ABSOLUTE MAXIMUM RA	TINGS (Note 1)	
Device		Input Volta
Output Voltage	Input Voltage	(transient) (N
5V	35V	50V
6V	35V	50V
8V	35V	50V
12V	35V	50V
15V	35V	50V
18V	35V	50V
24V	40V	50V
Operating Junction Temperatu Hermetic (K, R, IG - Package	re es) 150°C	Storage Te Lead Temp
Note 1. Values beyond which dam	nage may occur.	
THERMAL DATA		
Thermal Resistance-Junction R Package: Thermal Resistance-Junction T Package: Thermal Resistance-Junction Thermal Resistance-Junction IG Package: Thermal Resistance-Junction Thermal Resistance-Junction C Package: Thermal Resistance-Junction L Package: Thermal Resistance-Junction	n to Case, θ_{JC}	Note B. The the cor line sys

Input Voltage transient) (Note 3)	Input Voltage Differential (Output shorted to ground)
50V	35V
U 1	Range65°C to 150°C Idering, 10 Seconds) 300°C

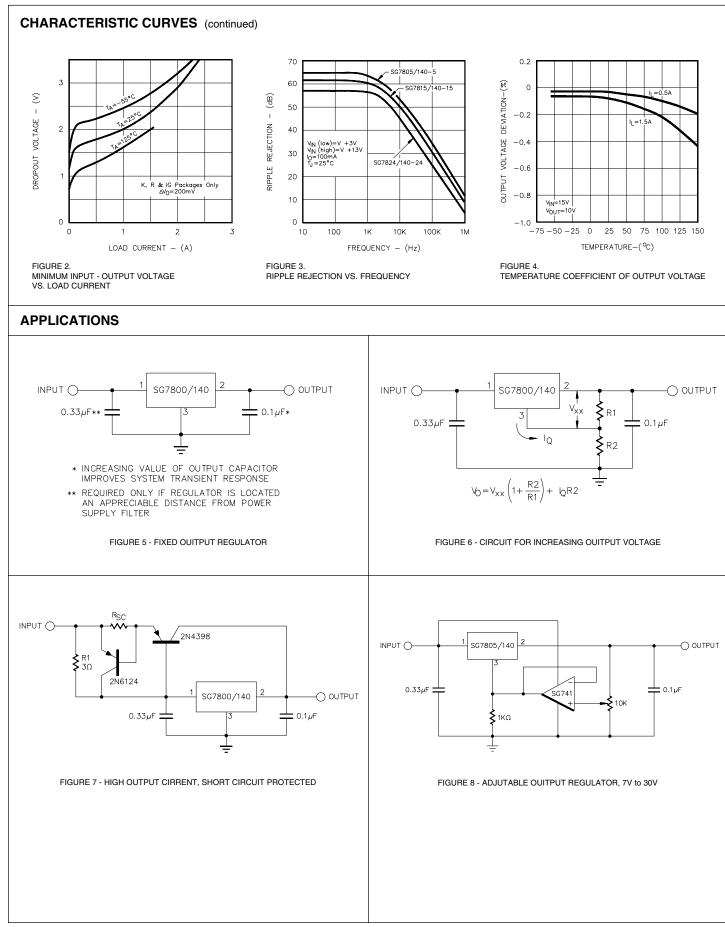
- Note A. Junction Temperature Calculation: $T_J = T_A + (P_D x \theta_{JA})$.
- Note B. The above numbers for θ_{J_C} are maximums for the limiting thermal resistance of the package in a standard mounting configuration. The θ_{J_A} numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Operating Junction Temperature Range:

SG140A/140 -55°C to 150°C

Note 2. Range over which the device is functional.


CHARACTERISTIC CURVES

2/90 Rev 1.4 6/97 Copyright © 1997 Note 3. Operation at high input voltages is dependent upon load current. When load current is less than 5mA, output will rise out of regulation as inputoiutput differential icreases beyond 30V. Note also from Figure 1, that maximum load current is reduced at high voltages. The 50V input rating of the SG140A series refers to ability to withstnd high line or transient conditions without damage. Since the regulator's maximum current capability is reduced, the output may fall out of regulation at high input voltages under nominal loading.

SG140A/SG140 SERIES

POSITIVE REGULATOR

2/90 Rev 1.4 6/97 Copyright © 1997

SG140A - 5

(Unless otherwise specified, these specifications apply over full operating ambient temperatures for SG140A-05 with -55°C $\leq T_A \leq 150°C$, $V_{IN} = 10V$, $I_O = 1.0A$, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F and are applicable for the K, R, and IG - Power package - only. Low duty cycle pulse testing techniques are used which maintains junction and case temperature equal to the ambient temperature.)

Parameter	Test Conditions	SG140A-5			Unito
Faralleler		Min.	Тур.	Max.	Units
Output Voltage	$I_0 = 5mA \text{ to } 1.0A, T_1 = 25^{\circ}C$	4.9	5.0	5.1	V
Line Regulation (Note 1)	$V_{IN} = 7.5V$ to 20V, $I_{O} = 500$ mA			10	mV
	$V_{IN}^{T} = 7.5V \text{ to } 20V, T_{J}^{T} = 25^{\circ}\text{C}$		3	10	mV
	$V_{IN} = 7.5V \text{ to } 20V$			12	mV
	$V_{IN} = 8V$ to 12V, T _J = 25°C			4	mV
Load Regulation (Note 1)	$I_0 = 5$ mA to 1.0A			25	mV
	$I_0 = 5$ mA to 1.5A, $T_1 = 25^{\circ}$ C		10	25	mV
	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}, \text{ T}_1 = 25^{\circ}\text{C}$			15	mV
Total Output Voltage					
Tolerance	$V_{IN} = 7.5V$ to 20V, $I_{O} = 5$ mA to 1.0A, P $\le 15W$	4.8	5.0	5.2	V
Quiescent Current	Over Temperature Range			6.5	mA
	$T_{J} = 25^{\circ}C$			6	mA
Quiescent Current Change	With Line: $V_{IN} = 7.5V$ to 25V, $I_0 = 500$ mA			0.8	mA
	$V_{IN} = 7.5V$ to 20V, $I_{O} = 1A$, $T_{J} = 25^{\circ}C$			0.8	mA
	With Load: $I_0 = 5mA$ to 1.0A			0.5	mA
Dropout Voltage	$\Delta V_{o} = 100 \text{mV}, I_{o} = 1 \text{A}, T_{J} = 25^{\circ} \text{C}$		2	2.5	V
Peak Output Current	$T_{\rm J} = 25^{\circ} \rm C$		2.4		A
Short Circuit Current	$T_{j} = 25^{\circ}C$		2.1		A
Ripple Rejection	$\Delta V_{IN} = 10V$, f = 120Hz, T _J = 25°C	68			dB
Output Noise Voltage (rms)	f = 10Hz to 100KHz (Note 2)			40	μV/V
Long Term Stability	1000hrs. at $T_{J} = 125^{\circ}C$		20		mV
Thermal Shutdown	I _o = 5mA		175		°C

SG140 - 5

(Unless otherwise specified, these specifications apply over full operating ambient temperatures for SG140-05 with -55°C $\leq T_A \leq 150$ °C, and $V_{IN} = 10V$, $I_0 = 500$ mA, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F and are applicable for the K, R, and IG - Power package - only. Low duty cycle pulse testing techniques are used which maintains junction and case temperature equal to the ambient temperature.)

Parameter	Test Conditions	9	SG140-5		
Falameter			Тур.	Max.	Units
Output Voltage	$I_0 = 5mA \text{ to } 1.0A, T_1 = 25^{\circ}C$	4.8	5.0	5.2	V
Line Regulation (Note 1)	$V_{IN} = 8V \text{ to } 20V$			50	mV
	$V_{IN} = 7V \text{ to } 25V, T_{I} = 25^{\circ}C$			50	mV
	$V_{IN} = 8V \text{ to } 12V, I_{O} = 1.0A$			25	mV
	$V_{IN} = 7.3V$ to 20V, $I_{O} = 1.0A$, $T_{I} = 25^{\circ}C$			50	mV
Load Regulation (Note 1)	I_ = 5mA to 1.0A			50	mV
	$I_0 = 5$ mA to 1.5A, T ₁ = 25°C			50	mV
	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}, T_1 = 25^{\circ}\text{C}$			25	mV
Total Output Voltage					
Tolerance	$V_{IN} = 8V$ to 20V, $I_{O} = 5$ mA to 1.0A, $P \le 15W$	4.75	5.00	5.25	V
Quiescent Current	I ₀ = 1.0A			7	mA
	$T_1 = 25^{\circ}C$			6	mA
Quiescent Current Change	With Line: $V_{IN} = 8V$ to 25V			0.8	mA
	$V_{IN} = 8V$ to 20V, $I_{O} = 1A$, $T_{I} = 25^{\circ}C$			0.8	mA
	With Load: $I_0 = 5$ mA to 1.0Å			0.5	mA
Dropout Voltage	$\Delta V_{0} = 100 \text{mV}, \text{ I}_{0} = 1 \text{ A}, \text{ T}_{1} = 25^{\circ}\text{C}$		2	2.5	V
Peak Output Current	T_ = 25°C		2.4		Α
Short Circuit Current	$T_1 = 25^{\circ}C$		2.1		Α
Ripple Rejection	$\Delta V_{IN} = 10V, f = 120Hz, T_{I} = 25^{\circ}C$	68			dB
Output Noise Voltage (rms)	f = 10Hz to 100KHz (Note 2)			40	μV/V
Long Term Stability	1000hrs. at T ₁ = 125°C		20		mV
Thermal Shutdown	I _o = 5mA		175		°C

Note 1. All regulation tests are made at constant junction temperature with low duty cycle testing.

2. This test is guaranteed but is not tested in production.

Downloaded from Arrow.com.

SG140 - 6

(Unless otherwise specified, these specifications apply over full operating ambient temperatures for SG140-06 with -55°C $\leq T_A \leq 150$ °C, and $V_{IN} = 11V$, $I_O = 500$ mA, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F and are applicable for the K, R, and IG - Power package - only. Low duty cycle pulse testing techniques are used which maintains junction and case temperature equal to the ambient temperature.)

Parameter	Test Conditions	S	SG140 - 6		
Farailleter		Min.	Тур.	Max.	Units
Output Voltage	$I_0 = 5mA \text{ to } 1.0A, T_1 = 25^{\circ}C$	5.75	6.00	6.25	V
Line Regulation (Note 1)	$V_{\rm IN} = 9V$ to 21V			60	mV
	$V_{IN} = 8V \text{ to } 25V, T_{J} = 25^{\circ}C$			60	mV
	$V_{IN} = 9V$ to 13V, $I_{O} = 1.0$ A			30	mV
	$V_{IN} = 8.3V$ to 21V, $I_{O} = 1.0$ A, $T_{I} = 25^{\circ}$ C			60	mV
Load Regulation (Note 1)	$I_0 = 5$ mA to 1.0A			60	mV
	$I_0 = 5$ mA to 1.5A, $T_1 = 25^{\circ}$ C			60	mV
	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}, T_1 = 25^{\circ}\text{C}$			30	mV
Total Output Voltage					
Tolerance	$V_{IN} = 9V$ to 21V, $I_{O} = 5mA$ to 1.0A, $P \le 15W$	5.7	6.0	6.3	V
Quiescent Current	I _o = 1.0 A			7	mA
	T _j = 25°C			6	mA
Quiescent Current Change	With Line: $V_{IN} = 9V$ to 25V			0.8	mA
	$V_{IN} = 9V$ to 21V, $I_0 = 1A$, $T_J = 25^{\circ}C$			0.8	mA
	With Load: $I_0 = 5mA$ to 1.0A			0.5	mA
Dropout Voltage	$\Delta V_{o} = 100 \text{mV}, I_{o} = 1 \text{A}, T_{J} = 25^{\circ}\text{C}$		2	2.5	V
Peak Output Current	$T_{J} = 25^{\circ}C$		2.4		A
Short Circuit Current	$T_{J} = 25^{\circ}C$		2.1		Α
Ripple Rejection	$\Delta V_{IN} = 10V, f = 120Hz, T_{J} = 25^{\circ}C$	65			dB
Output Noise Voltage (rms)	f = 10Hz to 100KHz (Note 2)			40	μV/V
Long Term Stability	1000hrs. at T _J = 125°C		24		mV
Thermal Shutdown	$I_{o} = 5 \text{mA}$		175		°C

SG140 - 8

(Unless otherwise specified, these specifications apply over full operating ambient temperatures for SG140-08 with -55°C $\leq T_A \leq 150$ °C, and $V_{IN} = 14V$, $I_0 = 500$ mA, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F and are applicable for the K, R, and IG - Power package - only. Low duty cycle pulse testing techniques are used which maintains junction and case temperature equal to the ambient temperature.)

Parameter	Test Conditions	S	SG140 - 8		
Falameter	Test conditions	Min.	Тур.	Max.	Units
Output Voltage	$I_0 = 5mA \text{ to } 1.0A, T_1 = 25^{\circ}C$	7.7	8.0	8.3	V
Line Regulation (Note 1)	$V_{\rm IN} = 11$ V to 23V			80	mV
	$V_{IN} = 10.5V$ to 25V, $T_{I} = 25^{\circ}C$			80	mV
	$V_{IN} = 11V$ to 17V, $I_0 = 1.0A$			40	mV
	$V_{IN} = 10.5V$ to 23V, $I_{O} = 1.0A$, $T_{I} = 25^{\circ}C$			80	mV
Load Regulation (Note 1)	$I_0 = 5$ mA to 1.0A			80	mV
	$I_0 = 5$ mA to 1.5A, $T_1 = 25^{\circ}$ C			80	mV
	$I_0 = 250 \text{mA}$ to 750 mÅ, $T_1 = 25^{\circ}\text{C}$			40	mV
Total Output Voltage					
Tolerance	$V_{IN} = 11.5V$ to 23V, $I_{O} = 5$ mA to 1.0A, $P \le 15W$	7.6	8.0	8.4	V
Quiescent Current	I ₀ = 1.0A			7	mA
	T ₁ = 25°C			6	mA
Quiescent Current Change	With Line: V _{IN} = 11.5V to 25V			0.8	mA
	$V_{IN} = 11.5V$ to 23V, $I_0 = 1A$, $T_1 = 25^{\circ}C$			0.8	mA
	With Load: $I_0 = 5$ mA to 1.0A			0.5	mA
Dropout Voltage	$\Delta V_{o} = 100 \text{mV}, I_{o} = 1 \text{A}, T_{1} = 25^{\circ}\text{C}$		2	2.5	V
Peak Output Current	T_ = 25°C		2.4		Α
Short Circuit Current	$T_{1} = 25^{\circ}C$		2.1		Α
Ripple Rejection	$\Delta V_{IN} = 10V, f = 120Hz, T_{I} = 25^{\circ}C$	62			dB
Output Noise Voltage (rms)	f = 10Hz to 100KHz (Note 2)			40	μV/V
Long Term Stability	1000hrs. at T ₁ = 125°C		32		mV
Thermal Shutdown	$I_0 = 5mA$		175		°C

Note 1. All regulation tests are made at constant junction temperature with low duty cycle testing.

2. This test is guaranteed but is not tested in production.

Downloaded from Arrow.com.

SG140 A - 12

(Unless otherwise specified, these specifications apply over full operating ambient temperatures for SG140A -12 with -55°C \leq T_A \leq 150°C, and V_{IN} = 19V, I₀ = 1.0A, C_{IN} = 0. 33µF, C_{OUT} = 0.1µF and are applicable for the K, R, and IG - Power package - only. Low duty cycle pulse testing techniques are used which maintains junction and case temperature equal to the ambient temperature.)

Parameter	Test Conditions	SG	SG140A - 12		
Parameter		Min.	Тур.	Max.	Units
Output Voltage	$I_0 = 5mA \text{ to } 1.0A, T_1 = 25^{\circ}C$	11.75	12.00	12.25	V
Line Regulation (Note 1)	$V_{IN} = 14.8V$ to 27V, $I_{O} = 500$ mA			18	mV
	$V_{IN} = 14.5V \text{ to } 27V, T_{I} = 25^{\circ}C$		4	18	mV
	$V_{IN} = 16V \text{ to } 22V$			30	mV
	$V_{IN} = 16V \text{ to } 22V, T_{I} = 25^{\circ}C$			9	mV
Load Regulation (Note 1)	I ₀ = 5mA to 1.0A			60	mV
	$I_0 = 5$ mA to 1.5A, $T_1 = 25^{\circ}$ C			32	mV
	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}, T_1 = 25^{\circ} \text{C}$			19	mV
Total Output Voltage					
Tolerance	$V_{IN} = 14.8V$ to 27V, $I_0 = 5$ mA to 1.0A, $P \le 15W$	11.5	12.0	12.5	V
Quiescent Current	Over Temperature Range			6.5	mA
	$T_{J} = 25^{\circ}C$			6	mA
Quiescent Current Change	With Line: $V_{IN} = 15V$ to 30V, $I_{O} = 500$ mA			0.8	mA
	$V_{IN} = 14.8V$ to 27V, $I_{O} = 1A$, $T_{I} = 25^{\circ}C$			0.8	mA
	With Load: $I_0 = 5$ mA to 1.0A			0.5	mA
Dropout Voltage	$\Delta V_{o} = 100 \text{mV}, I_{o} = 1 \text{A}, T_{J} = 25^{\circ} \text{C}$		2	2.5	V
Peak Output Current	$T_{J} = 25^{\circ}C$		2.4		Α
Short Circuit Current	$T_{J} = 25^{\circ}C$		2.1		Α
Ripple Rejection	$\Delta V_{IN} = 10V, f = 120Hz, T_{II} = 25^{\circ}C$	61			dB
Output Noise Voltage (rms)	f = 10Hz to 100KHz (Note 2)			40	μV/V
Long Term Stability	1000hrs. at T _j = 125°C		48		mV
Thermal Shutdown	I _o = 5mA		175		°C

SG140 - 12

(Unless otherwise specified, these specifications apply over full operating ambient temperatures for SG140-12 with -55°C $\leq T_A \leq 150$ °C, and $V_{IN} = 19V$, $I_O = 500$ mA, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F and are applicable for the K, R, and IG - Power package - only. Low duty cycle pulse testing techniques are used which maintains junction and case temperature equal to the ambient temperature.)

Parameter	Test Conditions	S	SG140 - 12			
Falameter	Test conditions		Тур.	Max.	Units	
Output Voltage	$I_0 = 5mA \text{ to } 1.0A, T_1 = 25^{\circ}C$	11.5	12.0	12.5	V	
Line Regulation (Note 1)	$V_{IN} = 15V \text{ to } 27V$			120	mV	
	$V_{IN} = 14.5V$ to 30V, $T_{II} = 25^{\circ}C$			120	mV	
	$V_{IN} = 16V \text{ to } 22V, I_{O} = 1.0A$			60	mV	
	$V_{IN} = 14.6V$ to 27V, $I_{O} = 1.0A$, $T_{I} = 25^{\circ}C$			120	mV	
Load Regulation (Note 1)	$I_0 = 5$ mA to 1.0A			120	mV	
	$I_0 = 5$ mA to 1.5A, $T_1 = 25^{\circ}$ C			120	mV	
	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}, T_1 = 25^{\circ} \text{C}$			60	mV	
Total Output Voltage						
Tolerance	$V_{IN} = 14.5V$ to 27V, $I_{O} = 5$ mA to 1.0A, P $\le 15W$	11.4	12.0	12.6	V	
Quiescent Current	I ₀ = 1.0A			7	mA	
	$T_{J} = 25^{\circ}C$			6	mA	
Quiescent Current Change	With Line: $V_{IN} = 15V$ to 30V			0.8	mA	
	$V_{IN} = 14.5V$ to 27V, $I_{O} = 1A$, $T_{J} = 25^{\circ}C$			0.8	mA	
	With Load: $I_0 = 5$ mA to 1.0A			0.5	mA	
Dropout Voltage	$\Delta V_{o} = 100 \text{mV}, I_{o} = 1 \text{A}, T_{J} = 25^{\circ} \text{C}$		2	2.5	V	
Peak Output Current	$T_{J} = 25^{\circ}C$		2.4		A	
Short Circuit Current	$T_{J} = 25^{\circ}C$		2.1		A	
Ripple Rejection	$\Delta V_{IN} = 10V, f = 120Hz, T_{J} = 25^{\circ}C$	61			dB	
Output Noise Voltage (rms)	f = 10Hz to 100KHz (Note 2)			40	μV/V	
Long Term Stability	1000hrs. at T ₁ = 125°C		48		mV	
Thermal Shutdown	I _o = 5mA		175		°C	

Note 1. All regulation tests are made at constant junction temperature with low duty cycle testing.

2. This test is guaranteed but is not tested in production.

SG140 A - 15

(Unless otherwise specified, these specifications apply over full operating ambient temperatures for SG140A -15 with -55°C \leq T_A \leq 150°C, and V_{IN} = 23V, I_O = 1.0A, C_{IN} = 0.33µF, C_{OUT} = 0.1µF and are applicable for the K, R, and IG - Power package - only. Low duty cycle pulse testing techniques are used which maintains junction and case temperature equal to the ambient temperature.)

Parameter	Test Conditions	SG	SG140A - 15		
Parameter		Min.	Тур.	Max.	Units
Output Voltage	$I_0 = 5mA \text{ to } 1.0A, T_1 = 25^{\circ}C$	14.7	15.0	15.3	V
Line Regulation (Note 1)	$V_{IN} = 17.9V$ to 30V, $I_{O} = 500$ mA			22	mV
	$V_{IN} = 7.5V$ to 30V, $T_{I} = 25^{\circ}C$			22	mV
	$V_{IN} = 20V \text{ to } 26V$			30	mV
	$V_{IN} = 20V \text{ to } 26V, T_{I} = 25^{\circ}C$			10	mV
Load Regulation (Note 1)	$I_0 = 5$ mA to 1.0A			75	mV
	$I_0 = 5$ mA to 1.5A, $T_1 = 25^{\circ}$ C			35	mV
	$I_0 = 250 \text{mA}$ to 750 mÅ, $T_1 = 25^{\circ}\text{C}$			21	mV
Total Output Voltage					
Tolerance	$V_{IN} = 17.9V$ to 30V, $I_{O} = 5$ mA to 1.0A, $P \le 15W$	14.4	15.0	15.6	V
Quiescent Current	Over Temperature Range			6.5	mA
	$T_{1} = 25^{\circ}C$			6	mA
Quiescent Current Change	With Line: $V_{IN} = 17.9V$ to 30V, $I_{O} = 500$ mA			0.8	mA
	$V_{IN} = 17.9V$ to 30V, $I_{O} = 1A$, $T_{I} = 25^{\circ}C$			0.8	mA
	With Load: $I_0 = 5$ mA to 1.0A			0.5	mA
Dropout Voltage	$\Delta V_{o} = 100 \text{mV}, I_{o} = 1 \text{A}, T_{J} = 25^{\circ}\text{C}$		2	2.5	V
Peak Output Current	$T_{J} = 25^{\circ}C$		2.4		Α
Short Circuit Current	$T_{1} = 25^{\circ}C$		2.1		Α
Ripple Rejection	$\Delta V_{IN} = 10V, f = 120Hz, T_{I} = 25^{\circ}C$	60			dB
Output Noise Voltage (rms)	f = 10Hz to 100KHz (Note 2)			40	μV/V
Long Term Stability	1000hrs. at T _J = 125°C		60		mV
Thermal Shutdown	I _o = 5mA		175		°C

SG140 - 15

(Unless otherwise specified, these specifications apply over full operating ambient temperatures for SG140-15 with -55°C $\leq T_A \leq 150$ °C, and $V_{IN} = 23V$, $I_O = 500$ mA, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F and are applicable for the K, R, and IG - Power package - only. Low duty cycle pulse testing techniques are used which maintains junction and case temperature equal to the ambient temperature.)

Parameter	Test Conditions	S	SG140 - 15				
Falameter	Test conditions		Тур.	Max.	Units		
Output Voltage	$I_0 = 5$ mA to 1.0A, $T_1 = 25^{\circ}$ C	14.4	15.0	15.6	V		
Line Regulation (Note 1)	$V_{IN} = 18.5V \text{ to } 30V$			150	mV		
	$V_{IN} = 17.5V \text{ to } 30V, T_{I} = 25^{\circ}C$			150	mV		
	$V_{IN} = 20V \text{ to } 26V, I_{O} = 1.0A$			75	mV		
	$V_{IN} = 17.7V$ to 30V, $I_{O} = 1.0A$, $T_{I} = 25^{\circ}C$			150	mV		
Load Regulation (Note 1)	$I_0 = 5$ mA to 1.0A			150	mV		
	$I_0 = 5$ mA to 1.5A, $T_1 = 25^{\circ}$ C			150	mV		
	$I_0 = 250 \text{mA}$ to 750 mÅ, $T_1 = 25^{\circ}\text{C}$			75	mV		
Total Output Voltage							
Tolerance	$V_{IN} = 17.5V$ to 30V, $I_{O} = 5$ mA to 1.0A, P $\le 15W$	14.25	15.00	15.75	V		
Quiescent Current	I ₀ = 1.0A			8.5	mA		
	T ₁ = 25°C			8	mA		
Quiescent Current Change	With Line: $V_{IN} = 18.5V$ to 30V			1.0	mA		
	$V_{IN} = 18.5V$ to 30V, $I_{O} = 1A$, $T_{I} = 25^{\circ}C$			1.0	mA		
	With Load: $I_0 = 5$ mA to 1.0A			0.5	mA		
Dropout Voltage	$\Delta V_{o} = 100 \text{mV}, I_{o} = 1 \text{A}, T_{J} = 25^{\circ}\text{C}$		2	2.5	V		
Peak Output Current	$T_{J} = 25^{\circ}C$		2.4		Α		
Short Circuit Current	$T_{J} = 25^{\circ}C$		2.1		Α		
Ripple Rejection	$\Delta V_{IN} = 10V, f = 120Hz, T_{I} = 25^{\circ}C$	54			dB		
Output Noise Voltage (rms)	f = 10Hz to 100KHz (Note 2)			40	μV/V		
Long Term Stability	1000hrs. at T ₁ = 125°C		60		mV		
Thermal Shutdown	$I_0 = 5 \text{mA}$		175		°C		

Note 1. All regulation tests are made at constant junction temperature with low duty cycle testing.

2. This test is guaranteed but is not tested in production.

SG140 - 18

(Unless otherwise specified, these specifications apply over full operating ambient temperatures for SG140-18 with -55°C $\leq T_A \leq 150$ °C, and $V_{IN} = 27V$, $I_0 = 500$ mA, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F and are applicable for the K, R, and IG - Power package - only. Low duty cycle pulse testing techniques are used which maintains junction and case temperature equal to the ambient temperature.)

Parameter	Test Conditions	SG140 - 18			Units
Farailleter		Min.	Тур.	Max.	Units
Output Voltage	$I_0 = 5mA \text{ to } 1.0A, T_1 = 25^{\circ}C$	17.3	18.0	18.7	V
Line Regulation (Note 1)	V _{IN} = 21.5V to 33V °			180	mV
	$V_{IN} = 21V \text{ to } 33V, T_{J} = 25^{\circ}\text{C}$			180	mV
	$V_{IN} = 24V \text{ to } 30V, I_{O} = 1.0A$			90	mV
	$V_{IN} = 21V \text{ to } 30V, I_{O} = 1.0A, T_{I} = 25^{\circ}\text{C}$			180	mV
Load Regulation (Note 1)	$I_0 = 5$ mA to 1.0A			180	mV
	$I_0 = 5$ mA to 1.5A, T ₁ = 25°C			180	mV
	$I_0 = 250 \text{mA} \text{ to } 750 \text{mA}, T_1 = 25^{\circ}\text{C}$			90	mV
Total Output Voltage					
Tolerance	$V_{IN} = 21V$ to 33V, $I_{O} = 5$ mA to 1.0A, $P \le 15W$	17.1	18.0	18.9	V
Quiescent Current	$I_0 = 1A$			7	mA
	$T_{J} = 25^{\circ}C$			6	mA
Quiescent Current Change	With Line: $V_{IN} = 21V$ to 33V			0.8	mA
	$V_{IN} = 21V$ to 33V, $I_{O} = 1A$, $T_{I} = 25^{\circ}C$			0.8	mA
	With Load: $I_0 = 5$ mA to 1.0A			0.5	mA
Dropout Voltage	$\Delta V_{0} = 100 \text{mV}, I_{0} = 1 \text{A}, T_{1} = 25^{\circ}\text{C}$		2	2.5	V
Peak Output Current	$T_{\rm J} = 25^{\circ} \text{C}$		2.4		A
Short Circuit Current	$T_{J} = 25^{\circ}C$		2.1		Α
Ripple Rejection	$\Delta V_{IN} = 10V, f = 120Hz, T_{J} = 25^{\circ}C$	59			dB
Output Noise Voltage (rms)	f = 10Hz to 100KHz (Note 2)			40	μV/V
Long Term Stability	1000hrs. at $T_{J} = 125^{\circ}C$		72		mV
Thermal Shutdown	I _o = 5mA		175		°C

SG140 - 24

(Unless otherwise specified, these specifications apply over full operating ambient temperatures for SG140-24 with -55°C $\leq T_A \leq 150$ °C, and $V_{IN} = 33V$, $I_O = 500$ mA, $C_{IN} = 0.33\mu$ F, $C_{OUT} = 0.1\mu$ F and are applicable for the K, R, and IG - Power package - only. Low duty cycle pulse testing techniques are used which maintains junction and case temperature equal to the ambient temperature.)

Parameter	Test Conditions	S	SG140 - 24		
Falalletei			Тур.	Max.	Units
Output Voltage	$I_0 = 5mA \text{ to } 1.0A, T_1 = 25^{\circ}C$	23	24	25	V
Line Regulation (Note 1)	$V_{IN} = 28V \text{ to } 38V$			240	mV
	$V_{IN} = 27V \text{ to } 38V, T_{I} = 25^{\circ}C$			240	mV
	$V_{IN} = 30V$ to 36V, $I_{O} = 1.0A$			120	mV
	$V_{IN} = 27.1V$ to 35V, $I_{O} = 1.0A$, $T_{I} = 25^{\circ}C$			240	mV
Load Regulation (Note 1)	$I_0 = 5$ mA to 1.0A			240	mV
	$I_0 = 5$ mA to 1.5A, $T_1 = 25^{\circ}$ C			240	mV
	$I_0 = 250 \text{mA}$ to 750 mÅ, $T_1 = 25^{\circ}\text{C}$			120	mV
Total Output Voltage					
Tolerance	$V_{IN} = 27V$ to 38V, $I_{O} = 5$ mA to 1.0A, $P \le 15W$	22.8	24.0	25.2	V
Quiescent Current	$I_0 = 1.0A$			7	mA
	$T_{J} = 25^{\circ}C$			6	mA
Quiescent Current Change	With Line: $V_{IN} = 27V$ to 38V			0.8	mA
	$V_{IN} = 28V$ to 38V, $I_{O} = 1A$, $T_{I} = 25^{\circ}C$			0.8	mA
	With Load: $I_0 = 5$ mA to 1.0A			0.5	mA
Dropout Voltage	$\Delta V_{o} = 100 \text{mV}, I_{o} = 1 \text{A}, T_{J} = 25^{\circ} \text{C}$		2	2.5	V
Peak Output Current	$T_{J} = 25^{\circ}C$		2.4		A
Short Circuit Current	$T_{J} = 25^{\circ}C$		2.1		Α
Ripple Rejection	$\Delta V_{IN} = 10V, f = 120Hz, T_{II} = 25^{\circ}C$	56			dB
Output Noise Voltage (rms)	f = 10Hz to 100KHz (Note 2)			40	μV/V
Long Term Stability	1000hrs. at T _J = 125°C		96		mV
Thermal Shutdown	$I_0 = 5mA$		175		°C

Note 1. All regulation tests are made at constant junction temperature with low duty cycle testing. 2. This test is guaranteed but is not tested in production.

SG140A/SG140 SERIES

POSITIVE REGULATOR

CONNECTION DIAGRAMS & ORDERING INFORMATION (See Notes Below)

Package	Part No. T	Ambient emperature Range	Connection Diagram
3-TERMINAL TO-3 METAL CAN K-PACKAGE	SG140-XXK/883B SG140-XXK	-55°C to 125°C -55°C to 125°C	V _{IN} (1) (2) CASE IS GROUND
3-TERMINAL TO-66 METAL CAN R-PACKAGE	SG140-XXR/883B SG140-XXR	-55°C to 125°C -55°C to 125°C	VIN (1) (2) CASE IS GROUND V _{OUT}
3-PIN TO-39 METAL CAN T-PACKAGE	SG140-XXT/883B SG140-XXT	-55°C to 125°C -55°C to 125°C	V _{IN} V _{OUT} VOUT Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
3-PIN HERMETIC TO-257 IG-PACKAGE (Isolated)	SG140A-XXIG/883B SG140A-XXIG SG140-XXIG/883B SG140-XXIG	-55°C to 125°C -55°C to 125°C -55°C to 125°C -55°C to 125°C -55°C to 125°C	Tab is GND
20-PIN CERAMIC (LCC) LEADLESS CHIP CARRIER L- PACKAGE	SG140-XXL/883B SG140-XXL	-55°C to 125°C -55°C to 125°C	(Note 4) 1. N.C. 2. V _{IN} 3. N.C. 4. N.C. 5. N.C. 6. N.C. 7. GROUND 7 8. N.C. 9. 10 11 11 2 13 9 10 11 12 13 20. N.C. 11. N.C. 12. V _{OUT} 13. N.C. 14. N.C. 15. N.C. 16. 15. V _{OUT} SENSE 16. N.C. 19. N.C. 19. N.C. 10. V _{OUT} 20. N.C. 10. V _{OUT} 20. N.C. 10. N.C. 11. N.C. 12. V _{OUT} 13. N.C. 14. N.C. 15. N.C. 16. N.C. 17. 14. N.C. 16. N.C. 17. 14. N.C. 18. N.C. 18. N.C. 19. N.C. 19. N.C. 10. N.C. 10. N.C. 10. N.C. 10. N.C. 10. N.C. 10. N.C. 11. N.C. 12. V _{OUT} 13. N.C. 14. N.C. 15. N.C. 14. N.C. 15. N.C. 16. N.C. 17. N.C. 18. N.C. 19. N.C. 19. N.C. 20. N.C.

Note 1. Contact factory for JAN and DESC product availability.

2. All parts are viewed from the top.

3. "XX" to be replaced by output voltage of specific fixed regulator.

4. Some products will be available in leadless chip carrier (LCC). Consult factory for price and availability.

2/90 Rev 1.4 6/97 Copyright © 1997