

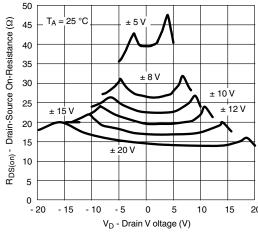
ORDERING INFORMATION				
Temp. Range	Package	Part Number		
		DG411DJ DG411DJ-E3		
	16-pin plastic DIP	DG412DJ DG412DJ-E3		
		DG413DJ DG413DJ-E3		
- 40 °C to 85 °C	16-pin narrow SOIC	DG411DY DG411DY-E3 DG411DY-T1 DG411DY-T1-E3		
		DG412DY DG412DY-E3 DG412DY-T1 DG412DY-T1-E3		
		DG413DY DG413DY-E3 DG413DY-T1 DG413DY-T1-E3		
	16-pin TSSOP	DG411DQ-E3 DG411DQ-T1-E3		
		DG412DQ-E3 DG412DQ-T1-E3		
		DG413DQ-E3 DG413DQ-T1-E3		

ABSOLUTE MAXIMUM RATINGS					
Parameter		Limit	Unit		
V + to V -		44			
GND to V -		25			
V _L		(GND - 0.3) to (V+) + 0.3	V		
Digital Inputs ^a , V _S , V _D		(V-) -2 to (V+) + 2 or 30 mA, whichever occurs first			
Continuous Current (Any terminal)		30	mA		
Peak Current, S or D (Pulsed at 1 m	s, 10 % duty cycle)	100			
Storage Temperature	(AK, AZ suffix)	- 65 to 150	°C		
Storage remperature	(DJ, DY suffix)	- 65 to 125	1 ~		
	16-pin plastic DIP ^c	470			
Davier Dissipation (Daslace)	16-pin narrow SOIC ^d	600	mW		
Power Dissipation (Package) ^b	16-pin CerDIP ^e	900	1 11100		
	LCC-20 ^e	900			

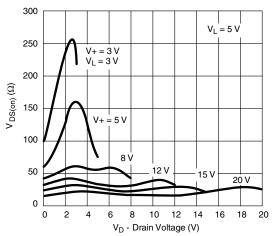
Notes:

- a. Signals on S_X , D_X , or IN_X exceeding V + or V will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 6 mW/°C above 25 °C.
- d. Derate 7.6 mW/°C above 75 °C.
- e. Derate 12 mW/°C above 75 °C.

SPECIFICATIONS	S ^a									
		Test Conditions Unless Specified			A Suffix - 55 °C to 125 °C		D Suffix - 40 °C to 85 °C			
Parameter	Symbol	V += 15 V, V -= -15 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^f$	Temp.b	Typ.c	Min.d	Max. ^d	Min.d	Max.d	Unit	
Analog Switch	-	2 111	•	, , , , , , , , , , , , , , , , , , ,		I	I	I		
Analog Signal Range ^e	V _{ANALOG}		Full		- 15	15	- 15	15	V	
Drain-Source On-Resistance	R _{DS(on)}	V + = 13.5 V, V - = -13.5 V $I_S = -10 \text{ mA}, V_D = \pm 8.5 \text{ V}$	Room Full	25		35 45		35 45	Ω	
Switch Off Leakage	I _{S(off)}	V + = 16.5, V - = - 16.5 V	Room Full	± 0.1	- 0.25 - 20	0.25 20	- 0.25 - 5	0.25 5		
Current	I _{D(off)}	$V_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$	Room Full	± 0.1	- 0.25 - 20	0.25 20	- 0.25 - 5	0.25 5	nA	
Channel On Leakage Current	I _{D(on)}	V + = 16.5 V, V - = -16.5 V $V_S = V_D = \pm 15.5 \text{ V}$	Room Full	± 0.1	- 0.4 - 40	0.4 40	- 0.4 - 10	0.4 10		
Digital Control										
Input Current, V _{IN} Low	I_{IL}	V _{IN} under test = 0.8 V	Full	0.005	- 0.5	0.5	- 0.5	0.5	μΑ	
Input Current, V _{IN} High	I _{IH}	V_{IN} under test = 2.4 V	Full	0.005	- 0.5	0.5	- 0.5	0.5	μΛ	
Dynamic Characteristics	S									
Turn-On Time	t _{ON}	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$	Room Full	110		175 240		175 220		
Turn-Off Time	t _{OFF}	$V_S = \pm 10 \text{ V}$, see figure 2	Room Full	100		145 160		145 160	ns	
Break-Before-Make Time Delay	t _D	DG413 only, $V_S = 10 \text{ V}$ $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$	Room	25						
Charge Injection	Q	$V_g = 0 \text{ V}, R_g = 0 \Omega$ $C_L = 10 \text{ nF}$	Room	5					рC	
Off Isolation ^e	OIRR	$R_1 = 50 \Omega, C_1 = 5 pF,$	Room	68						
Channel-to-Channel Crosstalk ^e	X _{TALK}	f = 1 MHz	Room	85					dB	
Source Off Capacitance ^e	C _{S(off)}		Room	9						
Drain Off Capacitance ^e	C _{D(off)}	f = 1 MHz	Room	9					pF	
Channel On Capacitance ^e	C _{D(on)}	1 – 1 WH 12	Room	35					Pi	
Power Supplies						•	•			
Positive Supply Current	l+		Room Full	0.0001		1 5		1 5		
Negative Supply Current	l-	V + = 16.5 V, V - = - 16.5 V	Room Full	- 0.0001	- 1 - 5		- 1 - 5		μΑ	
Logic Supply Current	ΙL	$V_{IN} = 0 V \text{ or } 5 V$	Room Full	0.0001		1 5		1 5	μΛ	
Ground Current	I _{GND}		Room Full	- 0.0001	- 1 - 5		- 1 - 5			

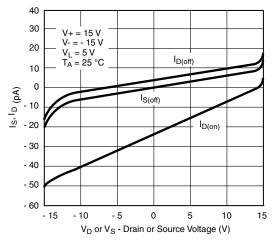

SPECIFICATIONS ^a (for Unipolar Supplies)									
Parameter	Symbol	Test Conditions Unless Specified	Temp.b	Typ. ^c	A Suffix - 55 °C to 125 °C		D Suffix - 40 °C to 85 °C		Unit
rarameter	Cymbol	V += 12 V, V -= 0 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^f$	Temp.		Min. ^d	Max. ^d	Min. ^d	Max. ^d	Oint
Analog Switch									
Analog Signal Range ^e	V_{ANALOG}		Full			12		12	V
Drain-Source On-Resistance	R _{DS(on)}	V += 10.8 V, $I_S = -10 \text{ mA}, V_D = 3 \text{ V}, 8 \text{ V}$	Room Full	40		80 100		80 100	Ω
Dynamic Characteristics									
Turn-On Time	t _{ON}	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$	Room Hot	175		250 400		250 315	
Turn-Off Time	t _{OFF}	$V_S = 8 V$, see figure 2	Room Hot	95		125 140		125 140	ns
Break-Before-Make Time Delay	t _D	DG413 only, $V_S = 8 V$ $R_L = 300 Ω$, $C_L = 35 pF$	Room	25					
Charge Injection	Q	$V_g = 6 \text{ V}, R_g = 0 \Omega, C_L = 10 \text{ nF}$	Room	25					рС
Power Supplies									
Positive Supply Current	l+		Room Hot	0.0001		1 5		1 5	
Negative Supply Current	I-	V - 12 5 V V - 0 V or 5 V	Room Hot	- 0.0001	- 1 - 5		- 1 - 5		
Logic Supply Current	ΙL	$V + = 13.5 \text{ V}, V_{IN} = 0 \text{ V or } 5 \text{ V}$	Room Hot	0.0001		1 5		1 5	μΑ
Ground Current	I _{GND}		Room Hot	- 0.0001	- 1 - 5		- 5		

Notes:

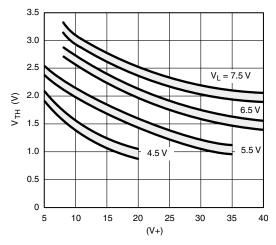

- a. Refer to process option flowchart.
- b.Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e.Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.

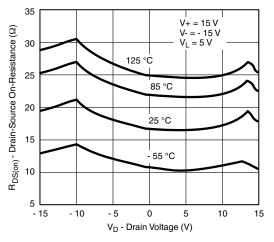
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

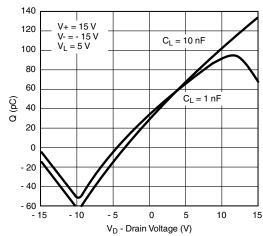
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

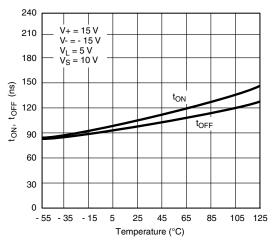

On-Resistance vs. V_D and Power Supply Voltage

On-Resistance vs. V_D and Unipolar Supply Voltage

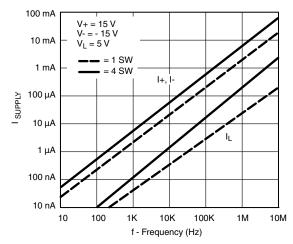

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Leakage Current vs. Analog Voltage

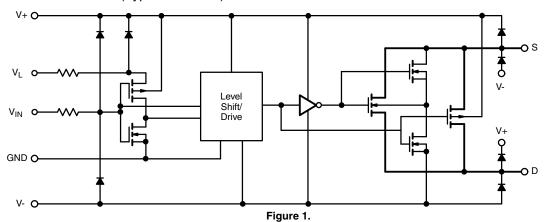

Charge Injection vs. Analog Voltage


Input Switching Threshold vs. Supply Voltage

I_D, I_S Leakages vs. Temperature


Charge Injection vs. Analog Voltage

Switching Time vs. Temperature


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Supply Current vs. Input Switching Frequency

SCHEMATIC DIAGRAM (Typical Channel)

TEST CIRCUITS

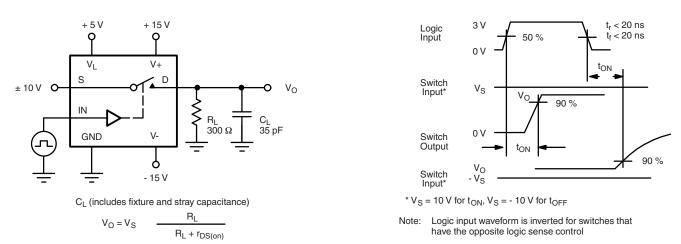
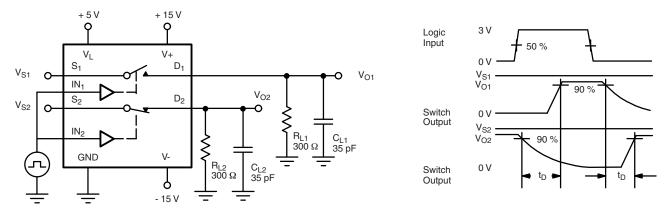



Figure 2. Switching Time

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

Figure 3. Break-Before-Make (DG413)

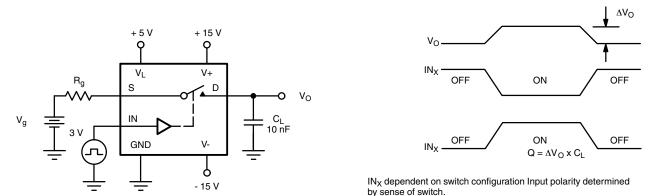


Figure 4. Charge Injection

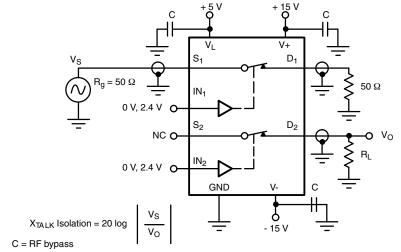


Figure 5. Crosstalk

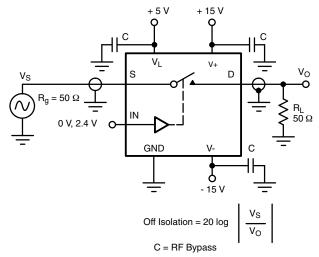


Figure 6. Off Isolation

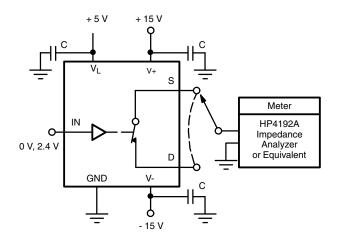


Figure 7. Source/Drain Capacitances

APPLICATIONS

Single Supply Operation:

The DG411, DG412, DG413 can be operated with unipolar supplies from 5 V to 44 V. These devices are characterized and tested for unipolar supply operation at 12 V to facilitate the majority of applications. In single supply operation, V+ is tied to V $_{\rm L}$ and V- is tied to 0 V. See Input Switching Threshold vs. Supply Voltage curve for V $_{\rm L}$ versus input threshold requirments.

Summing Amplifier

When driving a high impedance, high capacitance load such as shown in figure 8, where the inputs to the summing amplifier have some noise filtering, it is necessary to have shunt switches for rapid discharge of the filter capacitor, thus preventing offsets from occurring at the output.

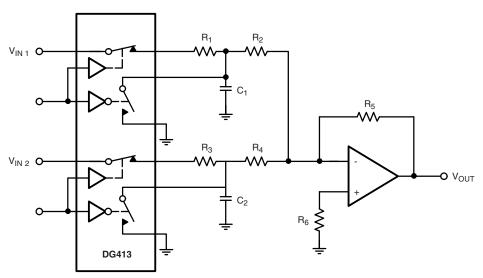
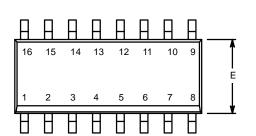
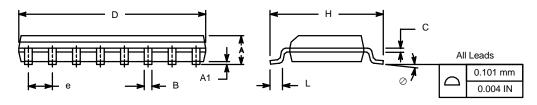



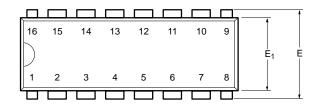
Figure 8. Summing Amplifier

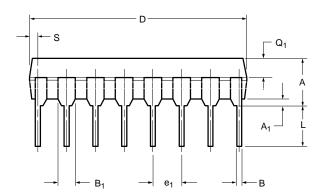
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg270050.

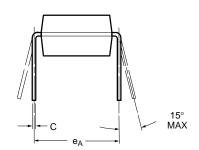

SOIC (NARROW): 16-LEAD
JEDEC Part Number: MS-012

	MILLIM	IETERS	INC	HES	
Dim	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A ₁	0.10	0.20	0.004	0.008	
В	0.38	0.51	0.015	0.020	
С	0.18	0.23	0.007	0.009	
D	9.80	10.00	0.385	0.393	
E	3.80	4.00	0.149	0.157	
е	1.27 BSC 0.050 BSC				
Н	5.80	6.20	0.228	0.244	
L	0.50	0.93	0.020	0.037	
0	0°	8°	0°	8°	
FCN: S-03946—Rev F 09-Jul-01					

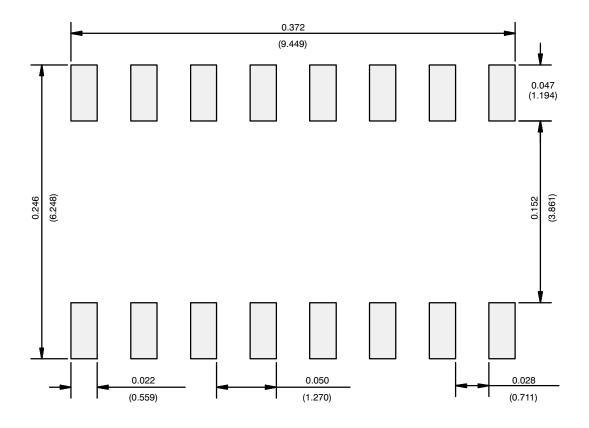
ECN: S-03946—Rev. F, 09-Jul-01


DWG: 5300




Document Number: 71194 www.vishay.com 02-Jul-01 sww.vishay.com

PDIP: 16-LEAD



	MILLIMETERS		INC	HES	
Dim	Min	Max	Min	Max	
Α	3.81	5.08	0.150	0.200	
A ₁	0.38	1.27	0.015	0.050	
В	0.38	0.51	0.015	0.020	
B ₁	0.89	1.65	0.035	0.065	
С	0.20	0.30	0.008	0.012	
D	18.93	21.33	0.745	0.840	
Е	7.62	8.26	0.300	0.325	
E ₁	5.59	7.11	0.220	0.280	
e ₁	2.29	2.79	0.090	0.110	
e _A	7.37	7.87	0.290	0.310	
L	2.79	3.81	0.110	0.150	
Q_1	1.27	2.03	0.050	0.080	
S	0.38	1.52	.015	0.060	
ECN: S-03946—Rev. D, 09-Jul-01 DWG: 5482					

Document Number: 71261 www.vishay.com 06-Jul-01 sum.vishay.com

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED