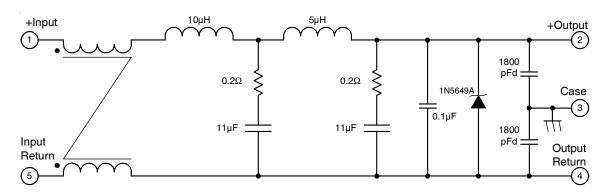
Specifications

Parameter	Condition	Min	Тур	Max	Unit
Input Voltage	Steady State	0	28	40	VDC
Input Current	DC Ripple			4.0 1.0	A A RMS
Input Clamping Voltage	-55°C +25°C +125°C	38.9 42.3 44.9	43.2 47.0 49.9	47.5 51.7 54.8	VDC VDC VDC
Output Voltage 1	Steady State	$V_{OUT} = V_{IN} - I_{IN} (R_{DC})$			VDC
Output Current	Steady State			4.0	А
DC Resistance (R _{DC})	Steady State	0.07	0.10	0.15	Ω
Power Dissipation	Max. DC Current			1.6	W
Noise Reduction	100 KHz to 50 MHz	40			dB
Capacitance	Any pin to case			4200	pF
Isolation	Any pin to case 500VDC	100			MΩ
Operating Temperature Storage Temperature	Case Case	-55 -65		+125 +150	°C °C
Weight				55	g

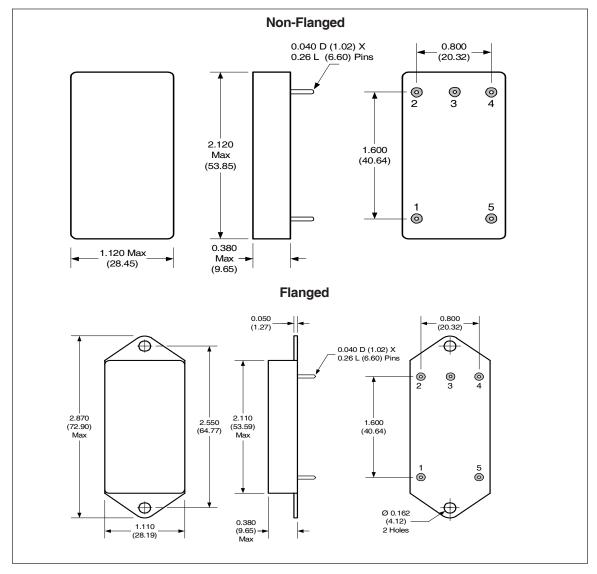

^{1.} Typical Applications result in Vout within 2 % of Vin

Standard Microcircuit Drawing Equivalence Table

Standard Microcircuit	Vendor Cage	IR Standard	
Drawing Number	Code	Part Number	
91020-01HXA	52467	AFC461/CH	
91020-01HZA	52467	AFC461F/CH	

Block Diagram

Refer to page 4 for Pin Designation Table


Device Synchronization

Whenever multiple DC/DC converters are utilized in a single system, significant low frequency noise may be generated due to slight difference in the switching frequencies of the converters (beat frequency noise). Because of the low frequency nature of this noise (typically less than 10KHz), it is difficult to filter out and may interfere with proper operation of sensitive systems (communications, radar or telemetry). International Rectifier offers an option, which provides synchronization of multiple AHE/ATW type converters, thus eliminating this type of noise. To take advantage of this capability, the system designer must assign one of the converters as the master. Then, by definition, the remaining converters become slaves and will operate at the masters' switching frequency. The user should be aware that the synchronization system is fail-safe; that is, the slaves

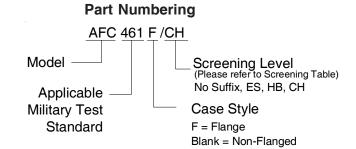
will continue operating should the master frequency be interrupted for any reason. The layout must be such that the synchronization output of the master device is connected to the synchronization input of each slave device. It is advisable to keep this run short to minimize the possibility of radiating the 250KHz switching frequency. A typical connection is illustrated on the cover sheet of this document.

The appropriate converters must be ordered to take advantage of this feature. After selecting the converters required for the system, a 'MSTR' suffix is added for the master converter part number and an 'SLV' suffix is added for slave part number. See Part Number section of the applicable converter data sheets.

Mechanical Outlines

Pin Designation

Pin #	Designation		
1	+ Input		
2	+ Output		
3	Case Ground		
4	Output Return		
5	Input Return		



Device Screening

Requirement	MIL-STD-883 Method	No Suffix	ES ②	НВ	СН
Temperature Range	_	-20°C to +85°C	-55°C to +125°C	-55°C to +125°C	-55°C to +125°C
Element Evaluation	MIL-PRF-38534		N/A	N/A	Class H
Non-Destructive Bond Pull	2023	N/A	N/A	N/A	N/A
Internal Visual	2017	0	Yes	Yes	Yes
Temperature Cycle	1010	N/A	Cond B	Cond C	Cond C
Constant Acceleration	2001, Y1 Axis	N/A	500 Gs	3000 Gs	3000 Gs
PIND	2020	N/A	N/A	N/A	N/A
Burn-In	1015	N/A	48 hrs@hi temp	160 hrs@125°C	160 hrs@125°C
Final Electrical	MIL-PRF-38534	25°C	25°C ②	-55°C, +25°C,	-55°C, +25°C,
(Group A)	& Specification			+125°C	+125°C
PDA	MIL-PRF-38534	N/A	N/A	N/A	10%
Seal, Fine and Gross	1014	Cond A	Cond A, C	Cond A, C	Cond A, C
Radiographic	2012	N/A	N/A	N/A	N/A
External Visual	2009	0	Yes	Yes	Yes

Notes:

- ① Best commercial practice
- ② Sample tests at low and high temperatures

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105 IR SANTA CLARA: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500 Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 09/2006