

Pin Description

Pin#	Pin Name	Ту	pe	Description
1, 3, 5, 7, 8, 17, 18, 20, 22, 24	CLK0~9	Output		Clock Outputs
2, 6, 19, 23	$V_{ m DDO}$	Power		Output Power Supplier
15, 26	GND	Power		Output Ground
4, 9, 16, 21, 25, 32	GNDO	Power		Core Ground
10	V_{DD}	Power		Core Power Supplier
11	XIN	Input		Crystal interface
12	XOUT	Output		Crystal interface
13	IN0	Input	Pull-down	REF0 Diff or Single End
14	IN0#	Input	Pull-up/ Pull- down	REF0 Diff, When IN0 is single end ref clock0 and IN0# internal bias as Vdd/2
27	IN1#	Input	Pull-up/ Pull- down	REF1 Diff, When IN1 is single end ref clock1 and IN1# internal bias as Vdd/2
28	IN1	Input	Pull-down	REF1 Diff or Single End
30, 29	IN_SEL[0:1]	Input	Pull-down	IN-SEL[0:1] select XTAL, REF1 and REF0 input
31	ENABLE	Input		Active High Output Enable

Input Mode Selection Logic

IN_SEL0	IN_SEL1	Selected Input
1	1	XTAL
0	1	XTAL
1	0	REF1 Diff or Single End
0	0	REF0 Diff or Single End

Input/Output Operation State

Input State	Output State
IN[0:1], IN[0:1]# open	Logic Low
IN[0:1], IN[0:1]# both to ground	Logic Low
IN[0:1]=High, IN[0:1]# =Low	Logic High
IN[0:1]=Low, IN[0:1]# =High	Logic Low

Output Mode Selection

ENABLE	Output CLK0~9
GND	High-impedance
VDD	Enabled

Power Supply DC Characteristics $(V_{DD}/V_{DDO} = 3.3V \pm 5\%, T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
$V_{ m DDO}$	Output Supply Voltage		3.135	3.3	3.465	V
I_{DD}	Power Supply Current	ENABLE = '0'			32	mA
I_{DDO}	Output Supply Current	ENABLE = '0'			1	mA

Power Supply DC Characteristics $(V_{DD}/V_{DDO} = 2.5V \pm 5\%, T_A = -40$ °C to 85°C)

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
$V_{ m DDO}$	Output Supply Voltage		2.375	2.5	2.625	V
I_{DD}	Power Supply Current	ENABLE = '0'			15	mA
I_{DDO}	Output Supply Current	ENABLE = '0'			0.7	mA

Power Supply DC Characteristics ($V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40$ °C to 85°C)

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
$V_{ m DDO}$	Output Supply Voltage		2.375	2.5	2.625	V
I_{DD}	Power Supply Current	ENABLE = '0'			29	mA
I_{DDO}	Output Supply Current	ENABLE = '0'			0.6	mA

Power Supply DC Characteristics ($V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40$ °C to 85°C)

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
$V_{ m DDO}$	Output Supply Voltage		1.6	1.8	2.0	V
I_{DD}	Power Supply Current	ENABLE = '0'			29	mA
I_{DDO}	Output Supply Current	ENABLE = '0'			0.4	mA

Power Supply DC Characteristics ($V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.5V \pm 0.15V$, $T_A = -40$ °C to 85°C)

11 0	(BB	DDO	, , ,			
Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V_{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		1.35	1.5	1.65	V
I_{DD}	Power Supply Current	ENABLE = '0'			29	mA
I_{DDO}	Output Supply Current	ENABLE = '0'			0.3	mA

13-0169 3 www.pericom.com PI6C49X0210 Rev F 12/13/13

Power Supply DC Characteristics ($V_{DD} = 2.5V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40$ °C to 85°C)

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
$V_{ m DDO}$	Output Supply Voltage		1.6	1.8	2.0	V
I_{DD}	Power Supply Current	ENABLE = '0'			13	mA
I_{DDO}	Output Supply Current	ENABLE = '0'			0.4	mA

Power Supply DC Characteristics (V_{DD} = 2.5V \pm 5%, V_{DDO} = 1.5V \pm 0.15V, T_A = -40°C to 85°C)

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V_{DD}	Core Supply Voltage		2.375	2.5	2.625	V
$V_{ m DDO}$	Output Supply Voltage		1.35	1.5	1.65	V
I_{DD}	Power Supply Current	ENABLE = '0'			13	mA
I_{DDO}	Output Supply Current	ENABLE = '0'			0.3	mA

Single-Ended DC Characteristics $(T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$

Symbols	Parameters	Test Conditions	Min.	Тур	Max.	Units
V	Innut II ah Valta aa	$V_{DD} = 3.3V \pm 5\%$	2		$V_{\rm DD} + 0.3$	V
V _{IH}	Input High Voltage	$V_{\rm DD} = 2.5 V \pm 5\%$	1.7		$V_{DD} + 0.3$	V
V	Innut I am Valtage	$V_{DD} = 3.3V \pm 5\%$	-0.3		0.8	V
$V_{\rm IL}$	Input Low Voltage	$V_{DD} = 2.5V \pm 5\%$	-0.3		0.7	V
		$V_{\rm DDO} = 3.3 V \pm 5\%^{(1)}$	2.6			V
		$V_{\rm DDO} = 2.5 V \pm 5\%$	2			V
	Output High Voltage	$V_{\rm DDO} = 2.5 V \pm 5\%^{(1)}$	1.8			V
	$(I_{OH} = -8mA)$	$V_{\rm DDO} = 1.8V \pm 0.2V^{(1)}$	1.5			V
$V_{ m OH}$		$V_{DDO} = 1.5V \pm 0.15V^{(1)}$	1.0			V
		$V_{\rm DDO} = 3.3 V \pm 5\%$ (1)	3.0			V
		$V_{\rm DDO} = 2.5 V \pm 5\%$	2.0			V
	Output High Voltage (I _{OH} = -12mA)	$V_{DDO} = 1.8V \pm 0.2V^{(1)}$	1.5			V
		$V_{DDO} = 1.5V \pm 0.15V^{(1)}$	1.0			V
		$V_{DD} = 3.3V \pm 5\%$ ⁽¹⁾			0.5	V
		$V_{\rm DDO} = 2.5 V \pm 5\%$			0.5	V
	Output Low Voltage (I _{OH} = 8mA)	$V_{DDO} = 1.8V \pm 0.2V$			0.4	V
		$V_{\rm DDO} = 1.5V \pm 0.15V$			0.35	V
V_{OL}		$V_{\rm DDO} = 3.3 V \pm 5\%$ ⁽¹⁾			0.25	V
		$V_{\rm DDO} = 2.5 V \pm 5\%$			0.25	V
	Output Low Voltage (I _{OL} = 12mA)	$V_{DDO} = 1.8V \pm 0.2V$			0.3	V
		$V_{\rm DDO} = 1.5 V \pm 0.15 V$			0.35	V
D	Outroot Invest	$V_{\rm DDO} = 3.3 V \pm 5\%$	7		10	Ω
R _{OUT}	Output Impedence	$V_{\rm DDO} = 1.8V \pm 5\%$	12	17	20	Ω

Notes:

1. Outputs terminated with 50Ω to V_{DDO} /2. See Parameter Measurement section, "Load Test Circuit" diagrams.

Differential input DC Characteristics $(T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$

Symbols	Parameters		Test Conditions	Min.	Тур	Max.	Units
I _{IH}	Input High Current	IN[0:1], IN[0:1]#	$V_{DD} = V_{IN} = 3.465V$ or 2.625V			100	uA
ī	Input Low	IN[0:1]	$V_{DD} = 3.465 V \text{ or}$ 2.625 V $V_{IN} = 0 V$	-1			uA
$ m I_{IL}$	Current	IN[0:1]#	$V_{DD} = 3.465 V \text{ or}$ 2.625 V $V_{IN} = 0 V$	-50			uA
V	Dools to Dools Is	mout Valtage (1)	$V_{DD} = 3.3V$	0.25		1.3	V
V_{PP}	Peak-to-Peak Input Voltage (1)		$V_{DD} = 2.5V$	0.25		1.3	V
Vara	Common Mode Input Voltage		$V_{DD} = 3.3V$	0.5		V _{DD} -1.35V	V
V_{CMR} (1,2)			$V_{\rm DD} = 2.5 V$	0.5		V _{DD} -0.85V	v

- 1. V_{IL} should not be less than -0.3V.
- 2. Common mode voltage is defined as V_{IH} .

3.3V Absolute Maximum Ratings (Above which the useful life may be impaired. For user guidelines only, not tested.)

Storage Temperature	-65°C to +150°C
V _{DD} , V _{DDO} Voltage	-0.5V to +3.6V
Output Voltage (max. 4.6V)	-0.5V to V _{DD} +0.5V
Input Voltage (max 4.6V)	-0.5V to V _{DD} +0.5V

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

AC Characteristics (Over Operating Range: $V_{DD}/V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^{\circ}$ to 85°C)

Parameters	De	scription	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f_{MAX}	Output Frequency	Using External Clock Source (2)		DC		200	MHz
ode	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew (3)					80	ps
tjit(Ø)	RMS Phase Jitter (I	Random)	25MHz crystal @ (Integration Range: 100Hz-1MHz)		0.05		ps
[†] jit(additive)	Additive RMS Phas	se Jitter (Random)	125MHz reference input @ (Integra- tion Range: 12kHz- 20MHz)		0.05		ps
$t_{ m R}/t_{ m F}$	Output Rise/Fall Ti	me	20% to 80%	200		800	ps
t _{EN}	Output Enable Time	ENABLE				5	cycles
t _{DIS}	Output Disable Tim	e ENABLE				5	cycles
MUXisolation	MUX Isolation		155.52MHz		64		dB

- 1. Unless noted otherwise, all parameters are tested with xtal @ f <= Fxtal_max,; outputs are terminated @ 50Ω to $V_{DDO}/2$, see waveforms.
- 2. Diff external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as $V_{DD}/2$
- 3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 4. These parameters are guaranteed, but not tested. Max delay is 4 cycles. Min. setup time = 3ns.

2.5V Absolute Maximum Ratings (Above which the useful life may be impaired. For user guidelines only, not tested.)

Storage Temperature	-65°C to +150°C
V _{DD} , V _{DDO} Voltage	-0.5V to +3.6V
Output Voltage (max. 4.6V)	-0.5V to V _{DD} +0.5V
Input Voltage (max 4.6V)	-0.5V to V _{DD} +0.5V

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

AC Characteristics (Over Operating Range: $V_{DD}/V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^{\circ}$ to 85°C)

Parameters	De	scription	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f_{MAX}	Output Frequency	Using External Clock Source (2)		DC		200	MHz
ode	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew (3)					80	ps
t _{jit(Ø)}	RMS Phase Jitter (I	Random)	25MHz @ (Integration Range: 100Hz-1MHz)		0.06		ps
tjit(additive)	Additive RMS Phas	e Jitter (Random)	125MHz @ (Integration Range: 12kHz-20MHz)		0.05		ps
$t_{ m R}/t_{ m F}$	Output Rise/Fall Ti	me	20% to 80%	200		800	ps
t _{EN}	Output Enable Time	ENABLE				5	cycles
t _{DIS}	Output Disable Tim	e ENABLE				5	cycles
MUXisolation	MUX Isolation	•	155.52MHz		63		dB

- 1. Unless noted otherwise, all parameters are tested with xtal @ f <= Fxtal max,; outputs are terminated @ 50Ω to $V_{DDO}/2$, see waveforms.
- $2.\ \ Diff\ external\ clock\ source\ is\ driving\ IN0/IN0\#\ and\ IN1/IN1\#\ input.\ IN0/IN1\ can\ be\ single\ end\ ref\ clock\ when\ IN0\#\ /IN1\#\ set\ as\ V_{DD}/2$
- 3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 4. These parameters are guaranteed, but not tested. Max delay is 4 cycles. Min. setup time = 3ns.

AC Characteristics (Over Operating Range: $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^{\circ}$ to 85° C)

Parameters	De	scription	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f_{MAX}	Output Frequency	Using External Clock Source (2)		DC		200	MHz
odc	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew (3)					80	ps
t _{jit(Ø)}	RMS Phase Jitter (I	Random)	25MHz @ (Integration Range: 100Hz-1MHz)		0.05		ps
[†] jit(additive)	Additive RMS Phas	ee Jitter (Random)	125MHz @ (Integration Range: 12kHz-20MHz)		0.05		ps
$t_{ m R}/t_{ m F}$	Output Rise/Fall Ti	me	20% to 80%	200		800	ps
t _{EN}	Output Enable Time	ENABLE				5	cycles
$t_{ m DIS}$	Output Disable Tim	e ENABLE				5	cycles
MUXisolation	MUX Isolation		155.52MHz		62		dB

- 1. Unless noted otherwise, all parameters are tested with xtal @ $f \le Fxtal_max$; outputs are terminated @ 50Ω to $V_{DDO}/2$, see waveforms.
- 2. Diff external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as $V_{DD}/2$
- 3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 4. These parameters are guaranteed, but not tested. Max delay is 4 cycles. Min. setup time = 3ns.

AC Characteristics (Over Operating Range: $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	De	scription	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f_{MAX}	Output Frequency	Using External Clock Source (2)		DC		200	MHz
ode	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew (3)					80	ps
tjit(Ø)	RMS Phase Jitter (I	Random)	25MHz @ (Integration Range: 100Hz-1MHz)		0.06		ps
tjit(additive)	Additive RMS Phas	se Jitter (Random)	125MHz @ (Integration Range: 12kHz-20MHz)		0.05		ps
$t_{ m R}/t_{ m F}$	Output Rise/Fall Ti	me	20% to 80%	200		900	ps
t _{EN}	Output Enable Time	ENABLE				5	cycles
t _{DIS}	Output Disable Tim	e ENABLE				5	cycles
MUX _{isolation}	MUX Isolation		155.52MHz		58		dB

- 1. Unless noted otherwise, all parameters are tested with xtal @ $f \le Fxtal_max$; outputs are terminated @ 50Ω to $V_{DDO}/2$, see waveforms.
- 2. Diff external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as $V_{DD}/2$
- 3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 4. These parameters are guaranteed, but not tested. Max delay is 4 cycles. Min. setup time = 3ns.

AC Characteristics (Over Operating Range: $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.5V \pm 0.15V$, $T_A = -40^{\circ}$ to 85° C)

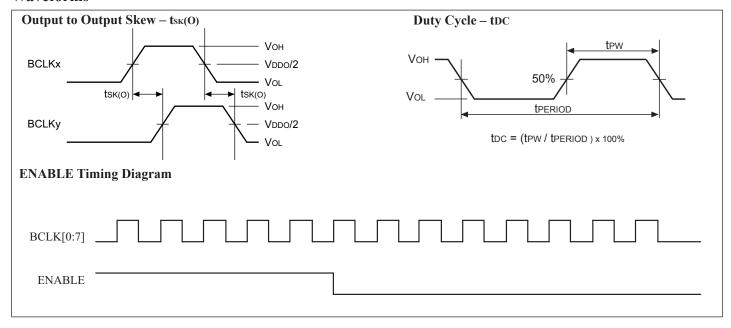
Parameters	De	scription	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f_{MAX}	Output Frequency	Using External Clock Source (2)		DC		200	MHz
ode	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew (3)					80	ps
tjit(Ø)	RMS Phase Jitter (I	Random)	25MHz @ (Integration Range: 100Hz-1MHz)		0.07		ps
tjit(additive)	Additive RMS Phas	se Jitter (Random)	125MHz @ (Integration Range: 12kHz-20MHz)		0.05		ps
$t_{ m R}/t_{ m F}$	Output Rise/Fall Ti	me	20% to 80%	200		900	ps
t _{EN}	Output Enable Time	ENABLE				5	cycles
t _{DIS}	Output Disable Tim	e ENABLE				5	cycles
MUX _{isolation}	MUX Isolation		155.52MHz		53		dB

- 1. Unless noted otherwise, all parameters are tested with xtal @ $f \le Fxtal_max$; outputs are terminated @ 50Ω to $V_{DDO}/2$, see waveforms.
- 2. Diff external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as $V_{DD}/2$
- 3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 4. These parameters are guaranteed, but not tested. Max delay is 4 cycles. Min. setup time = 3ns.

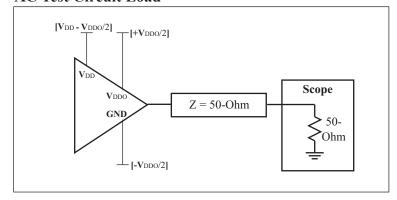
AC Characteristics (Over Operating Range: $V_{DD} = 2.5V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40^{\circ}$ to 85° C)

Parameters	De	scription	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f_{MAX}	Output Frequency	Using External Clock Source (2)		DC		200	MHz
odc	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew (3)					80	ps
t _{jit(Ø)}	RMS Phase Jitter (I	Random)	25MHz @ (Integration Range: 100Hz-1MHz)		0.06		ps
tjit(additive)	Additive RMS Phas	se Jitter (Random)	125MHz @ (Integration Range: 12kHz-20MHz)		0.05		ps
$t_{ m R}/t_{ m F}$	Output Rise/Fall Ti	me	20% to 80%	200		900	ps
t _{EN}	Output Enable Time	ENABLE				5	cycles
t _{DIS}	Output Disable Tim	e ENABLE				5	cycles
MUXisolation	MUX Isolation		155.52MHz		59		dB

- 1. Unless noted otherwise, all parameters are tested with xtal @ $f \le Fxtal_max$; outputs are terminated @ 50Ω to $V_{DDO}/2$, see waveforms.
- 2. Diff external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as $V_{DD}/2$
- 3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 4. These parameters are guaranteed, but not tested. Max delay is 4 cycles. Min. setup time = 3ns.


AC Characteristics (Over Operating Range: $V_{DD} = 2.5V \pm 5\%$, $V_{DDO} = 1.5V \pm 0.15V$, $T_A = -40^{\circ}$ to 85°C)

Parameters	Des	scription	Test Conditions ⁽¹⁾	Min.	Тур	Max.	Units
		Using External Crystal		10		50	
f_{MAX}	Output Frequency	Using External Clock Source (2)		DC		200	MHz
odc	Output Duty Cycle		125MHz	45		55	%
t _{sk(o)}	Output Skew (3)	,				80	ps
$t_{jit(\emptyset)}$	RMS Phase Jitter (F	andom)	25MHz @ (Integration Range: 100Hz-1MHz)		0.08		ps
[†] jit(additive)	Additive RMS Phas	e Jitter (Random)	125MHz @ (Integration Range: 12kHz-20MHz)		0.05		ps
$t_{\rm R}/t_{\rm F}$	Output Rise/Fall Tir	me	20% to 80%	200		900	ps
$t_{\rm EN}$	Output Enable Time	ENABLE				5	cycles
t _{DIS}	Output Disable Tim	e ENABLE				5	cycles
MUXisolation	MUX Isolation		155.52MHz		55		dB


- 1. Unless noted otherwise, all parameters are tested with xtal @ $f \le Fxtal_max$; outputs are terminated @ 50Ω to $V_{DDO}/2$, see waveforms.
- 2. Diff external clock source is driving IN0/IN0# and IN1/IN1# input. IN0/IN1 can be single end ref clock when IN0# /IN1# set as $V_{DD}/2$
- 3. Identical conditions: loading, transitions, supply voltage, temperature, package type and speed grade.
- 4. These parameters are guaranteed, but not tested. Max delay is 4 cycles. Min. setup time = 3ns.

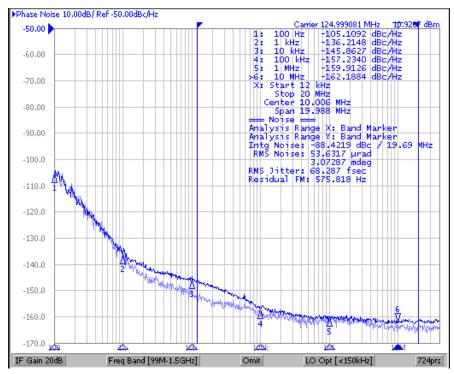
Waveforms

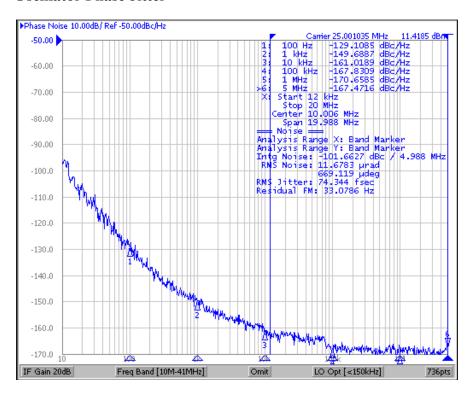
AC Test Circuit Load

Note: $V_{DD}/V_{DDO} = 1.8V \pm 0.2V,$ $2.5V \pm 5\%,$ $3.3V \pm 5\%$

Crystal Characteristic (link to "http://www.pericom.com/products/timing/crystals/index.php" for more detailed and different size crystal specifications)

Parameters	Description	Min	Тур	Max.	Units
OSCMODE	Mode of Oscillation	Fundamental			
FREQ	Frequency	10	25	50	MHz
ESR ⁽¹⁾	Equivalent Series Resistance	30		50	Ohm
CLOAD	Load Capacitance		18		pF
CSHUNT	Shunt Capacitance			7	pF
DRIVE level				1	mW


Note: 1. ESR value is dependent upon frequency of oscillation


Phase Noise and Additive Jitter

Output phase noise (Dark Blue) vs Input Phase noise (light blue)

Additive jitter is calculated at ~47fs RMS (12kHz to 20MHz). Additive jitter = $\sqrt{\text{Output jitter}^2 - \text{Input jitter}^2}$

Oscillator Phase Jitter

Application Information

Wiring the differential input to accept single ended levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to postion the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_REF should be 1.25V and R1/R2 = 0.609.

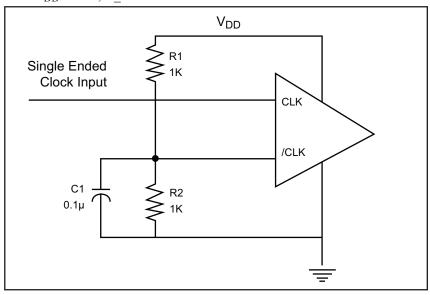
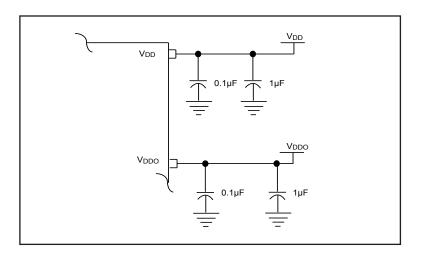
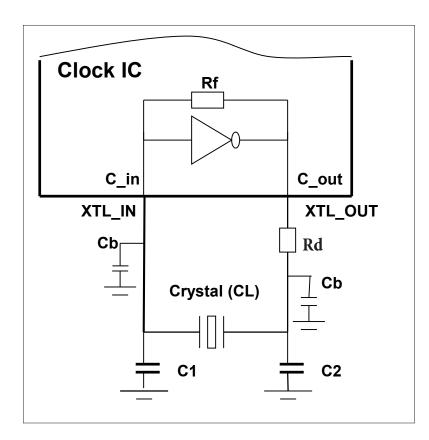



Figure 1. Single-ended input to Differential input device

Power Supply Filtering Techniques


As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. All power pins should be individually connected to the power supply plane through vias, $0.1\mu F$ and $1\mu F$ bypass capacitors should be used for each pin.

Application Notes

Clock IC Crystal loading cap. design guide

CL =crystal spec. loading cap.

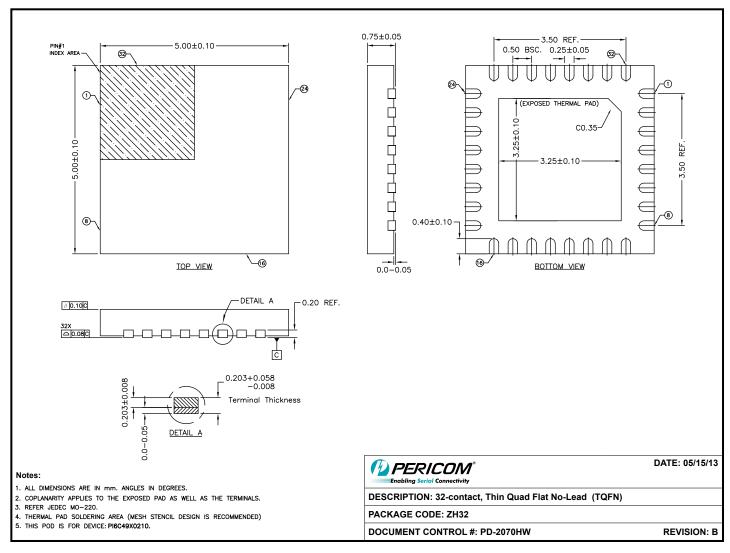
 $C_{in}/out = (3\sim 5pF)$ of IC pin cap.

 $Cb = PCB \text{ trace } (2\sim4pF)$

C1,C2 = load cap. of design

Rd = 50 to 100ohm drive level limit (Optimized for 25MHz 18pf XTAL without Rd)

Design guide: $C1=C2=2 *CL - (Cb + C_in/out)$ to meet target +/-ppm < 20 ppm


Example1: Select CL=18 pF crystal, C1=C2=2*(18pF) - (4pF+5pF)=27pF, check datasheet too

Example2: For higher frequency crystal (\Rightarrow 20MHz), can use formula C1=C2=2*(CL-6), can do fine tune of C1, C2 for more accurate ppm if necessary

Thermal Information

Symbol	Description	Condition	
$\Theta_{ m JA}$	Junction-to-ambient thermal resistance	Still air	44.7 °C/W
$\Theta_{ m JC}$	Junction-to-case thermal resistance		21.7 °C/W

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information^(1,2,3)

Ordering Code	Package Code	Package Description
PI6C49X0210ZHIE	ZH	Pb-Free and Green 32-pin TQFN

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

Downloaded from Arrow.com.