TABLE OF CONTENTS

realures 1
Applications1
Functional Block Diagram1
General Description1
Product Highlights1
Revision History2
Specifications
Dual Supply
Single Supply5
Absolute Maximum Ratings7
REVISION HISTORY
3/16—Rev. B to Rev. C
Changed LFCSP_VQ to LFCSPThroughout
Changes to Figure 38
Updated Outline Dimensions15
Changes to Ordering Guide15
2/09—Rev. A to Rev. B
Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V
Parameter, Table 1
Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V
Parameter, Table 2
Undated Outline Dimensions 15

ESD Caution	
Pin Configurations and Function Descriptions	8
Truth Table	8
Typical Performance Characteristics	9
Test Circuits	12
Terminology	14
Outline Dimensions	15
Ordering Guide	15

7/06—Rev. 0 to Rev. A

Updated Format	Universal
Changes to Table 1	3
Changes to Table 2	5
Changes to the Terminology Section	14

7/05—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

		Y Version ¹			
D .	2505	-40°C to	-40°C to	l	T . C 1::: /C
Parameter	25°C	+85°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				.,	
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance (R _{ON})	120			Ωtyp	$V_s = \pm 10 \text{ V}$, $I_s = -1 \text{ mA}$; see Figure 21
	190	230	260	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Match Between	3.5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
Channels (ΔR_{ON})	6	10	12	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	20			Ωtyp	$V_S = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}; I_S = -1 \text{ mA}$
	57	72	79	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, I _s (OFF)	±0.02			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 22}$
	±0.1	±0.6	±1	nA max	_
Drain Off Leakage, I _D (OFF)	±0.02			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 22}$
_	±0.1	±0.6	±1	nA max	15
Channel On Leakage, ID, Is (ON)	±0.02	_0.0		nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 23
enamer on Leanage, 15, 13 (OT)	±0.2	±0.6	±1	nA max	V3 V9 =10 V/ see Figure 25
DIGITAL INPUTS	_0.2			TII CITICAL	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{NH}	0.005		0.0	μA typ	$V_{iN} = V_{iNL}$ or V_{iNH}
input current, int or inf	0.005		±0.1	μΑ typ	VIN — VINL OF VINH
Digital Input Capacitance, C _{IN}	2.5		±0.1	pF typ	
DYNAMIC CHARACTERISTICS ²	2.5			рг сур	
Transition Time, t _{TRANS}	120			nc twn	$R_L = 300 \Omega, C_L = 35 pF$
Transition fifte, trans	150	180	200	ns typ	•
+ (ENI)	70	160	200	ns max	$V_S = 10 \text{ V}$; see Figure 24
t _{on} (EN)	-	100	110	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
(5)	85	100	110	ns max	$V_s = 10 \text{ V}$; see Figure 26
t _{OFF} (EN)	90	425	455	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	110	135	155	ns max	$V_s = 10 \text{ V}$; see Figure 26
Break-Before-Make Time Delay, t _D	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			10	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 25
Charge Injection	-0.7			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 27}$
Off Isolation	85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Channel-to-Channel Crosstalk	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
Total Harmonic Distortion + Noise	0.15			% typ	$R_L = 10 \text{ k}\Omega$, 5 V rms, f = 20 Hz to 20 kHz; see Figure 31
Bandwidth –3 dB	800			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
Cs (OFF)	1.2			pF typ	$f = 1 MHz, V_S = 0 V$
	1.5			pF max	$f = 1 MHz, V_S = 0 V$
C _D (OFF)	3.6			pF typ	$f = 1 MHz, V_S = 0 V$
	4.2			pF max	$f = 1 MHz$, $V_S = 0 V$
C_D, C_S (ON)	5.5			pF typ	$f = 1 MHz, V_S = 0 V$
	6.5			pF max	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1.0	μA max	
I_{DD}	170			μA typ	Digital inputs = 5 V
			285	μA max	
I _{SS}	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1.0	μA max	
I _{SS}	0.001			μA typ	Digital inputs = 5 V
			1.0	μA max	

 $^{^1}$ Y version temperature range is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

	Y Version ¹				
		−40°C to	−40°C to		
Parameter	25°C	+85°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{\text{DD}}$	V	
On Resistance (R _{ON})	300			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA};$ see Figure 21
	475	567	625	Ω max	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On Resistance Match Between Channels	5			Ω typ	$V_s = 0 V \text{ to } 10 V, I_s = -1 \text{ mA}$
(ΔR_{ON})	16	26	27	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	60			Ωtyp	$V_S = 3 \text{ V}, 6 \text{ V}, 9 \text{ V}; I_S = -1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}$
Source Off Leakage, Is (OFF)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V};$
	±0.1	±0.6	±1	nA max	see Figure 22
Drain Off Leakage, I _D (OFF)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V};$
	±0.1	±0.6	±1	nA max	see Figure 22
Channel On Leakage, ID, Is (ON)	±0.02			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V}$; see Figure 23
	±0.2	±0.6	±1	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	2.5			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time, t _{TRANS}	150			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	190	240	265	ns max	$V_S = 8 V$; see Figure 24
ton (EN)	95			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	120	150	170	ns max	$V_S = 8 V$; see Figure 26
toff (EN)	100			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	125	155	170	ns max	V _s = 8 V; see Figure 26
Break-Before-Make Time Delay, t _D	50			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
			10	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 25
Charge Injection	-0.4			pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ see Figure 27
Off Isolation	85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Channel-to-Channel Crosstalk	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
Bandwidth –3 db	550			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
C _s (OFF)	1.2			pF typ	$f = 1 \text{ MHz; } V_S = 6 \text{ V}$
	1.5			pF max	$f = 1 \text{ MHz}; V_S = 6 \text{ V}$
C _D (OFF)	3.6			pF typ	$f = 1 \text{ MHz; } V_S = 6 \text{ V}$
	4.2			pF max	$f = 1 \text{ MHz; } V_S = 6 \text{ V}$
C_D , C_S (ON)	5.5			pF typ	$f = 1 \text{ MHz; } V_S = 6 \text{ V}$
	6.5			pF max	$f = 1 \text{ MHz; } V_S = 6 \text{ V}$

	Y Version ¹					
Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments	
POWER REQUIREMENTS					V _{DD} = 13.2 V	
I_{DD}	0.001			μA typ	Digital inputs = 0 V or V _{DD}	
			1.0	μA max		
I _{DD}	170			μA typ	Digital inputs = 5 V	
			285	μA max		

 $^{^1}$ Y version temperature range is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 3.	
Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	−0.3 V to +25 V
V _{ss} to GND	+0.3 V to −25 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA, whichever occurs first
Digital Inputs ¹	GND $- 0.3 \text{ V}$ to $\text{V}_{DD} + 0.3 \text{ V}$ or 30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current	45 mA
Operating Temperature Range	
Automotive (Y Version)	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
14-Lead TSSOP, θ _{JA} Thermal Impedance (4-Layer Board)	112°C/W
12-Lead LFCSP,	80°C/W
θ_{JA} Thermal Impedance	
Reflow Soldering Peak	260°C
Temperature, Pb Free	

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

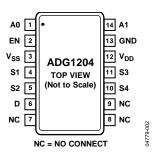
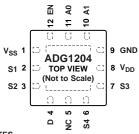



Figure 2. TSSOP Pin Configuration

- NOTES

 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.

 2. THE EXPOSED PAD MUST BE TIED TO SUBSTRATE, V_{SS}.

Figure 3. LFCSP Pin Configuration

Table 4. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	11	A0	Logic Control Input.
2	12	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	1	V_{SS}	Most Negative Power Supply Potential.
4	2	S1	Source Terminal. Can be an input or an output.
5	3	S2	Source Terminal. Can be an input or an output.
6	4	D	Drain Terminal. Can be an input or an output.
7 to 9	5	NC	No Connection.
10	6	S4	Source Terminal. Can be an input or an output.
11	7	S3	Source Terminal. Can be an input or an output.
12	8	V_{DD}	Most Positive Power Supply Potential.
13	9	GND	Ground (0 V) Reference.
14	10	A1	Logic Control Input.

TRUTH TABLE

Table 5.

EN	A1	A0	S1	S2	S3	S4
0	Х	Х	Off	Off	Off	Off
1	0	0	On	Off	Off	Off
1	0	1	Off	On	Off	Off
1	1	0	Off	Off	On	Off
1	1	1	Off	Off	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

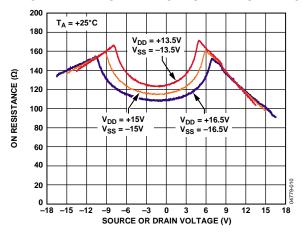


Figure 4. On Resistance as a Function of V_D (V_S), Dual Supply

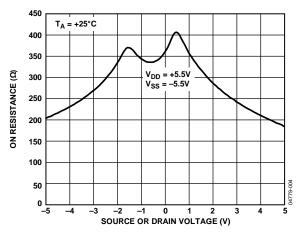


Figure 5. On Resistance as a Function of V_D (V_S), Dual Supply

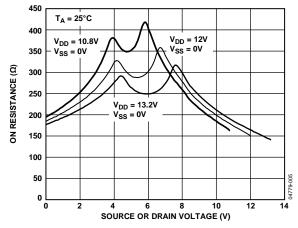


Figure 6. On Resistance as a Function of V_D (V_S), Single Supply

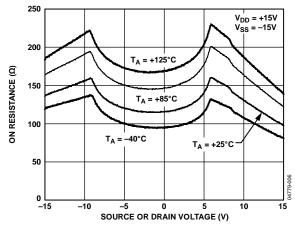


Figure 7. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

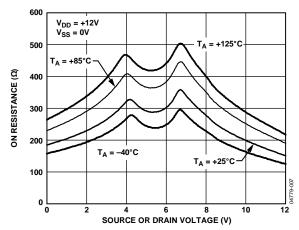


Figure 8. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

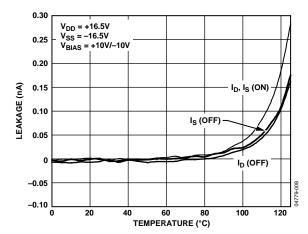


Figure 9. Leakage Currents as a Function of Temperature, Dual Supply

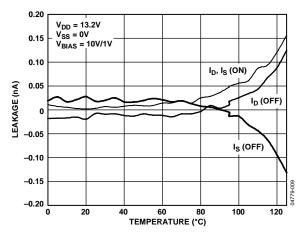


Figure 10. Leakage Currents as a Function of Temperature, Single Supply

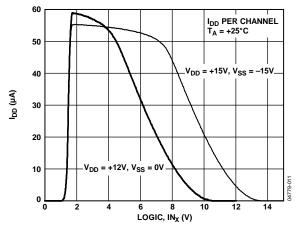


Figure 11. I_{DD} vs. Logic Level

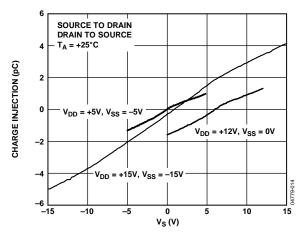


Figure 12. Charge Injection vs. Source Voltage

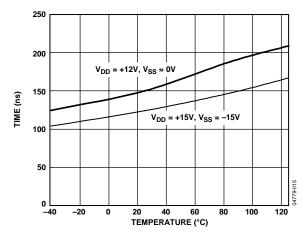


Figure 13. Transition Times vs. Temperature

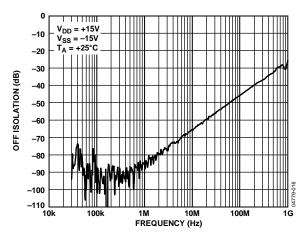


Figure 14. Off Isolation vs. Frequency

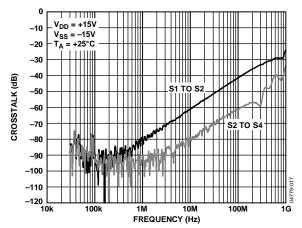


Figure 15. Crosstalk vs. Frequency

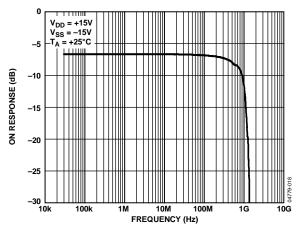


Figure 16. On Response vs. Frequency

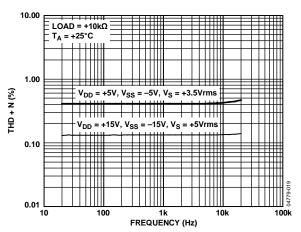


Figure 17. THD + N vs. Frequency

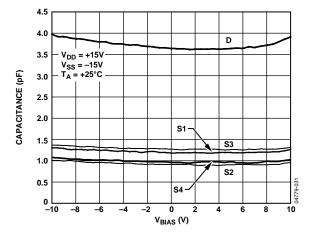


Figure 18. Off Capacitance vs. Source Voltage

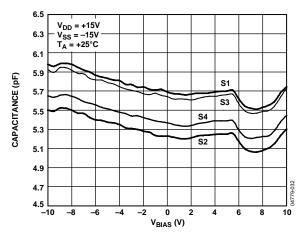


Figure 19. On Capacitance vs. Source Voltage

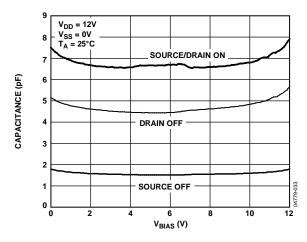


Figure 20. Capacitance vs. Source Voltage, Single Supply

TEST CIRCUITS

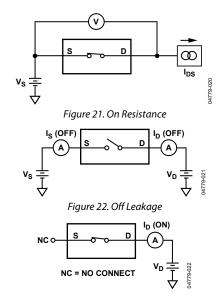


Figure 23. On Leakage

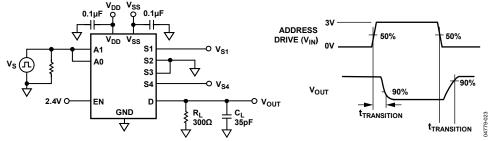


Figure 24. Address to Output Switching Times

Figure 25. Break-Before-Make Time Delay

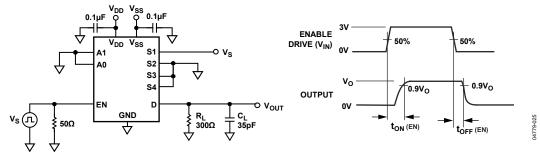


Figure 26. Enable-to-Output Switching Delay

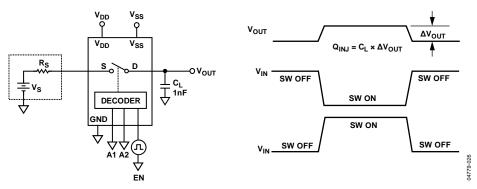


Figure 27. Charge Injection

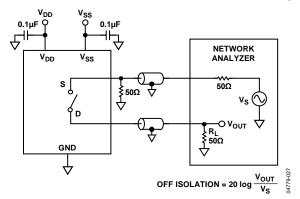


Figure 28. Off Isolation

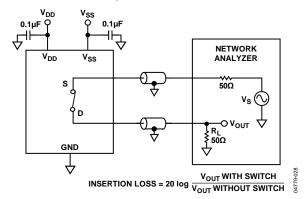


Figure 29. Bandwidth

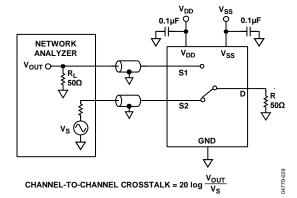


Figure 30. Channel-to-Channel Crosstalk

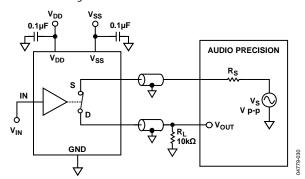


Figure 31. THD + Noise

TERMINOLOGY

 $\mathbf{I}_{ ext{DD}}$

The positive supply current.

Iss

The negative supply current.

 $V_D(V_s)$

The analog voltage on Terminal D and Terminal S.

RON

The ohmic resistance between D and S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (OFF)

The source leakage current with the switch off.

I_D (OFF)

The drain leakage current with the switch off.

 I_D , I_S (ON)

The channel leakage current with the switch on.

 V_{INI}

The maximum input voltage for Logic 0.

 \mathbf{V}_{INH}

The minimum input voltage for Logic 1.

IINL (IINH)

The input current of the digital input.

Cs (OFF)

The off switch source capacitance, which is measured with reference to ground.

CD (OFF

The off switch drain capacitance, which is measured with reference to ground.

C_D , C_S (On)

The on switch capacitance, measured with reference to ground.

 C_{IN}

The digital input capacitance.

ton (EN)

The delay between applying the digital control input and the output switching on.

toff (EN)

The delay between applying the digital control input and the output switching off.

t_{TRANS}

The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by -3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

OUTLINE DIMENSIONS

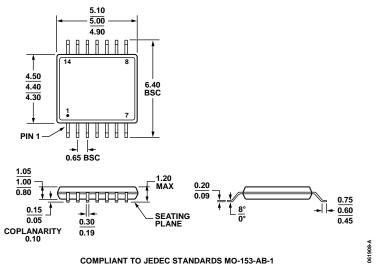


Figure 32. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

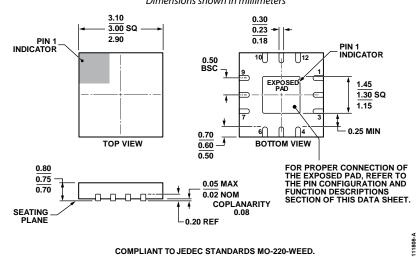


Figure 33. 12-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-12-4) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WEED.

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG1204YRUZ	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1204YRUZ-REEL	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1204YRUZ-REEL7	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1204YCPZ-500RL7	-40°C to +125°C	12-Lead Lead Frame Chip Scale Package [LFCSP]	CP-12-4
ADG1204YCPZ-REEL7	-40°C to +125°C	12-Lead Lead Frame Chip Scale Package [LFCSP]	CP-12-4

¹ Z = RoHS Compliant Part.

NOTES

