	PB25	AP_LVDS_TPCLK	1.8V	0	N

PWM

Table 21. PWM

Function	Ball Loc. Ball Name		Voltage	I/O	PU/PD
PWM O	PAL7	PAL7 AP_GPD1_PWM0		Ю	N
PWM 2	PAK7	PAK7 AP_GPC14_PWM2		O	N

The above signals can be reassigned by software to alternate functions; see <u>Table 30</u> for details.

SD/MMC

Table 22. SD/MMC

Function	Ball Loc. Ball Name		Voltage	I/O	PU/PD
SD Clock	PAK30	PAK30 AP_SDO_CLK		Ю	N
SD Command	PAK28	AP_SDO_CMD	3.3V	Ю	N
SD Data 0	PAL30	AP_SDO_DO	3.3V	Ю	N
SD Data 1	PAK29	AP_SDO_D1	3.3V	Ю	Ν
SD Data 2	PAL29	L29 AP_SDO_D2		Ю	N
SD Data 3	PAL28	AP_SDO_D3	3.3V	Ю	N

The above signals can be reassigned by software to alternate functions; see <u>Table 30</u> for details.

SPI

Table 23. SPI

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
SPI 0 Clock *	PAK6	PAK6 AP_SPIO_CLK		Ю	N
SPI 0 Frame *	PAL6	AP_SPIO_CS	3.3V	Ю	N
SPI 0 Receive Data *	PAK5	AP_SPIO_MISO	3.3V	Ю	N
SPI O Transmit Data *	PAL5	AP_SPIO_MOSI	3.3V	Ю	N
SPI 2 Clock [†]	PAK4	AP_GPC9_SPI2_CLK	3.3V	Ю	N
SPI 2 Frame	PAL4	AP_GPC10_SPI2_CS	3.3V	Ю	PU
SPI 2 Receive Data	PAK3	AP_GPC11_SPI2_MISO	3.3V	Ю	N
SPI 2 Transmit Data	PAL3	PAL3 AP_GPC12_SPI2_MOSI		Ю	N

^{*.} Alternate GPIO function that can be reassigned by software but is not selected by hardware at power-on; see <u>Table 30</u> for details.

^{*.} Selected by default by hardware at power on, but can be reassigned to an alternate function by software. See <u>Table 30</u> for details.

UART

Table 24. UART

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
UART 3 Receive Data	PAL22	PAL22 AP_UARTRX3		Ю	N
UART 3 Transmit Data	PAK22	PAK22 AP_UARTTX3		Ю	N
UART 4 Receive Data	PAL23	AP_UARTRX4	3.3V	Ю	N
UART 4 Transmit Data	PAK23	AP_UARTTX4	3.3V	Ю	N
UART 5 Receive Data *	PAL24	AP_UARTRX5	3.3V	Ю	N
UART 5 Transmit Data *	PAK24	AK24 AP_UARTTX5		Ю	N

^{*.} Assigned as a general-purpose GPIO by default.

The above signals can be reassigned by software to alternate functions; see <u>Table 30</u> for details.

USB HOST/USB OTG

Table 25. USB Host/USB OTG

Function	Ball Loc.	all Loc. Ball Name		I/O	PU/PD
USB Host Data Minus	PA36	PA36 AP_USBH_DM		Ю	N
USB Host Data Plus	PB36	AP_USBH_DP	3.3V	Ю	N
USB OTG ID	PB37	AP_OTG_ID	-	I	N
USB OTG Data Minus	PA35	AP_OTG_DM	3.3V	Ю	N
USB OTG Data Plus	PB35	35 AP_OTG_DP		Ю	N

802.15.4 for **Zigbee**

Table 26. 802.15.4

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
ZIGBEE Control PA4	PAK15	ZB_PA4	3.3V	Ю	-
ZIGBEE Control PA5 *	PAL15	ZB_PA5	3.3V	Ю	N
ZIGBEE Control PCO	PAK14	ZB_PC0	3.3V	Ю	-
ZIGBEE JTAG TCK	PAK13	ZB_JTCK	3.3V	Ю	-
ZIGBEE JTAG TDI	PAL12	ZB_JTDI	3.3V	-	-
ZIGBEE JTAG TDO	PAL13	ZB_JTDO	3.3V	-	-
ZIGBEE JTAG TMS	PAK12	ZB_JTMS	3.3V	Ю	-
ZIGBEE Reset	PAL14	PAL14 ZB_RSTn		Ю	N

^{*.} For internal use only.

Miscellaneous

Table 27. Miscellaneous

Function	Ball Loc. Ball Name		Voltage	I/O	PU/PD
Battery Fuel *	PAK19	AK19 AP_nBATTF		Ι	N
Reset [†]	PAG1	AP_NRESET	3.3V	_	N
VDD Power On	PAL19	AP_VDDPWRON	3.3V	0	N

- *. An interrupt signal from an external fuel gauge used to detect an external battery connection.
- †. External $100k\Omega$ pull-up resistor required.

Power

Table 28. Power

Function	Ball Loc.	Ball Name	Voltage	I/O	PU/PD
LDO1: User available, 3.3V default, 30mA max *	PM[42,43], PN42	VCC_LDO1	0.9-3.5	0	-
LDO2: User available, 3.3V default, 30mA max *	PJ43, PK[42,43]	•		0	-
LDO4: Do not use—voltage reference only [†]	PT1, PU1, PV1	VCC1P8_LDO4	1.8V	0	-
LDO5: User available, 3.3V default, 30mA max *	PH[42,43], PJ42	VCC_LDO5	0.6-3.5	0	-
LDO7: Do not use—voltage reference only [†]	PE[42,43], PF42	VCC3P3_LDO7	3.3V	0	-
LDO8: User available, 3.3V default, 10mA max *	PAD[42,43], PAE43	VCC3P3_LDO8	0.6-3.5	0	-
LDO9: User available, 1.8V default, 20mA max *	PT42, PU[42,43]	VCC_LDO9	0.6-3.5	0	-
LDO10: Do not use—voltage reference only [†]	PP42, PR[42,43]	VCC1P2_LDO10	1.2V	0	-
RTC LDO	PE42	RTCLDO_OUT	?	0	-
3.3V System Power	PAK[17,18] PAL[17,18]	VCC3P3_SYS [‡]	3.3V	0	-
USB2.0 OTG Bus Power	PD[42,43]	VCC5P0_OTGVBUS	5.0V	I	-
Main Power Supply for Module	PV[42,43] PW[42,43] PY[42,43] PAA[42,43] PAB[42,43]	VIN	3.7-5.0V	I	-

- *. The current consumption for user-available LDOs (LDO1, LDO2, LDO5, LDO8, and LDO9) should not exceed the maximum limits specified in this table, as heavier usage may cause internal power sequencing issues, latch-up problems, or overheating problems.
- †. LDO4, LDO7, and LDO10 should not be used to source power to any external components or devices. These LDOs can only be used as a voltage reference.
- *. VCC3P3_SYS pads are not recommended as a current source; do not use them to drive external ICs.

GPIO ALTERNATE FUNCTIONS

A number of the GPIOs can be programmed to have alternate functions beyond their default behavior using the GPIO API provided in the SW development environment. <u>Table 29-Table 32</u> provide the alternate functions of all the GPIOs that are available on the PADs of the ARTIK 710/710s Module that can be user programmed.

In the following tables, the hardware power-up default functions are shown emboldened. Software may subsequently select an alternate function.

Table 29. GPIO Alternate Functions—North Part

Ball Loc.	Ball Name	Function 0	Function 1	Function 2	Function 3	Group
PA1	GMAC_TXEN	GPIOE11	GMAC_TXEN	-	_	GMAC
PA2	GMAC_TXD1	GPIOE8	GMAC_TXD1	-	_	GMAC
PA3	GMAC_TXD3	GPIOE10	GMAC_TXD3	-	_	GMAC
PA5	GMAC_GTXCLK	GPIOE24	GMAC_GTXCLK	-	_	GMAC
PA6	GMAC_RXDV	GPIOE19	GMAC_RXDV	SPITXD1	-	GMAC
PA7	GMAC_RXD2	GPIOE16	GMAC_RXD2	-	_	GMAC
PA8	GMAC_RXD0	GPIOE14	GMAC_RXD0	SPICLK1	_	GMAC
PA29	AP_HDMI_CEC	SA3	GPIOC3	HDMI_CEC	SDnRST0	HDMI
PA37	AP_GPA13	GPIOA13	DISD12	-	_	GPIO
PA39	AP_GPA14	GPIOA14	DISD13	-	_	GPIO
PA40	AP_GPA9	GPIOA9	DISD8	-	-	GPIO
PA41	AP_GPA15	GPIOA15	DISD14	-	-	GPIO
PA42	AP_GPA12	GPIOA12	DISD11	-	-	GPIO
PB2	GMAC_TXD0	GPIOE7	GMAC_TXD0	VIVSYNC1	_	GMAC
PB3	GMAC_TXD2	GPIOE9	GMAC_TXD2	_	_	GMAC
PB4	GMAC_MDC	GPIOE20	GMAC_MDC	-	-	GMAC
PB5	GMAC_RXCLK	GPIOE18	GMAC_RXCLK	SPIRXD1	-	GMAC
PB6	GMAC_RXD3	GPIOE17	GMAC_RXD3	-	-	GMAC
PB7	GMAC_RXD1	GPIOE15	GMAC_RXD1	SPIFRM1	-	GMAC
PB8	GMAC_MDIO	GPIOE21	GMAC_MDIO	-	-	GMAC
PB39	AP_GPA4	GPIOA4	DISD3	-	_	GPIO
PB40	AP_GPA5	GPIOA5	DISD4	-		GPIO
PB41	AP_GPA16	GPIOA16	DISD15	-	_	GPIO
PB42	AP_GPA11	GPIOA11	DISD10	-	_	GPIO

Table 30. GPIO Alternate Functions—South Part

Ball Loc.	Ball Name	Function O	Function 1	Function 2	Function 3	Group
PAK1	AP_I2SO_DOUT	GPIOD9	I2SDOUT0	AC97_DOUT	-	1280
PAK2	AP_I2SO_BCLK	GPIOD10	I2SBCLK0	AC97_BCLK	-	1280
PAK3	AP_GPC11_SPI2_MISO	SA11	GPIOC11	SPIRXD2	USB2.0OTG_DrvV BUS	SPI2
PAK4	AP_GPC9_SPI2_CLK	SA9	GPIOC9	SPICLK2	-	SPI2
PAK5	AP_SPIO_MISO	GPIOD0	SPIRXDO	PWM3	-	SPIO
PAK6	AP_SPIO_CLK	GPIOC29	SPICLKO	-	-	SPIO
PAK7	AP_GPC14_PWM2	SA14	GPIOC14	PWM2	VICLK2	PWM
PAK8	AP_GPD6_SCL2	GPIOD6	SCL2	-	-	I ² C
PAK9	AP_GPD4_SCL1	GPIOD4	SCL1	-	-	I ² C
PAK10	AP_GPD2_SCL0	GPIOD2	SCLO	ISO7816	-	I ² C
PAK11	AP_GPA23_HDMI_I2C_SCL	GPIOA23	DISD22	-	-	I ² C
PAK20	AP_GPE2	GPIOE2	VIDO_6	TSIDATA1_6	-	GPIO
PAK21	AP_GPE1	GPIOE1	VIDO_5	TSIDATA1_5	-	GPIO
PAK22	AP_UART_TX3	GPIOD21	UARTTXD3	SDnCD1	-	UART
PAK23	AP_UART_TX4	SD13	GPIOB29	TSIDATAO_5	UARTTXD4	UART
PAK24	AP_UART_TX5	SD15	GPIOB31	TSIDATAO_7	UARTTXD5	UART
PAK25	AP_GPBO_VID1_1_I2SLRCK1	GPIOB0	VID1_1	SDEX1	I2SLRCLK1	12S1
PAK26	AP_GPA28_I2SMCLK1	GPIOA28	VICLK1	I2SMCLK2	I2SMCLK1	12S1
PAK27	AP_GPA30_VID1_0_I2SBCLK1	GPIOA30	VID1_0	SDEXO	I2SBCLK1	12S1
PAK28	AP_SDO_CMD	GPIOA31	SDCMDO	-	-	SD/MMC
PAK29	AP_SDO_D1	GPIOB3	SDDATO_1	_	_	SD/MMC
PAK30	AP_SDO_CLK	GPIOA29	SDCLKO	_	_	SD/MMC
PAK32	AP_GPB13_SD0_BOOT	SDO	GPIOB13	_	_	BOOTING
PAK33	AP GPC17	SA17	GPIOC17	TSIDPO	VID2_0	GPIO
PAK34	AP_GPC0	SAO	GPIOCO	TSERRO	_	GPIO
PAK35	AP GPC26	RDNWR	GPIOC26	_	_	GPIO
PAK36	AP_GPB8	GPIOB8	VID1_5	SDEX5	I2SDOUT2	GPIO
PAK37	AP_GPB14	RnBO	RnB1	GPIOB14	_	GPIO
PAK38	AP GPA20	GPIOA20	DISD19	_	_	GPIO
PAK39	AP_GPA18	GPIOA18	DISD17	_	_	GPIO
PAK40	AP GPA21	GPIOA21	DISD20	_	_	GPIO
PAK41	AP_GPA10	GPIOA10	DISD9	_	_	GPIO
PAK42	AP_GPA6	GPIOA6	DISD5	_	_	GPIO
PAL1	AP_I2SO_DIN	GPIOD11	I2SDINO	AC97_DIN	_	12SO
PAL2	AP I2SO MCLK	GPIOD13	I2SMCLK0	AC97_nRST	_	1280
PAL3	AP_GPC12_SPI2_MOSI	SA12	GPIOC12	SPITXD2	SDnRST2	SPI2
PAL4	AP_GPC10_SPI2_CS	SA10	GPIOC10	SPIFRM2	_	SPI2
PAL5	AP_SPIO_MOSI	GPIOC31	SPITXDO	-	_	SPIO
PAL6	AP_SPIO_CS	GPIOC30	SPIFRMO	_	_	SPIO
PAL7	AP_GPD1_PWMO	GPIOD1	PWMO	SA25	_	PWM
PAL8	AP_GPD7_SDA2	GPIOD7	SDA2	-		I ² C

Table 30. GPIO Alternate Functions—South Part (Continued)

Ball Loc.	Ball Name	Function 0	Function 1	Function 2	Function 3	Group
						2
PAL9	AP_GPD5_SDA1	GPIOD5	SDA1	-	-	I ² C
PAL10	AP_GPD3_SDA0	GPIOD3	SDAO	ISO7816	-	I ² C
PAL11	AP_GPA24_HDMI_I2C_SDA	GPIOA24	DISD23	-	_	I ² C
PAL14	ZB_RSTN	SA8	GPIOC8	UARTnDTR1	SDnINT1	ZIGBEE
PAL20	AP_GPE3	GPIOE3	VIDO_7	TSIDATA1_7	-	GPIO
PAL21	AP_GPE0	GPIOE0	VIDO_4	TSIDATA1_4	-	GPIO
PAL22	AP_UART_RX3	GPIOD17	UARTRXD3	-	-	UART
PAL23	AP_UART_RX4	SD12	GPIOB28	TSIDATAO_4	UARTRXD4	UART
PAL24	AP_UARTRX5	SD14	GPIOB30	TSIDATAO_6	UARTTXD5	UART
PAL25	AP_GPD31	GPIOD31	VIDO_3	TSIDATA1_3	-	GPIO
PAL26	AP_GPB9_I2SDIN1	GPIOB9	VID1_6	SDEX6	I2SDIN1	12S1
PAL27	AP_GPB6_VID1_4_I2SDOUT1	GPIOB6	VID1_4	SDEX4	I2SDOUT1	12S1
PAL28	AP_SDO_D3	GPIOB7	SDDATO_3	-	-	SD/MMC
PAL29	AP_SDO_D2	GPIOB5	SDDATO_2	-	-	SD/MMC
PAL30	AP_SDO_DO	GPIOB1	SDDATO_0	_	-	SD/MMC
PAL31	AP_GPB4_VID1_3_BOOT	GPIOB4	VID1_3	SDEX3	I2SLRCLK2	BOOTING
PAL32	AP_GPB15_SD1_BOOT	SD1	GPIOB15	-	-	BOOTING
PAL33	AP_GPD8	GPIOD8	PPM	-	-	GPIO
PAL34	AP_GPE30	NSOE	GPIOE30	-	-	GPIO
PAL35	AP_GPC27	NSDQM	GPIOC27	_	-	GPIO
PAL36	AP_GPB22	SD6	GPIOB22	-	-	GPIO
PAL37	AP_GPB16	NNFOEO	NNFOE1	GPIOB16	-	GPIO
PAL38	AP_GPB23	SD7	GPIOB23	_	-	GPIO
PAL39	AP_GPA22	GPIOA22	DISD21	-	-	GPIO
PAL40	AP_GPA19	GPIOA19	DISD18	-	-	GPIO
PAL41	AP_GPA17	GPIOA17	DISD16	-	-	GPIO
PAL42	AP_GPA3	GPIOA3	DISD2	-	-	GPIO

Table 31. GPIO Alternate Functions—East Part

Ball Loc.	Ball Name	Function 0	Function 1	Function 2	Function 3	Group
PAC1	AP_TCK	TCLK	GPIOE28	-	_	JTAG
PAC2	AP_TMS	TMS	GPIOE26	-	-	JTAG
PAD1	AP_TDO	TDO	GPIOE29	-	-	JTAG
PAD2	AP_TDI	TDI	GPIOE27	-	-	JTAG
PAE1	AP_NTRST	NTRST	GPIOE25	-	-	JTAG
PAG2	AP_GPA25	GPIOA25	DISVSYNC	-	-	GPIO
PAH1	AP_GPA26	GPIOA26	DISHSYNC	-	-	GPIO
PAH2	AP_GPAO	GPIOAO	DISCLK	-	-	GPIO
PAJ1	AP_I2SO_LRCLK	GPIOD12	I2SLRCLK0	AC97_SYNC	-	12SO
PAJ2	AP_GPA27	GPIOA27	DISDE	-	-	GPIO

Table 32. GPIO Alternate Functions—West Part

Ball Loc.	Ball Name	Function 0	Function 1	Function 2	Function 3	Group
PAG42	AP_GPB11	CLEO	CLE1	GPIOB11	-	GPIO
PAG43	AP_GPB18	NNFWEO	nNFWE1	GPIOB18	-	GPIO
PAH42	AP_GPC25	NSWAIT	GPIOC25	SPDIFTX	_	GPIO
PAH43	AP_GPE31	NSWE	GPIOE31	-	-	GPIO

All functions on the West Part are dedicated; there are no applicable alternate functions.

BOOTING SELECTION

The ARTIK 710/710s Module supports a variety of booting scenarios as depicted in <u>Table 33</u>. The table describes the values of the boot-configuration pad signals needed to initiate the booting scenarios. When nothing is done, the default booting scenario is Configuration Option 1. In this case, the primary booting device is eMMC. If the primary booting device fails, the secondary booting device (SDO) will attempt to boot the module. If the secondary booting device fails, the tertiary booting device will boot the module.

Table 33. Boot Selection Configuration

Config.	Boot	Configuration Sign	nals [*]	Primary	Secondary	Tertiary
Option	AP_GPB13_ SDO_BOOT	AP_GPB15_ SD1_BOOT	AP_GPB4_ VID1_3_BOOT	Booting Booting Device Device	Booting Device	
1	High	Low	High	eMMC	SD0	USB OTG Device
2	High	Low	Low	SD0	USB OTG Device	-
3	Low	High	Х	USB OTG Device	-	-

^{*.} Internal pull-up and pull-down resistors automatically select Config Option 1 by default. External pull-up and pull-down resistors are required to select configuration options 2 and 3. The recommended resistor value is $10k\Omega$.

POWER SEQUENCE

Figure 4 below shows the ARTIK 710/710s Module Power-On Sequence (Timing).

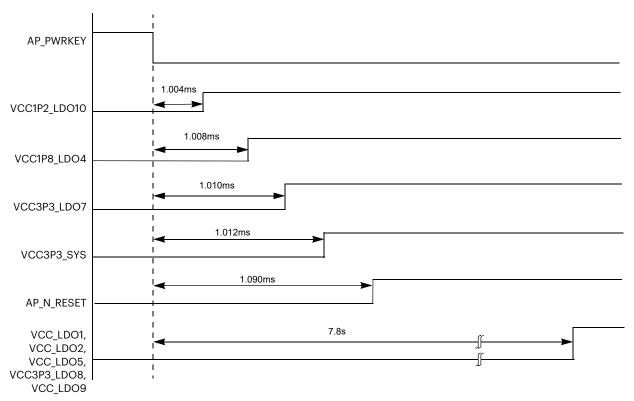


Figure 4. ARTIK 710/710s Module Power-On Sequence (Timing) Diagram

POWER STATES

<u>Figure 5</u> shows the Power Management state diagram. In this diagram, the entry and WAKEUP conditions for each power down mode are given.

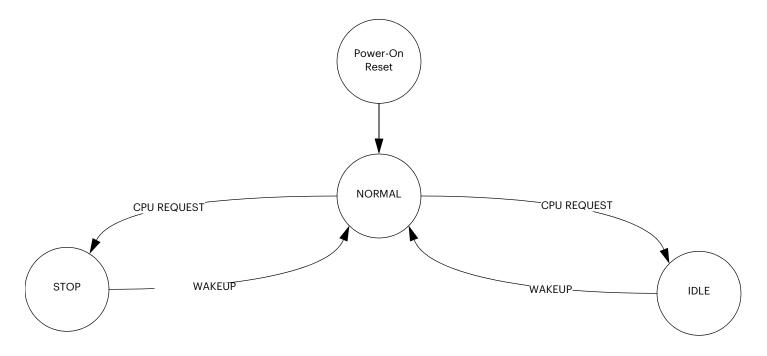


Figure 5. ARTIK 710/710s Module Power Management State Diagram

The following Modes of operation can be distinguished:

- NORMAL Mode
 - Everything is running, this is the normal mode of operation when applications are executed on the ARM cores
- IDLE Mode
 - CPU clocks are turned off
 - IDLE state can be initiated by CPU using Software API
 - The following WAKEUP sources can be used to return to NORMAL Mode:
 - GPIO Interrupt, RTC Interrupt, AliveGPIO Interrupt (see PAE2, PAF:[1,2]), External IRQ
- STOP Mode
 - PLLs are turned off, DRAM goes into self-refresh
 - STOP state can be initiated by CPU using Software API
 - Certain WAKEUP sources or the ARTIK 710/710s Module AP_nBATTF signal can be used to transition to NORMAL Mode
 - The following WAKEUP sources can be used to return to NORMAL Mode:
 - RTC Interrupt, AliveGPIO Interrupt

For more information on how to access discussed WAKEUP mechanisms like AliveGPIO interrupts, GPIO Interrupts, RTC Interrupts and External Interrupts, refer to the Software User Guide.

ANTENNA CONNECTIONS

Two antennas are required to use the full set of radio communication links on the ARTIK 710/710s Module. One supports the combination of Wi-Fi/Bluetooth, and the other is dedicated to Zigbee.

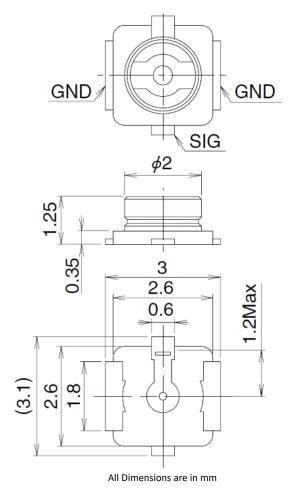


Figure 6. RF Connector for Bluetooth/Wi-Fi and Zigbee

The U.FL-R-SMT Hirose connector is used for both the Bluetooth/Wi-Fi and the Zigbee antenna connectors on the ARTIK 710/710s Module.

The mechanical size of the connector (receptacle) is described in <u>Figure 6</u>. For suggestions on mating the plug and more details on the connector, contact Hirose Electric Co., LTD.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

The ratings given in this section are associated only with stress. It does not imply any functional operation of the device. Exposure to the absolute-maximum rated conditions for long duration affects the reliability of the device.

Table 34. Absolute Maximum Ratings

Parameter	Symbol	Condition	Min	Max	Units
Main power supply	VIN	-	-0.3	6.0	V
DC input/output voltage	PA:[1,2,3,5,6,7,8,29,37,39,40,41,42]	3.3V Buffer	-0.5	3.8	
	PB:[2,3,4,5,6,7,8,39,40,41,42]				
	PAK:[1,2,3,4,5,6,7,8,9,10,11,20,21,22,23,24,25,26,27,28,29,30,3 1,32,33,34,35,36,37,38,39,40,41,42]				
	PAL:[1,2,3,4,5,6,7,8,9,10,11,14,15,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42]				
	PAC:[1,2]				
	PAD:[1,2]				
	PAE:[1]				
	PAG:[2,42,43]				
	PAH:[1,2,42,43]				
	PAJ:[1,2]				
	PAK:[43]	3.3V Input/output buffer	-0.5	3.8	
	PAL:[43]				
	PAJ:[42,43]				
	PAK:[12,13,14,15]	3.3V Input/output buffer	-0.3	3.6	
	PAL:[12,13,14,15]				
	PAF:[1]	-	-0.3	3.8	
	PAL:[19]	-	-0.3	6.3	
DC Input output current	PA:[1,2,3,5,6,7,8,29,37,39,40,41,42]	-	-20	20	mA
	PB:[2,3,4,5,6,7,8,39,40,41,42]				
	PAK:[1,2,3,4,5,6,7,8,9,10,11,20,21,22,23,24,25,26,27,28,29,30,3 1,32,33,34,35,36,37,38,39,40,41,42]				
	PAL:[1,2,3,4,5,6,7,8,9,10,11,14,15,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42]				
	PAC:[1,2]				
	PAD:[1,2]				
	PAE:[1]				
	PAG:[2,42,43]				
	PAH:[1,2,42,43]				
	PAJ:[1,2]				

Power Supply Operating Voltage Range

Power Supply Requirements

The power management of the ARTIK 710/710s Module as described in <u>Figure 7</u> is controlled by the PMIC. This PMIC contains four high-efficiency DC-DC converters and 10 LDO regulators (five of which are available for external use). See <u>Table 36</u> and <u>Table 37</u> for details on voltage and current ranges and how they are used in the ARTIK 710/710s Module.

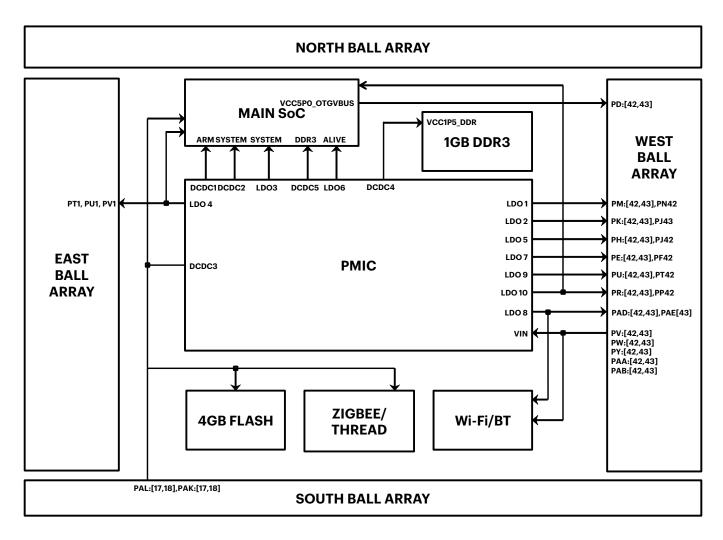


Figure 7. ARTIK 710/710s Module Power Distribution

Table 36. DC-DC/LDOs Description

Buck/LDOs	Powers	Header	Available Max Current [mA]	Default [V]
VCC3P3_SYS	Internal use—voltage reference only	PAL:[17,18],PAK:[17,18]	-	3.3
LDO1	User available	PM:[42,43],PN42	30	3.3
LDO2	User available	PK:[42,43],PJ43	30	3.3
LDO4	Internal use—voltage reference only	PT1, PU1, PV1	-	1.8
LDO5	User available	PH:[42,43],PJ42	30	3.3
LDO7	Internal use—voltage reference only	PE:[42,43],PF42	_	3.3
LDO8	User available	PAD:[42,43],PAE[43]	10	3.3
LDO9	User available	PU:[42,43],PT42	20	1.8
LDO10	Internal use—voltage reference only	PR:[42,43],PP42	-	1.2

Use any available LDOs/DC-DC power sparingly. Any power use will increase the module heat generation and may cause signal sequencing and latch-up problems.

Table 37. AC/DC Characteristics LDO1 and LDO2

Operatin	g Conditions V _{IN} =3.6V, C _{OU}	_T =4.7μF, T _A =25°C unless otherwise speci	fied			
Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IN}	Input Voltage Range	-	3.70	4.20	5.00	V
V _{OUT}	Output Voltage Range	50μA < I _{OUT} < I _{OUTMAX}	0.90	-	3.50	V
	Voltage Setting Step Width	-	-	25	-	mV
V _{ACCU}	Output Voltage Accuracy	V _{OUT} = All Output Range, I _{OUT} =1mA	-1.50	-	1.50	%
I _{OUTMAX}	Output Current available for external use	-	-	-	30	mA
I _{LIM}	Limit Current	-	350	-	_	mA
V _{DIFF}	Dropout Voltage	V _{OUT} Setting=V _{IN} , I _{OUT} =I _{OUTMA} X	-	-	0.20	V
V _{LINE}	Line Regulation	2.7 < V _{IN} <5.5V, I _{OUT} =1mA	-	-	0.20	%/V
V _{LOAD}	Load Regulation	100μA < I _{OUT} < I _{OUTMAX}	-	-	30	mV
V_{TR}	Transient Response	I _{OUT} =100μA <> I _{OUTMAX} /2	-	50	-	mV
RR	Ripple Rejection	F=217 ~ 1kHz, I _{OUT} =I _{OUTMAX} /2, V _{DIFF} > 0.6V	-	70	-	dB
O _{NOISE}	Output Noise	I _{OUT} =I _{OUTMAX} /2, BW=10Hz–100kHz	-	20	_	μVrms
I _{SS}	Supply Current	I _{OUT} =0mA	-	100	-	μΑ
I _{OFF}	Standby Current	I _{OUT} =0mA	-	-	1	μΑ
TR	Rise Time	V _{OUT} x0.9, I _{OUT} =0mA	-	_	500	μs
TF	Fall Time	V _{OUT} x0.1, I _{OUT} =0mA	-	-	1	ms
C _{OUT}	Output Capacitor	-	-	4.7	-	μF

Table 38. AC/DC Characteristics LDO1 and LDO2 Eco Mode

Symbol	Parameter	Condition *	Min	Тур	Max	Unit
V _{IN}	Input Voltage Range	-	3.70	4.20	5.00	V
V _{OUT}	Output Voltage Range	50μA < I _{OUT} < I _{OUTMAX}	0.90	-	3.50	V
	Voltage Setting Step Width	-	-	25	-	mV
V _{ACCU}	Output Voltage Accuracy	V _{OUT} = All Output Range, I _{OUT} =1mA	-1.50	-	1.50	%
I _{OUTMAX}	Output Current available for external use	Eco Mode	-	-	1.0	mA
I _{SS}	Supply Current	-	_	1	1.5	μΑ

^{*.} Operating conditions: V_{IN} =3.6V, C_{OUT} =4.7 μ F, TA=25°C unless otherwise specified.

Table 39. AC/DC Characteristics LDO5

Symbol	Parameter	Condition *	Min	Тур	Max	Unit
V _{IN}	Input Voltage Range	-	3.70	4.20	5.00	V
V _{OUT}	Output Voltage Range	50μA < I _{OUT} < I _{OUTMAX}	0.60	-	3.50	V
	Voltage Setting Step Width	-	-	25	-	mV
V _{ACCU}	Output Voltage Accuracy	V _{OUT} = All Output Range, I _{OUT} =1mA	-1.50	-	1.50	%
I _{OUTMAX}	Output Current available for external use	-	-	-	30	mA
I _{LIM}	Limit Current	-	350	-	-	mA
V _{DIFF}	Dropout Voltage	V _{OUT} Setting=V _{IN} , I _{OUT} =I _{OUTMAX}	_	-	0.30	V
V _{LINE}	Line Regulation	2.7 < V _{IN} <5.5V, I _{OUT} =1mA	_	-	0.20	%/V
V _{LOAD}	Load Regulation	100μA < I _{OUT} < I _{OUTMAX}	-	-	30	mV
V_{TR}	Transient Response	I _{OUT} =100μA <> I _{OUTMAX} /2	-	40	-	mV
RR	Ripple Rejection	F=217 ~ 1kHz, I _{OUT} =I _{OUTMAX} /2, V _{DIFF} > 0.6V	-	70	-	dB
O _{NOISE}	Output Noise	I _{OUT} =I _{OUTMAX} /2, BW=10Hz–100kHz	-	100	-	μV RMS
I _{SS}	Supply Current	I _{OUT} =0mA	_	20	-	μΑ
I _{OFF}	Standby Current	I _{OUT} =0mA	-	-	1	μΑ
TR	Rise Time	V _{OUT} x0.9, I _{OUT} =0mA	_	-	500	μs
TF	Fall Time	V _{OUT} x0.1, I _{OUT} =0mA	_	-	500	μs
C _{OUT}	Output Capacitor		-	1.0	-	μF

^{*.} Operating conditions: V $_{\mbox{\footnotesize{IN}}}$ =3.6V, C $_{\mbox{\footnotesize{OUT}}}$ =1 $\mu\mbox{F}$, TA=25°C unless otherwise specified.

Table 40. AC/DC Characteristics LDO5 Eco Mode

Symbol	Parameter	Condition *	Min	Тур	Max	Unit
V _{IN}	Input Voltage Range	-	3.70	4.20	5.00	V
V _{OUT}	Output Voltage Range	50μA < I _{OUT} < I _{OUTMAX}	0.60	-	3.50	V
	Voltage Setting Step Width	-	-	25	-	mV
V _{ACCU}	Output Voltage Accuracy	V _{OUT} = All Output Range, I _{OUT} =1mA	-1.50	-	1.50	%
I _{OUTMAX}	Output Current available for	V _{IN} > 2.7V	-	_	1.0	mA
	external use	1.7 ≤ V _{IN} < 2.7V	-	-	0.5	mA
I _{SS}	Supply Current	I _{OUT} =0mA	-	1	1.5	μΑ

^{*.} Operating conditions: V $_{\mbox{\footnotesize IN}}$ =3.6V, C $_{\mbox{\footnotesize OUT}}$ =1 $\mu\mbox{F}$, TA=25°C unless otherwise specified.

Table 41. AC/DC Characteristics LDO8 and LDO9

Symbol	Parameter	Condition *	Min	Тур	Max	Unit
V _{IN}	Input Voltage Range	-	3.70	4.20	5.00	V
V _{OUT}	Output Voltage Range	50μA < IOUT < IOUTMAX	0.60	-	3.50	V
	Voltage Setting Step Width	-	-	25	_	mV
V _{ACCU}	Output Voltage Accuracy	VOUT = All Output Range, IOUT=1mA	-1.50	-	1.50	%
I _{OUTMAX}	Output Current available for external use	-	-	-	See [†]	mA
I _{LIM}	Limit Current	-	250	-	-	mA
V _{DIFF}	Dropout Voltage	V _{OUT} Setting=V _{IN} , I _{OUT} =I _{OUTMAX}	-	-	0.40	V
V _{LINE}	Line Regulation	2.7 < V _{IN} <5.5V, I _{OUT} =1mA	-	-	0.20	%/V
V_{LOAD}	Load Regulation	100μA < I _{OUT} < I _{OUTMAX}	-	-	20	mV
V_{TR}	Transient Response	I _{OUT} =100μA <> I _{OUTMAX} /2	-	30	-	mV
RR	Ripple Rejection	F=217 ~ 1kHz, I _{OUT} =I _{OUTMAX} /2, V _{DIFF} > 0.6V	-	70	_	dB
O _{NOISE}	Output Noise	I _{OUT} =I _{OUTMAX} /2, BW=10Hz-100kHz, V _{OUT} =1.2V	-	50	-	μV RMS
I _{SS}	Supply Current	I _{OUT} =0mA	-	20	-	μΑ
I _{OFF}	Standby Current	I _{OUT} =0mA	-	-	1	μΑ
TR	Rise Time	V _{OUT} x0.9, I _{OUT} =0mA	-	-	500	μs
TF	Fall Time	V _{OUT} x0.1, I _{OUT} =0mA	-	-	500	μs
C _{OUT}	Output Capacitor		-	1.0	_	μF

^{*.} Operating conditions: V $_{\mbox{\footnotesize{IN}}}$ =3.6V, C $_{\mbox{\footnotesize{OUT}}}$ =1 $\mu\mbox{F}$, TA=25°C unless otherwise specified.

t. 10mA available from LDO8; 20mA from LDO9.

Power/Current Consumption

The values in this table are nominal. Measurements were taken on sample boards at room temperature using a 4.2V system power supply.

Table 42. ARTIK 710/710s Module Power/Current Consumption

No.	Category	Scer	nario	I (mA)	Peak/Typ	Condition
1	Dast	ADI		950	Peak	Peek current during boot-up
1	Boot	API	poot	600	Тур	Average current during boot-up
2	Idle	Id	le	170	Тур	Idle current
3	Sleep	Sle	еер	30	Тур	Sleep current
4	Storage	Large file transfer	eMMC to SD Card	210	Тур	Copying 512MB test file from eMMC to SD
5	Storage	Large me transier	SD Card to eMMC	240	Тур	Copying 512MB test file from SD to eMMC
6			Transmit	180	Тур	Transfer test file using obexftp from the device
7		Bluetooth	Receive	180	Тур	Receive test file using obexftp from the Android phone
8	Connectivity	Wi-Fi	Transmit	420	Тур	Transfer packet using iperf3 (802.11n)
9		VVI-FI	Receive	360	Тур	Receive packet using iperf3 (802.11n)
10		802.15.4 for Zigbee	Transmit	190	Тур	Transfer packet using ember tool
11		802.13.4 for zigbee	Receive	190	Тур	Receive packet using ember tool
12		Audio	play	460	Тур	Playback audio file using mplayer (pcm, 2ch, 48000Hz)
13		Recode	e audio	180	Тур	Record audio using arecord (pcm, 2ch, 48000Hz)
14		Display	picture	170	Тур	Display picture (R/G/B, 720*1280)
15	Multimedia	Display	/ video	210	Тур	Playback movie clip (big_buck_bunny_720p_50mb)
16		Record	d video	350	Тур	Record video using ffmpeg (1280*720, 3072k)
17		Live streaming	from Camera	300	Тур	Camera preview using ffmpeg (1280x960)
18		Live streamin	ng over Wi-Fi	270	Тур	Streaming video using ffserver/ffmpeg (640*480)
		Running one co	re at 100% load	350		
		Running two co	res at 100% load	450		
		Running three co	ores at 100% load	550		
10	CPU Load	Running four co	res at 100% load	650	Turo	Dunning while() lean
19	CPU LOad	Running five co	res at 100% load	800	Тур	Running while() loop
		Running six cor	es at 100% load	950		
	•	Running seven co	ores at 100% load	1150		
		Running all core	es at 100% load	1400		

DC Electrical Characteristics

The DC characteristics for the GPIO pins of the ARTIK 710/710s Module are listed in <u>Table 43</u>. Use the parameters from <u>Table 43</u> to determine maximum DC loading and to determine maximum transition times for a given load.

Table 43. I/O DC Electrical Characteristics GPIO

GPIO Ball Coordinates		Parameter Condition *		Min	Тур	Max	Units	
PA:[1,2,3,5,6,7,8,29,37,39,	V_{TOL}	Tolerant external voltage	V _{DD} Power Off & On		-	-	3.60	V
40,41,42] PB:[2,3,4,5,6,7,8,39,40,41,	V _{IH}	High Level Input Voltage CMOS Interface		2.31	-	3.60	V	
42] PAK:[1,2,3,4,5,6,7,8,9,10,11,	V _{IL}	Low Level Input Voltage CMOS Interface	V _{DD} = 3.3V ± 10%		-0.3	-	0.70	V
20,21,22,23,24,25,26,27,28	ΔV	Hysteresis Voltage		0.15	-		V	
36,37,38,39,40,41,42]	I _{IH}		Н		•			
PAL:[1,2,3,4,5,6,7,8,9,10,11,		Input Buffer	V _{IN} = V _{DD}	V _{DD} Power On	-3	-	3	μΑ
20,21,22,23,24,25,26,27, 28,29,30,31,32,33,34,35, 36,37,38,39,40,41,42]				V _{DD} Power Off & SNS = 0	-5	_	5	
PAC:[1,2]		Input Buffer with pull-down	$V_{IN} = V_{DD}$	$V_{DD} = 3.3V \pm 10\%$	15	40	80	
PAD:[1,2]	I_{IL}		L	Low Level Input Current				
PAE:[1]		Input Buffer	V _{IN} = V _{SS}	V _{DD} Power On & Off	-3	-	3	μΑ
PAG:[2,42,43]		Input Buffer with pull-up	V _{IN} = V _{SS}	V _{DD} = 3.3V ± 10%	-15	-40	-110	
PAH:[1,2,42,43]	V_{OH}	Output High Voltage	I _{OH} = -1.8mA	, -3.6mA, -7.2mA, -10.8mA	2.64	-	3.30	V
PAJ:[1,2]	V _{OL}	Output Low Voltage	I _{OH} = -1.8mA	, -3.6mA, -7.2mA, -10.8mA	0	-	0.66	
	I _{OZ}	Output Hi-Z current		-	-5	-	5	μΑ
	C_{IN}	Input capacitance	Any input a	nd bi-directional buffers	-	-	5	pF
	C _{OUT}	Output capacitance	Ar	ny output buffer	-	-	5	pF

^{*.} Operating conditions: V_{DD} = 3.3V, V_{ext} = 3.0 to 3.6 V, T_j = -40 to 125 °C (Junction Temperature), 3.3V-tolerant

Table 44. I/O DC Electrical Characteristics 802.15.4

Ball Coordinates	Parameter	Test Condition	Min	Тур	Max	Units
PAK:[12,13,14,15] PAL:[12,13,14,15]	Low Schmitt switching threshold	V _{SWIL} Schmitt input threshold going from high to low	1.39	-	1.65	V
	High Schmitt switching threshold	V _{SWIH} Schmitt input threshold going from low to high	2.05	_	2.64	V
	Input current for logic 0	I _{IL}	-	-	-0.5	μΑ
	Input current for logic 1	I _{IH}	-	-	+0.5	μΑ
	Input pull-up resistor value	R _{IPU}	24	29	34	kΩ
	Input pull-down resistor value	R _{IPD}	24	29	34	kΩ
	Output voltage for logic 0	V _{OL} (I _{OL} = 4mA for standard pads, 8mA for high current pads)	0	-	0.60	V
	Output voltage for logic 1	V _{OH} (I _{OH} = 4mA for standard pads, 8mA for high current pads)	2.71	-	3.30	V
	Output source current (standard current pad)	I _{OHS}	-	-	4	mA
	Output sink current (standard current pad)	I _{OLS}	-	-	4	mA
	Output source current high current pad: BOT:[66]	Гонн	_	-	8	mA
	Output sink current high current pad: BOT:[66]	I _{OLH}	-	-	8	mA
	Total output current (for I/O Pads)	I _{OH} + I _{OL}	-	-	40	mA

Table 45. I/O DC Electrical Characteristics PMIC

Ball Coordinates	Symbol	Parameter	Condition	Min	Тур	Max	Units
PAF:[1]	V _{IL}	Low-level input voltage	-	-	-	0.40	V
	V _{IH}	High-level input voltage		2.31	-	3.30	V
PAL:[19]	V _{IL}	Low-level input voltage	-	ı	1	0.40	V
	V _{IH}	High-level input voltage		1.40	-	3.30	V

Table 46. I/O DC Electrical Characteristics PCM Signals

Ball Coordinates Symbol		Parameter	Condition	Min	Тур	Max	Unit
PAK:[43]	V _{IH}	High-level input voltage	-	2.0	ı	-	V
PAL:[43]	V _{IL}	Low-level input voltage	-	-	ı	0.8	
PAJ:[42,43]	V _{OH}	Output High voltage	at 2mA	2.9	ı	ı	V
	V _{OL}	Output Low voltage	at 2mA	-	ı	0.4	

Table 47. GPIO Pull-up Resistor Current

Ball Coordinates	Pull Up	Min	Тур	Max	Unit
PA:[1,2,3,5,6,7,8,29,37,39,40,41,42]	Enabled (where every GPIO has a $100 \text{k}\Omega$	10	33	72	μΑ
PB:[2,3,4,5,6,7,8,39,40,41,42]	internal pull-up resistor).				
PAK:[1,2,3,4,5,6,7,8,9,10,11,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42]	Disabled (default)	-	-	0.1	μΑ
PAL:[1,2,3,4,5,6,7,8,9,10,11,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42]					
PAC:[1,2]					
PAD:[1,2]					
PAE:[1]					
PAG:[2,42,43]					
PAH:[1,2,42,43]					
PAJ:[1,2]					

Table 48. Power-on Reset Timing Specifications

Symbol	Description	Min.	Тур.	Max.	Unit
t _{RESW}	Reset assert time after clock stabilization	40	-	-	ns

AC Electrical Characteristics

AC characteristics covered in this section are preliminary and are likely to change.

SD/MMC AC Electrical Characteristics

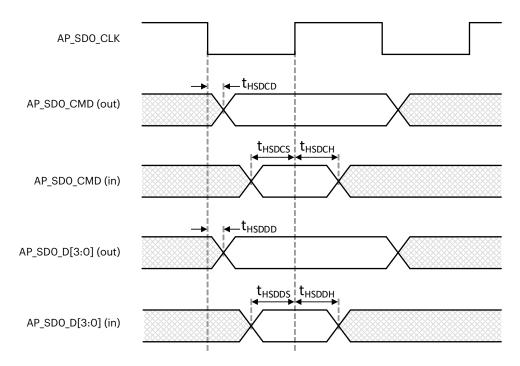


Figure 8. High-Speed SD/MMC Interface Timing

The following table assumes V_{DDINT} = 1.0V ± 5%, T_{J} = -25 to 85°C, V_{DDmmc} = 3.3V ± 5 %, 2.5V ± 5%, 1.8V ± 5%

Table 49. High-Speed SD/MMC Interface Transmit/Receive Timing Constants

Symbol	Parameter	Min	Тур	Max	Unit
t _{HSDCD}	SD command output delay time	-	-	4.0	ns
t _{HSDCS}	SD command input setup time	4.0	_	_	
t _{HSDCH}	SD command input hold time	0	_	_	
t _{HSDDD}	SD data output delay time	-	_	4.0	
t _{HSDDS}	SD data input setup time	4.0	_	_	
t _{HSDDH}	SD data input hold time	0	_	-	

SPI AC Electrical Characteristics

Figure 9. SPI Interface Timing (CPHA = 0, CPOL = 1 (Format A))

The following table assumes V_{DDINT} = 1.0 V ± 5%, T_J = -25 to 85 °C, V_{DDext} = 1.8 V ± 10%, load = 15pF.

Table 50. SPI Interface Transmit/ Receive Timing Constants with 15pF Load

	Parameter	Symbol	Min.	Тур.	Max.	Units
Ch 0	SPI MOSI Master Output Delay time	t _{SPIMOD}	-	-	5	ns
	SPI MISO Master Input Setup time (FB_CLK_SEL = 00)	t _{SPIMIS}	12	-	-	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 01)		7	-	-	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 10)		2	-	-	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 11)		-3	-	-	
	SPI MISO Master Input Hold time	t _{SPIMIH}	5	-	-	
	SPI MOSI Slave Input Setup time	t _{SPISIS}	2	-	-	ns
	SPI MOSI Slave Input Hold time	t _{SPISIH}	5	-	-	
	SPI MISO Slave Output Delay time	t _{SPISOD}	-	-	17	
	SPI nSS Master Output Delay time	t _{SPICSSD}	7	-	-	
	SPI nSS Slave Input Setup time	t _{SPICSSS}	5	-	-	
Ch 1	SPI MOSI Master Output Delay time	t _{SPIMOD}	-	-	4	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 00)	t _{SPIMIS}	13	-	-	ns
	SPI MISO Master Input Setup time (FB_CLK_SEL = 01)		8	-	-	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 10)		3	-	-	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 11)		-2	-	-	
	SPI MISO Master Input Hold time	t _{SPIMIH}	5	-	-	
	SPI MOSI Slave Input Setup time	t _{SPISIS}	3	-	-	
	SPI MOSI Slave Input Hold time	t _{SPISIH}	5	-	-	ns
	SPI MISO Slave Output Delay time	t _{SPISOD}	-	-	18	
	SPI nSS Master Output Delay time	t _{SPICSSD}	7	-	-	
	SPI nSS Slave Input Setup time	t _{SPICSSS}	5	-	-	

- $t_{SPIMIS,CH0}$ = 12 (cycle period/4) × FB_CLK_SEL
- t_{SPIMIS,CH1} = 13 (cycle period/4) × FB_CLK_SEL

The following table assumes V_{DDINT} = 1.0V ± 5%, T_J = -25 to 85°C, V_{DDext} = 3.3V ± 10%, load = 30pF.

Table 51. SPI Interface Transmit/Receive Timing Constants with 30pF Load

	Parameter	Symbol	Min.	Тур.	Max.	Unit
Ch 0	SPI MOSI Master Output Delay time	t _{SPIMOD}	_	_	6	ns
	SPI MISO Master Input Setup time (FB_CLK_SEL = 00)	t _{SPIMIS}	13	-	-	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 01)		8	-	-	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 10)		3	-	-	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 11)		-2	-	-	
	SPI MISO Master Input Hold time	t _{SPIMIH}	5	-	-	
	SPI MOSI Slave Input Setup time	t _{SPISIS}	4	-	-	ns
	SPI MOSI Slave Input Hold time	t _{SPISIH}	5	-	-	
	SPI MISO Slave Output Delay time	t _{SPISOD}	-	-	18	
	SPI nSS Master Output Delay time	t _{SPICSSD}	8	-	-	
	SPI nSS Slave Input Setup time	t _{SPICSSS}	6	_	_	
Ch 1	SPI MOSI Master Output Delay time	t _{SPIMOD}	-	-	5	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 00)	t _{SPIMIS}	14	-	-	ns
	SPI MISO Master Input Setup time (FB_CLK_SEL = 01)		9	-	-	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 10)		4	-	-	
	SPI MISO Master Input Setup time (FB_CLK_SEL = 11)		-1	-	-	
	SPI MISO Master Input Hold time	t _{SPIMIH}	5	-	-	
	SPI MOSI Slave Input Setup time	t _{SPISIS}	4	-	-	
	SPI MOSI Slave Input Hold time	t _{SPISIH}	5	-	-	ns
	SPI MISO Slave Output Delay time	t _{SPISOD}	-	-	19	
	SPI nSS Master Output Delay time	t _{SPICSSD}	8	_	-	
	SPI nSS Slave Input Setup time	t _{SPICSSS}	6	-	-	

SPICLK_{out} = 50 MHz

- t_{SPIMIS,CH0} = 12 (cycle period/4) × FB_CLK_SEL
- $t_{SPIMIS,CH1} = 13 (cycle period/4) \times FB_CLK_SEL$

I²C AC Electrical Characteristics

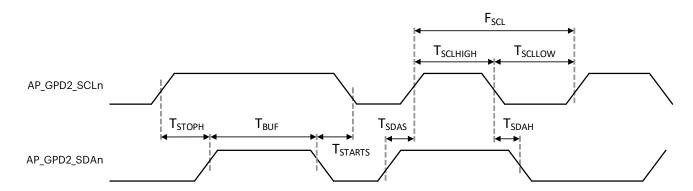


Figure 10. I²C Interface Timing

The following table assumes V_{DDINT} , V_{DDarm} = 1.1V \pm 5%, T_J = -25 to 85°C, V_{DDext} = 3.3 V \pm 10%

Table 52. I²C BUS Controller Module Signal Timing

Parameter	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency	F _{SCL}	-	-	std. 100	kHz
				fast 400	
SCL high level pulse width	T _{SCLHIGH}	std. 4.0	-	-	μs
		fast 0.6			
SCL low level pulse width	T _{SCLLOW}	std. 4.7	_	_	
		fast 1.3			
Bus free time between STOP and START	T _{BUF}	std 4.7	_	_	
		fast 1.3			
START hold time	T _{STARTS}	std. 4.0	-	-	
		fast 0.6			
SDA hold time	T _{SDAH}	std. 0	-	std.	
		fast O		fast 0.9	
SDA setup time	T _{SDAS}	std. 250	_	_	ns
		fast 100			
STOP setup time	T _{STOPH}	std. 4.0	-	-	μs
		fast 0.6			

Modes: std. refers to Standard Mode and fast refers to Fast Mode.

- I²C data hold time (t_{SDAH}) is minimum Ons for standard/fast bus mode as defined in I²C specification v2.1. Check whether the data hold time of your I²C device is Ons or not.
- The I²C controller supports I²C bus device only (standard/fast bus mode), and does not support a C-bus device.

RF Electrical Characteristics

All performance numbers related to 802.11 for Wi-Fi, Bluetooth, and 802.15.4 for Zigbee mentioned in this section are preliminary and likely to change once module characterization has taken place.

Wi-Fi, 2.4GHz Receiver RF Specifications

Table 53. Wi-Fi, 2.4GHz Receiver RF Specifications

Parameter	Conditions	Min	Тур	Max	Unit
Frequency Range	-	2400	-	2500	MHz
	Minimum receiver sensitivity in 802.11b i	mode (2.4GHz	<u>.</u>)	•	
1Mbps	PER < 8%,	-	_	-92	dBm
2Mbps	Packet size = 1024 bytes	-	_	-80	dBm
5.5Mbps		-	-	-76	dBm
11Mbps		-	-	-83	dBm
	Minimum receiver sensitivity in 802.11g ı	mode (2.4GHz	<u>:</u>)		
6Mbps	PER < 10%,	-	_	-82	dBm
9Mbps	Packet size= 1024 bytes	-	_	-81	dBm
12Mbps		-	_	-79	dBm
18Mbps		-	-	-77	dBm
24Mbps		-	-	-74	dBm
36Mbps		-	_	-70	dBm
48Mbps		-	-	-66	dBm
54Mbps		-	-	-65	dBm
	Minimum receiver sensitivity in 802.11n ı	mode (2.4GHz	<u>:</u>)		
MCS 0	PER<10%,	-	_	-82	dBm
MCS 1	Packet size= 4096 bytes,	-	_	-79	dBm
MCS 2	GF, 800ns GI, Non-STBC	-	_	-77	dBm
MCS 3		-	_	-74	dBm
MCS 4		-	_	-70	dBm
MCS 5		-	-	-68	dBm
MCS 6		-	_	-65	dBm
MCS 7		_	-	-64	dBm

Wi-Fi, 2.4GHz Transmitter RF Specifications

Table 54. Wi-Fi, 2.4GHz Transmitter RF Specifications

Parameter	Conditions	Min	Тур	Max	Unit
1	Linear output power		I.		
Maximum output power in 802.11b mode	As specified in	_	16	-	dBm
Maximum output power in 802.11g mode	IEEE802.11		12.5	-	dBm
Maximum output power in 802.11n mode		_	13	-	dBm
	Transmit spectrum mas	k			
Margin to 802.11b spectrum mask	Maximum	0	-	-	dBr
Margin to 802.11g spectrum mask	output power	0	-	-	dBr
Margin to 802.11n spectrum mask		0	-	-	dBr
Transmit	modulation accuracy in 8	02.11b mode			
1Mbps	As specified in	_	-	35	%
2Mbps	IEEE 802.11b	-	-	35	%
5.5Mbps		_	-	35	%
11Mbps			-	35	%
Transmit	modulation accuracy in 8	02.11g mode		*	
6Mbps	As specified in	-	-	-5	dB
9Mbps	IEEE 802.11g	_	-	-8	dB
12Mbps		_	-	-10	dB
18Mbps			-	-13	dB
24Mbps		_	_	-16	dB
36Mbps		_	-	-19	dB
48Mbps			-	-22	dB
54Mbps		_	_	-25	dB
Transmit	modulation accuracy in 8	02.11n mode			
MCS7	As specified in IEEE 802.11n	_	_	-27	dB
Transmit power-o	n and power-down ramp t	time in 802.11b ı	node		
Transmit power-on ramp time from 10% to 90% output power	-	-	-	2	μs
Transmit power-down ramp time from 90% to 10% output power	-	-	-	2	μs

Wi-Fi, 5GHz Receiver RF Specifications

Table 55. Wi-Fi, 5GHZ Receiver RF Specifications

Parameter	Conditions	Min	Тур	Max	Unit
Frequency Range	-	4900	-	5845	MHz
	Minimum receiver sensitivity in 80	2.11a mode	1		
6Mbps	PER < 10%	-	_	-82	dBm
12Mbps		_	_	-79	dBm
24Mbps		_	-	-74	dBm
36Mbps		_	-	-70	dBm
48Mbps		_	-	-66	dBm
54Mbps		-	-	-65	dBm
	Minimum receiver sensitivity in 802.11	n (HT-20) mode			
MCS 0	-	_	-	-82	dBm
MCS 1		-	-	-79	dBm
MCS 2		_	-	-77	dBm
MCS 3		_	-	-74	dBm
MCS 4		_	-	-70	dBm
MCS 5		_	-	-66	dBm
MCS 6		_	-	-65	dBm
MCS 7		_	-	-64	dBm
	Minimum receiver sensitivity in 802.11	n (HT-40) mode			
MCS 0	PER<10%	_	-	-79	dBm
MCS 1		_	-	-76	dBm
MCS 2		_	-	-74	dBm
MCS 3		_	-	-71	dBm
MCS 4		_	-	-67	dBm
MCS 5		_		-63	dBm
MCS 6		_	-	-62	dBm
MCS 7		_	-	-61	dBm
	Minimum receiver sensitivity in 802.11ad	c (VHT-20) mode)		
MCS 0	PER<10%	_	-	-82	dBm
MCS 1		_	-	-79	dBm
MCS 2		_	-	-77	dBm
MCS 3		-	-	-74	dBm
MCS 4		-	-	-70	dBm
MCS 5		-	-	-66	dBm
MCS 6		-	_	-65	dBm
MCS 7		-	-	-64	dBm
MCS 8		_	_	-59	dBm

Table 55. Wi-Fi, 5GHZ Receiver RF Specifications (Continued)

Parameter	Conditions	Min	Тур	Max	Unit
Frequency Range	-	4900	-	5845	MHz
MCS 0	PER<10%	-	_	-79	dBm
MCS 1		_	_	-76	dBm
MCS 2		-	-	-74	dBm
MCS 3		-	-	-71	dBm
MCS 4		_	-	-67	dBm
MCS 5		-	-	-63	dBm
MCS 6		_	-	-62	dBm
MCS 7		_	-	-61	dBm
MCS 8		-	-	-56	dBm
MCS 9		-	-	-54	dBm
Minimum	receiver sensitivity in 802.11a	c (VHT-80) mode	9		
MCS 0	PER<10%	-	-	-76	dBm
MCS 1		-	-	-73	dBm
MCS 2		-	-	-71	dBm
MCS 3		-	-	-68	dBm
MCS 4		-		-64	dBm
MCS 5		-	-	-60	dBm
MCS 6		-	-	-59	dBm
MCS 7		-	-	-58	dBm
MCS 8		-	-	-53	dBm
MCS 9		-	-	-51	dBm
	Maximum input level	•			•
Maximum input signal level in 802.11a mode	PER < 10%	-30	-	-	dBm
Maximum input signal level in 802.11n mode	PER < 10%	-30	-	-	dBm
Maximum input signal level in 802.11ac mode	PER < 10%	-30	-	-	dBm

Wi-Fi, 5GHz Transmitter RF Specifications

Table 56. Wi-Fi, 5GHz Transmitter RF Specifications

Parameter	Conditions	Min	Тур	Max	Unit
Frequency Range	-	4900		5845	MHz
	Linear output power				
Maximum output power in 802.11a mode	54M, UNII-2e	-	12.5	-	dBm
Maximum output power in 802.11n mode	HT20, MCS7, UNII-2e	-	12	-	dBm
	HT40, MCS7, UNII-2e	-	11	-	dBm
Maximum output power in 802.11ac mode	VHT20, MCS8, UNII-2e	-	12	-	dBm
	VHT40, MCS9, UNII-2e	-	11	-	dBm
	VHT80, MCS9, UNII-2e	_	8	-	dBm
	Transmit spectrum mas	k			
Margin to 802.11a spectrum mask	Maximum output power	0	-	-	dBr
Margin to 802.11n spectrum mask		0	_	-	dBr
Margin to 802.11ac spectrum mask		0	-	-	dBr
Transr	nit constellation error in 80	2.11a mode			
54Mbps	As specified in IEEE 802.11n	_	-	-25	dB
Transmit cons	tellation error in 802.11n (H	T-20, HT-40) m	ode		
MCS 7	As specified in IEEE 802.11n	-	-	-27	dB
Transmit co	nstellation error in 802.11ac	(VHT-20) mod	de	1	
MCS 8	As specified in IEEE 802.11n	_	_	-30	dB
Transmit conste	llation error in 802.11ac (VH	IT-40, VHT-80)	mode	•	
MCS 9	As specified in IEEE 802.11n	_	-	-32	dB

Bluetooth RF Specifications

Table 57. Bluetooth Receiver RF Specifications

Parameter	Conditions	Min	Тур	Max	Unit
Frequency Range	-	2402	-	2480	MHz
Sensitivity (BER)	GPSK, BER ≤0.1%	_	-	-80	dBm
	π/4-DQPSK, BER ≤ 0.1%	-	-	-80	dBm
	BER ≤ 0.1%, 8DPSK	-	-	-80	dBm
Maximum Input Level	GPSK, BER ≤0.1%	-20	-	-	dBm
	π/4-DQPSK, BER ≤ 0.1%	-20	-	-	dBm
	BER ≤ 0.1%, 8 DPSK	-20	-	-	dBm
	BDR				
Intermodulation Performance	_	-	-	0.1	%
Rx C/I Performance	1DH1	=	-	0.1	%
	1DH3	-	-	0.1	%
	1DH5	-	-	0.1	%
	EDR				
Rx C/I Performance	2DH1	-	-	0.1	%
	2DH3	-	-	0.1	%
	2DH5	-	-	0.1	%
	3DH1	-	-	0.1	%
	3DH3	-	-	0.1	%
	3DH5	-	-	0.1	%
Rx BER Floor Performance	BER ≤ 0.001%	-	-	-70	dBm

Table 58. Bluetooth Transmitter RF Specifications

Parameter	Conditions	Min	Тур	Max	Unit		
Frequency Range	-	2402	-	2480	MHz		
Output Power (Average)							
BDR (QPSK)	2440 MHz	-	7	-	dBm		
EDR (π/4-DQPSK)	2440 MHz	-	3	-	dBm		
EDR (8DPSK)	2440 MHz	-	3	-	dBm		

Table 59. Bluetooth Low Energy (BLE) RF Specifications

Parameter	Conditions	Min	Тур	Max	Unit
Frequency Range	-	2402	-	2480	MHz
Rx Receiver Sensitivity PER	At –70dBm	-	-	30.8	%
Rx C/I and Receiver Selectivity Performance PER	-	-	-	30.8	%
Tx Power	-	-	7	ı	dBm

802.15.4 Receiver RF Specifications

The typical numbers indicated in <u>Table 60</u> and <u>Table 61</u> are one standard deviation below the mean, measured at room temperature 25°C. The Min and Max numbers were measured over process corners at room temperature.

Table 60. 802.15.4 Receiver RF Specifications

Parameter	Test Condition	Min	Тур	Max	Unit
Operating Frequency Range	-	2400	-	2483.5	MHz
Receiver Sensitivity PER	At –95dBm	-	-	1	%
Receiver Sensitivity Search	At PER 1%	-	-	-95	dBm
Receiver Interference Rejection PER	At -2 Channel, Alternate Channel, 30dB	-	-	1	%
Receiver Interference Rejection PER	At -1 Channel, Adjacent Channel, OdB	-	-	1	%
Receiver Interference Rejection PER	At +1 Channel, Adjacent Channel, OdB	-	-	1	%
Receiver Interference Rejection PER	At +2 Channel, Alternate Channel, 30dB	-	-	1	%
Error Vector Magnitude - RMS (EVM)	At Target Power	-	-	30	%
Error Vector Magnitude - Offset (EVM)	At Target Power	-	-	10	%
Receiver Maximum Input Level of Desired Signal	At –20dBm Input	-	-	1	%

Table 61. 802.15.4 Transmitter RF Specifications

Parameter	Test Condition	Min	Тур	Max	Unit
Maximum output power	At highest normal mode power setting		6.5	-	dBm
Minimum output power	At lowest power setting	-	-55	-	dBm
Error vector magnitude (Offset-EVM)	As defined by IEEE 802.15.4-2003, which sets a 35% maximum	1	-	10	%
Carrier frequency error	-	-40	-	+40	ppm
PSD mask relative	3.5 MHz away (Normal)	-20	-	-	dBm
PSD mask absolute	100 KHz BW	-30	-	-	dBm

THERMAL AND ENVIRONMENTAL SPECIFICATIONS

Recommended Operating Conditions

The recommended operation of the ARTIK 710/710s Module is based on the operating conditions listed in <u>Table 62</u>.

Table 62. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
Operating Temperature	T _C	0	-	70	°C
Storage Temperature	T _A	-	-40	85	°C

Temperature Thresholds for Operating Frequency Throttling

The ARTIK 710/710s Module automatically performs frequency throttling under software control at the thresholds indicated in the following table:

Table 63. Application Processor Die Temperature vs Maximum Operating Frequency

AP Temperature *	Maximum Operating Frequency
<80°C	1.4 GHz
80° to 85°C	1.3 GHz
85° to 100°C	1.0 GHz
100° to 115°C	400 MHz
115°C	Shutdown

^{*.} AP Temperature is measured on the Application Processor Die. This temperature is highly dependent on your thermal design and application load. It will be substantially above the case temperature particularly in cases of high processor load.

ESD Ratings

Table 64. ESD Ratings

Symbol	Min.	Max.	Units
ESD stress voltage Human Body Model	-	1	kV
ESD stress voltage Charged Device Model	-	TBD	V

Table 65. Shock and Vibration Ratings

Shock and Vibration		Range
Shock	Packing Drop	75cm (10~19.9Kg) / 91cm (<10Kg)
Vibration	Packing Vibration	0.85Grms/2~200Hz (TTL Grms)

MECHANICAL SPECIFICATIONS

The ARTIK 710/710s Module supports PAD Balls and two RF connectors on a 49mm × 36mm footprint. Refer to section <u>Antenna Connections</u> for RF connector details. <u>Figure 11</u> shows the ARTIK 710/710s Module Component Layout Top View. <u>Figure 12</u> and <u>Figure 13</u> show the ARTIK 710/710s Module Mechanical Dimensions Top View and Bottom View.

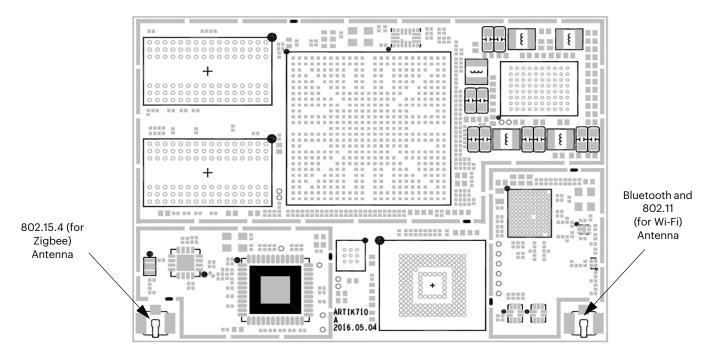


Figure 11. ARTIK 710/710s Module Component Layout Top View

Figure 12. ARTIK 710/710s Module Mechanical Dimensions Top View

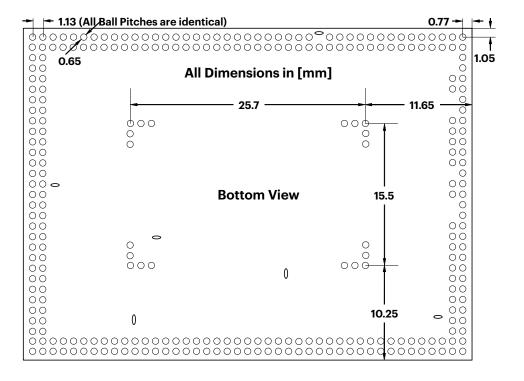


Figure 13. ARTIK 710/710s Module Mechanical Dimensions Bottom View

The inner pin locations on the pad, positioned in an L-shaped form, as depicted in <u>Figure 14</u>, are described in <u>Table 66</u>.

The inner pads are on a different grid from the outer pads as indicated with the dashed blue lines in *Figure 14*.

For exact dimensions on ball locations, see <u>Figure 13</u>. The locations given in <u>Table 66</u> are the absolute coordinates measured from the edge of the ARTIK 710/710s Module to the center of each ball. All inner pads are ground (GND) balls.

Table 66. L-Shaped Ball Locations

Ball Name	X-Location (mm)	Y-Location (mm)
TP282	11.65	25.75
TP283	12.78	25.75
TP284	13.91	25.75
TP285	35.09	25.75
TP286	36.22	25.75
TP287	37.35	25.75
TP288	37.35	24.62
TP289	37.35	23.49
TP290	37.35	12.51
TP291	37.35	11.38
TP292	37.35	10.25
TP293	36.22	10.25
TP294	35.09	10.25
TP295	13.91	10.25
TP296	12.78	10.25
TP297	11.65	10.25
TP298	11.65	11.38
TP299	11.65	12.51
TP300	11.65	23.49
TP301	11.65	24.62

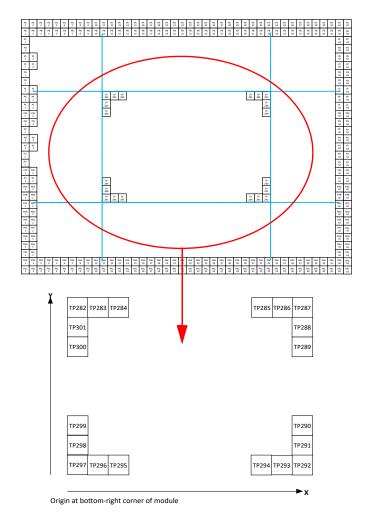


Figure 14. L-Shaped Pad Pins (Top View)

CERTIFICATIONS AND COMPLIANCE

Bluetooth

The ARTIK 710/710s Module is recognized as a qualified design as set out by the Bluetooth SIG.

Declaration ID: D032725

Qualified Design ID: 88390

CE

The ARTIK 710/710s Module is in compliance with the essential requirements and other relevant provisions of Article 3 of the Radio Equipment Directive 2014/53/EU. Compliance with the following standards was confirmed:

Article 3.1a (Health and Safety)
 EN 60950-1:2006 + A2:2013

EN62311:2008 EN 62479: 2010

• Article 3.1.b (EMC) EN 301 489-1 V2.1.1, draft EN 301 489-3 V2.1.0

Draft EN 301 489-3 V2.1.1 EN 301 489-17 V3.1.1

Article 3.2 (Radio spectrum use) EN 300 328 V2.1.1

EN 301 893 V1.8.1 EN 300 440 V2.1.1

BABT file number: BABT-RED000471 i01

For a formal notified body statement of opinion contact your sales representative.

FCC

The ARTIK 710/710s Module complies with the following two sections (15C and 15E) of Part 15 of the FCC rules namely:

- Spread spectrum transmitter (SST) compliance (15C):
 - 2402–2480MHz frequency range, output power 0.0049W
- Digital transmission system (DTS) compliance (15C):
 - 2402–2480MHz frequency range, output power 0.005W
 - 2405-2475MHz frequency range, output power 0.006W
 - 2412–2462MHz frequency range, output power 0.26W
- Unlicensed national information infrastructure TX compliance (15E) in the:
 - 5180-5240MHz frequency range, output power 0.034W
 - 5260-5320MHz frequency range, output power 0.029W
 - 5500-5720MHz frequency range, output power 0.025W
 - 5745-5825MHz frequency range, output power 0.021W

FCC Identifier: A3LSIP007AFS00

IC

The ARTIK 710/710s Module complies with the IC license-exempt RSS standard.

Radio certification number: 649E-SIP007AFS00

KCC

The ARTIK 710/710s Module complies with the standards set by the Korean communications commission (KCC).

ARTIK 710/710s Module KCC Identifier: MSIP-CRM-SEC-SIP007AFS00

Development kit KCC identifier: MSIP-REM-SEC-SIPKITNXEOO

SRRC

Both the ARTIK 710/710s Module and the ARTIK 710/710s Development Kit comply with the standards set by the People's Republic of China.

CMIIT ID: 2017AJ2592 (M)(ARTIK 710/710s Module)

CMIIT ID: 2017AJ2658 (ARTIK 710/710s Development Kit)

HDMI Compliance

The ARTIK 710/710s Module passed the self-test, HDMI CTS version 1.4b on 6/30/2016 provided by HDMI Licensing LLC.

RoHS Compliance

The ARTIK 710/710s Module complies with the hazardous substance limits of directive 2011/65/EU and the conformity assessment procedure as outlined in Decision 768/2008/EC, Annex II, Module A, Point 2, as well as RoHS harmonized standard EN 50581.

Report reference number: F690101/LF-CTSAYGU16-04652

FCC Regulatory Disclosures

This device complies with Part 15 of the FCC's Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesirable operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.

- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/ TV technician for help.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20cm between the transmitter's radiating structure(s) and the body of the user or nearby persons.

This module is intended for OEM integration. The OEM integrator is responsible for FCC compliance and compliance with all applicable regulations including those for modular transmitters 47 C.F.R. 15.212. The OEM product must comply with all applicable labeling requirements including those contained in 15 C.F.R. 15.19. The OEM is solely responsible for certification and testing and labeling of its own products. In addition to any independently required labels, the OEM shall also affix to the outside of a device into which the module is installed a label referring to the enclosed module. This exterior label should be prepared in a legible font and permanently affixed and using the wording "Contains Transmitter Module FCCID: A3LSIPO07AFS00"

The OEM is required to ensure that the end product integrates this module so as to maintain a minimum distance of 20 cm between the equipment's radiating structure(s) and the body of the user or nearby persons. The OEM shall also advise its end user of this requirement as required by applicable rules.

The OEM shall require that the end user of its product be informed that the FCC radio frequency exposure guidelines for an uncontrolled environment can be satisfied. The OEM shall further inform its end user that any change or modifications to this module not expressly approved by the manufacturer will void the warranty and the users' authority to operate the equipment.

Industry Canada Regulatory Disclosures

Industry Canada Statement

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Cet appareil est conforme avec Industrie Canada exempts de licence standard RSS (s). L'opération est soumise aux deux conditions suivantes:(1) cet appareil ne peut causer d'interférences, et (2) cet appareil doit accepter toute interférence, y compris les interférences qui peuvent causer un mauvais fonctionnement de l'appareil.

Industry Canada Radiation Exposure Statement and Limitations on Use

This equipment complies with IC RSS-102 radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator and your body. This equipment should be installed and must not be co-located or operating in conjunction with any other antenna or transmitter.

This equipment is restricted to indoor use in the 5.15-5.25 GHz range. This equipment is not able to be operated at 5600-5650. In the United States and Canada, only Channel 1~11 can be operated and these channel assignments deal only with the 2.4 GHz range.

The end product must be labeled to display the Industry Canada certification number of the module.

"Contains transmitter module IC: 649E-SIP007AFS00"

Le dispositif d'accueil doivent être étiquetés pour afficher le numéro de certification d'Industrie Canada du module. "Contient module émetteur IC : 649E-SIPO07AFSO0"

EU Regulatory Disclosures

Statement*

The following statement must be supplied with each product but can be printed in the user manual, the packaging, or provided as a separated leaflet.

Hereby, Samsung declares that this IoT Module is in compliance with the essential requirements and other relevant provisions of Article 3 of the Radio Equipment Directive 2014/53/EU and RoHS directive 2011/65/EU.

"The declaration of conformity may be consulted at [www.artik.io/certification]"

The 5150 - 5350 MHz and 5470 - 5725 MHz bands are for indoor use only.

The OEM is required to ensure that the end product integrates this module so as to maintain a minimum distance of 20 cm between the equipment's radiating structure(s) and the body of the user or nearby persons. The OEM shall also advise its end user of this requirement as required by applicable rules.

Wi-Fi Interoperability

The ARTIK 710/710s Module is Wi-Fi Certified® by the Wi-Fi Alliance™. <u>Wi-Fi Certifications</u> provides an overview of the certifications:

Table 67. Wi-Fi Certifications

Classification	Program
Connectivity	Wi-Fi Certified a, b, g, n, ac
	WPA™ - Personal
	WPA2™ - Personal
Optimization	WMM [®]

Certification IDs: WFA66780, WFA66781

Zigbee

The ARTIK 710/710s Module is ZigBee® certified. For more details on the boundaries of this certification contact your sales representative.

Certification date: 07/25/2016

Certification ID number: ZIG16061ZHA25785-24

ORDERING INFORMATION

Item	Order Number	Description
ARTIK 710 Module	SIP-007AFS001	-
ARTIK 710s Module	SIP-007AFS002	-
ARTIK 710 Development Kit	SIP-KITNXE001	ARTIK 710 Development Module
		ARTIK 710/710s Interposer Board
		Platform Board
		Interface Board
		Two Antennas (one 802.15.4, one BT/Wi-Fi)
ARTIK 710s Development Kit	SIP-KITNXE002	ARTIK 710s Module Development Module
		ARTIK 710/710s Interposer Board
		Platform Board
		Interface Board
		Two Antennas (one 802.15.4, one BT/Wi-Fi)

For volume ordering of evaluation kits, contact a sales representative in your area or email sales@artik.io.

LEGAL INFORMATION

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH THE SAMSUNG ARTIK™ DEVELOPMENT KIT AND ALL RELATED PRODUCTS, UPDATES, AND DOCUMENTATION (HEREINAFTER "SAMSUNG PRODUCTS"). NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. THE LICENSE AND OTHER TERMS AND CONDITIONS RELATED TO YOUR USE OF THE SAMSUNG PRODUCTS ARE GOVERNED EXCLUSIVELY BY THE SAMSUNG ARTIK™ DEVELOPER LICENSE AGREEMENT THAT YOU AGREED TO WHEN YOU REGISTERED AS A DEVELOPER TO RECEIVE THE SAMSUNG PRODUCTS. EXCEPT AS PROVIDED IN THE SAMSUNG ARTIK™ DEVELOPER LICENSE AGREEMENT, SAMSUNG ELECTRONICS CO., LTD. AND ITS AFFILIATES (COLLECTIVELY, "SAMSUNG") ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION CONSEQUENTIAL OR INCIDENTAL DAMAGES, AND SAMSUNG DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, ARISING OUT OF OR RELATED TO YOUR SALE, APPLICATION AND/OR USE OF SAMSUNG PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATED TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT.

SAMSUNG RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION, DOCUMENTATION AND SPECIFICATIONS WITHOUT NOTICE. THIS INCLUDES MAKING CHANGES TO THIS DOCUMENTATION AT ANY TIME WITHOUT PRIOR NOTICE. THIS DOCUMENTATION IS PROVIDED FOR REFERENCE PURPOSES ONLY, AND ALL INFORMATION DISCUSSED HEREIN IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND. SAMSUNG ASSUMES NO RESPONSIBILITY FOR POSSIBLE ERRORS OR OMISSIONS, OR FOR ANY CONSEQUENCES FROM THE USE OF THE DOCUMENTATION CONTAINED HEREIN.

Samsung Products are not intended for use in medical, life support, critical care, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

This document and all information discussed herein remain the sole and exclusive property of Samsung. All brand names, trademarks and registered trademarks belong to their respective owners. For updates or additional information about Samsung ARTIK™, contact the Samsung ARTIK™ team via the Samsung ARTIK™ website at www.artik.io.

Copyright © 2018 Samsung Electronics Co., Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung Electronics.

SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other-wise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners.

