Contents VNQ7040AY-E

Contents

1	Bloc	k diagram and pin description7
2	Elec	trical specification
	2.1	Absolute maximum ratings
	2.2	Thermal data 10
	2.3	Electrical characteristics
		2.3.1 General electrical specification
		2.3.2 Bulb mode (default)
	2.4	Electrical characteristics curves - Bulb Mode
		2.4.1 LED Mode (Channel 0 and 1)
	2.5	Electrical characteristics curves - LED mode
		2.5.1 Truth tables
		2.5.2 Immunity to electrical transient disturbances on VCC (ISO 7637-2) 34
3	Prot	ections
	3.1	Power limitation 35
	3.2	Thermal shutdown 35
	3.3	Current limitation
	3.4	Negative voltage clamp
4	Арр	lication information
	4.1	Protection against reverse battery
	4.2	Immunity against transient electrical disturbances
	4.3	MCU I/Os protection
	4.4	Multisense - analog current sense
		4.4.1 Principle of Multisense signal generation
		4.4.2 T _{CASE} and V _{CC} monitor
		4.4.3 Short to VCC and OFF-state open-load detection
	4.5	Maximum demagnetization energy (V _{CC} = 16 V)
5	Pack	kage and PCB thermal data45
	5.1	PowerSSO-36 thermal data

Downloaded from Arrow.com.

6	Pack	kage information
	6.1	ECOPACK [®] 49
	6.2	PowerSSO-36 mechanical data49
	6.3	Packing information
7	Orde	er codes
8	Revi	sion history 53

List of tables VNQ7040AY-E

List of tables

Table 1.	Pin functions	. /
Table 2.	Suggested connections for unused and not connected pins	. 8
Table 3.	Absolute maximum ratings	
Table 4.	Thermal data	10
Table 5.	Power section	11
Table 6.	Logic Inputs (7 V < V _{CC} < 28 V; -40 °C < T _i < 150 °C)	12
Table 7.	Protections (7 V < V _{CC} < 18 V; -40 °C < T _i < 150 °C)	
Table 8.	MultiSense (7 V < V _{CC} < 18 V; -40 °C < T _i < 150 °C)	
Table 9.	Power section in Bulb Mode (7 V < V _{CC} < 28 V; -40 °C < T _i < 150 °C, unless otherwise	
		17
Table 10.	specified)	17
Table 11.	MultiSense in Bulb Mode (7 V < V_{CC} < 18 V; -40 °C < T_i < 150 °C)	18
Table 12.	Switching in LED Mode (V_{CC} = 13 V; -40 °C < T_i < 150 °C, unless otherwise specified)	24
Table 13.	Power section in LED Mode (7 V < V_{CC} < 28 V; -40 °C < T_j < 150 °C, unless otherwise	
	specified)specified)	25
Table 14.	MultiSense in LED Mode (7 V < V_{CC} < 18 V; -40 °C < T_i < 150 °C)	25
Table 15.	Truth table	32
Table 16.	MultiSense multiplexer addressing	32
Table 17.	Bulb/LED Mode Configuration	
Table 18.	Electrical transient requirements (part 1/3)	34
Table 19.	Electrical transient requirements (part 2/3)	34
Table 20.	Electrical transient requirements (part 3/3)	34
Table 21.	ISO 7637-2 - electrical transient conduction along supply line	37
Table 22.	MultiSense pin levels in off-state	42
Table 23.	PCB properties	46
Table 24.	Thermal parameters	
Table 25.	PowerSSO-36 mechanical data	
Table 26.	Device summary	52
Table 27.	Document revision history	53

VNQ7040AY-E List of figures

List of figures

Figure 1.	Block diagram	7
Figure 2.	Configuration diagram (top view)	
Figure 3.	Current and voltage conventions	9
Figure 4.	Bulb Mode - I _{OUT} /I _{SENSE} versus I _{OUT}	
Figure 5.	Bulb Mode - current sense precision vs. I _{OUT}	
Figure 6.	OFF-state output current	
Figure 7.	Standby current	
Figure 8.	I _{GND(ON)} vs. I _{out}	21
Figure 9.	Logic Input high level voltage	
Figure 10.	Logic Input low level voltage	
Figure 11.	High level logic input current	21
Figure 12.	Low level logic input current	
Figure 13.	Logic Input hysteresis voltage	
Figure 14.	FaultRST Input clamp voltage	
Figure 15.	Undervoltage shutdown	
Figure 16.	On-state resistance vs. T _{case}	
Figure 17.	On-state resistance vs. V _{CC}	
Figure 18.	Turn-on voltage slope	
Figure 19.	Turn-off voltage slope	
Figure 20.	Won vs. T _{case}	
Figure 21.	Woff vs. T _{case}	
Figure 22.	I _{LIMH} vs. T _{case}	
Figure 23.	OFF-state open-load voltage detection threshold	
Figure 24.	V _{sense} clamp vs. T _{case}	
Figure 25.	V _{senseh} vs. T _{case}	
Figure 26.	LED Mode - I _{OUT} /I _{SENSE} versus I _{OUT}	
Figure 27.	LED Mode - current sense precision vs. I _{OUT}	
Figure 28.	On-state resistance vs. T _{case}	
Figure 29.	On-state resistance vs. V _{CC}	28
Figure 30.	Turn-on voltage slope	
Figure 31.	Turn-off voltage slope	
Figure 32.	Won vs. T _{case}	
Figure 33.	Woff vs. T _{case}	
Figure 34.	I _{LIMH} vs. T _{case}	
Figure 35.	Switching times and Pulse skew	
Figure 36.	MultiSense timings (current sense mode)	
Figure 37.	Multisense timings (chip temperature and VCC sense mode)	
Figure 38.	T _{DSKON}	
Figure 39.	Application diagram	
Figure 40.	Simplified internal structure	
Figure 41.	Multisense and diagnostic – block diagram	
Figure 42.	Multisense block diagram	
Figure 43.	Analogue HSD – open-load detection in off-state	
Figure 44.	Open-load / short to VCC condition	
Figure 45.	GND voltage shift	
Figure 46.	Maximum turn off current versus inductance	
Figure 47.	PowerSSO-36 PC board	
Figure 48.	Rthj-amb vs PCB copper area in open box free air condition	
5	, , , , , , , , , , , , , , , , , , , ,	_

DocID022412 Rev 8

List of figures VNQ7040AY-E

Figure 49.	Power550-36 thermal impedance junction ambient	47
Figure 50.	Thermal fitting model of a HSD in PowerSSO-36	47
Figure 51.	PowerSSO-36 package dimensions	49
Figure 52.	PowerSSO-36 tube shipment (no suffix)	51
Figure 53.	PowerSSO-36 tape and reel shipment (suffix "TR")	51

1 Block diagram and pin description

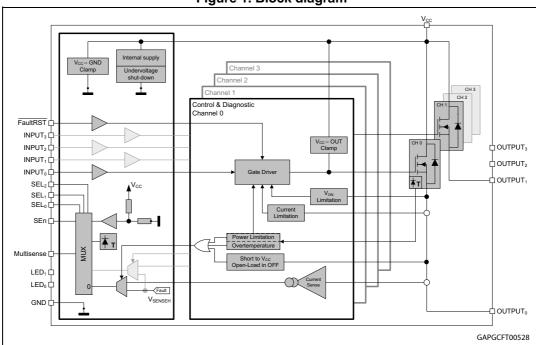


Figure 1. Block diagram

Table 1. Pin functions

Name	Function
V _{CC}	Battery connection.
OUTPUT _{0,1,2,3}	Power output.
GND	Ground connection.
INPUT _{0,1,2,3}	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. They control output switch state.
MultiSense	Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature.
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin
LED _{0,1}	Active high compatible with 3 V and 5 V CMOS outputs pin; they enable the LED mode on logic high level (see <i>Table 15: Truth table</i>).
SEL _{0,1,2}	Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer (see <i>Table 15: Truth table</i>).
FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode.

GAPGCFT01181

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection / pin	MultiSense	N.C.	Output	Input	SEn, SELx, LEDx, FaultRST
Floating	Not allowed	X ⁽¹⁾	Х	Х	X
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 15 kΩ resistor	Through 15 kΩ resistor

1. X: do not care.

57/

2 Electrical specification

Figure 3. Current and voltage conventions

1. $V_{Fn} = V_{OUTn} - V_{CC}$

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Unit **Symbol Parameter** Value V_{CC} 38 DC supply voltage -V_{CC} Reverse DC supply voltage 16 Maximum transient supply voltage (ISO7637-2:2004 Pulse 5b ٧ V_{CCPK} 40 level IV clamped to 40 V; $R_L = 4 \Omega$) Maximum jump start voltage for single pulse short circuit 28 **V_{CCJS}** protection DC reverse ground pin current 200 mΑ -I_{GND} OUTPUT_{0,1,2,3} DC output current Internally limited **I_{OUT}** -I_{OUT_0,1} OUTPUT_{0,1} Reverse DC output current 10 Α OUTPUT_{2.3} Reverse DC output current 10 -I_{OUT_2,3} INPUT_{0,1,2,3} DC input current I_{IN} LED_{0.1} DC input current **ILED** -1 to 10 mΑ SEn DC input current I_{SEn} SEL_{0,1,2} DC input current I_{SEL} FaultRST DC input current -1 to 10 mΑ I_{FR}

Table 3. Absolute maximum ratings

DocID022412 Rev 8

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
V_{FR}	FaultRST DC input voltage	7.5	V
I _{SENSE}	MultiSense pin DC output current ($V_{GND} = V_{CC}$ and $V_{SENSE} < 0 V$)	-10	mA
	MultiSense pin DC output current in reverse (V _{CC} < 0 V)	20	mA
E _{MAX}	Maximum switching energy (single pulse) (T _{DEMAG} = 0.4 ms; T _{jstart} = 150 °C)	36	mJ
V _{ESD}	Electrostatic discharge (JEDEC 22A-114F) - INPUT _{0,1,2,3} - MultiSense - LED _{0,1} , SEn, SEL _{0,1,2} , FaultRST - OUTPUT _{0,1,2,3} - V _{CC}	4000 2000 4000 4000 4000	< < < <
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
T _j	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) ⁽¹⁾⁽²⁾	4.9	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) ⁽¹⁾⁽³⁾	52.5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ⁽¹⁾⁽²⁾	18	

^{1.} One channel ON.

^{2.} Device mounted on four-layers 2s2p PCB

^{3.} Device mounted on two-layers 2s0p PCB with 2 cm² heatsink copper trace

2.3 Electrical characteristics

7 V < V_{CC} < 28 V; -40 °C < T $_{j}$ < 150 °C, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25 °C, unless otherwise specified.

2.3.1 General electrical specification

Table 5. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4	13	28	
V _{USD}	Undervoltage shutdown				4	
V _{USDReset}	Undervoltage shutdown reset				5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.3		
٧.	Clamp voltage	$I_S = 20 \text{ mA}; 25 \text{ °C} < T_j < 150 \text{ °C}$	41	46	52	V
V _{clamp}	Clamp voltage	$I_S = 20 \text{ mA}; T_j = -40 \text{ °C}$	38			V
		$V_{CC} = 13 \text{ V};$ $V_{INx} = V_{OUTx} = V_{FR} = V_{SEn} = 0 \text{ V};$ $V_{SEL0,1,2} = 0 \text{ V}; V_{LED0,1} = 0 \text{ V};$ $T_j = 25 \text{ °C}$			0.5	μА
I _{STBY}	Supply current in standby at $V_{CC} = 13 V^{(1)}$	$ \begin{aligned} & V_{CC} = 13 \text{ V;} \\ & V_{INx} = V_{OUTx} = V_{FR} = V_{SEn} = 0 \text{ V;} \\ & V_{SEL0,1,2} = 0 \text{ V; } V_{LED0,1} = 0 \text{ V;} \\ & T_j = 85 \text{ °C}^{(2)} \end{aligned} $			0.5	μΑ
		$V_{CC} = 13 \text{ V};$ $V_{INx} = V_{OUTx} = V_{FR} = V_{SEn} = 0 \text{ V};$ $V_{SEL0,1,2} = 0 \text{ V}; V_{LED0,1} = 0 \text{ V};$ $T_j = 125 \text{ °C};$			3	μΑ
t _{D_STBY}	Standby mode blanking time	$V_{CC} = 13 \text{ V};$ $V_{INx} = V_{OUTx} = V_{FR} = 0 \text{ V};$ $V_{SEL0,1,2} = 0 \text{ V};$ $V_{LED0,1} = 0 \text{ V};$ $V_{SEn} = 5 \text{ V} \text{ to 0 V}$	60	300	550	μs
I _{S(ON)}	Supply current	V _{CC} = 13 V; V _{SEn} = V _{FR} = V _{SEL0,1} = 0 V; V _{INx} = 5 V; I _{OUT0,1,2,3} = 0 A;		10	16	mA
I _{GND(ON)}	Control stage current consumption in ON state. All channels active.	V _{CC} = 13 V; V _{SEn} = 5 V; V _{FR} = V _{SEL0,1} = 0 V; V _{INX} = 5 V; I _{OUT0,1,2,3} = 2.5 A			18.5	mA
h.c.=	Off-state output current at	$V_{INx} = V_{OUTx} = 0 \text{ V; } V_{CC} = 13 \text{ V;}$ $T_j = 25 \text{ °C}$	0	0.01	0.5	^
I _{L(off)}	$V_{CC} = 13 V^{(1)}$	$V_{INx} = V_{OUTx} = 0 \text{ V; } V_{CC} = 13 \text{ V;}$ $T_j = 125 \text{ °C}$	0		3	μA
V _F	Output - V _{CC} diode voltage ⁽³⁾	I _{OUT} = -2.5 A; T _j = 150 °C			0.7	V

^{1.} PowerMOS leakage included.

DocID022412 Rev 8

- 2. Parameter specified by design; not subject to production test.
- 3. For each channel.

Table 6. Logic Inputs (7 V < V_{CC} < 28 V; -40 °C < T_{j} < 150 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
INPUT _{0,1,2,3}	characteristics	•	1			
V _{IL}	Input low level voltage				0.9	V
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μΑ
V_{IH}	Input high level voltage		2.1			V
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{I(hyst)}	Input hysteresis voltage		0.2			V
V	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V
V_{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
FaultRST ch	naracteristics					
V _{FRL}	Input low level voltage				0.9	V
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{FRH}	Input high level voltage		2.1			V
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μΑ
V _{FR(hyst)}	Input hysteresis voltage		0.2			V
M	Innut alama valtaga	I _{IN} = 1 mA	5.3		7.5	V
V_{FRCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
SEL _{0,1,2} cha	aracteristics (7 V < V _{CC} < 18 V))				
V _{SELL}	Input low level voltage				0.9	V
I _{SELL}	Low level input current	V _{IN} = 0.9 V	1			μΑ
V _{SELH}	Input high level voltage		2.1			V
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V
V	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V
V _{SELCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
LED _{0,1} char	acteristics (7 V < V _{CC} < 18 V)					
V _{LEDL}	Input low level voltage				0.9	V
I _{LEDL}	Low level input current	V _{IN} = 0.9 V	1			μΑ
V _{LEDH}	Input high level voltage		2.1			V
I _{LEDH}	High level input current	V _{IN} = 2.1 V			10	μΑ
V _{LED(hyst)}	Input hysteresis voltage		0.2			V

Table 6. Logic Inputs (7 V < V_{CC} < 28 V; -40 °C < T_i < 150 °C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V	least deservables	I _{IN} = 1 mA	5.3		7.2	V	
V _{LEDCL}	Input clamp voltage	$I_{IN} = -1 \text{ mA}$		-0.7		V	
SEn charact	SEn characteristics (7 V < V _{CC} < 18 V)						
V _{SEnL}	Input low level voltage				0.9	V	
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μA	
V_{SEnH}	Input high level voltage		2.1			V	
I _{SEnH}	High level input current	V _{IN} = 2.1 V			10	μA	
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V	
V	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V	
V _{SEnCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V	

Table 7. Protections (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{TSD}	Shutdown temperature		150	175	200	
T _R	Reset temperature ⁽¹⁾		T _{RS} + 1	T _{RS} + 5		
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} =5 V	135			°C
T _{HYST}	Thermal hysteresis $(T_{TSD}-T_R)^{(1)}$			5		
ΔT_{J_SD}	Dynamic temperature			60		K
t _{LATCH_RST}	Fault reset time for output unlatch ⁽¹⁾	V _{FR} = 5 V to 0 V; V _{SEn} = 5 V; V _{INx} = 5 V; V _{SEL0,1,2} = 0 V	3	10	20	μs
V	Turn-off output voltage	I_{OUT} = 2 A; L = 6 mH; T_j = -40 °C	V _{CC} - 38			V
V _{DEMAG}	clamp	I _{OUT} = 2 A; L = 6 mH; T _j = 25 °C to 150 °C	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	V
V _{ON}	Output voltage drop limitation	I _{OUT} = 0.25 A		20		mV

^{1.} Parameter guaranteed by design and characterization; not subject to production test.

Table 8. MultiSense (7 V < V_{CC} < 18 V; -40 °C < T_i < 150 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	MultiSense clamp	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	V
V _{SENSE_CL}	voltage	V _{SEn} = 0 V; I _{SENSE} = -1 mA		-0.7		V
Current Sense ch	naracteristics					
		MultiSense disabled: V _{SEn} = 0 V;	0		0.5	
		MultiSense disabled: -1 V < V _{SENSE} < 5 V ⁽¹⁾	-0.5		0.5	
I _{SENSE0}	MultiSense leakage current	MultiSense enabled: $V_{SEn} = 5 \text{ V}$ All channels ON; $I_{OUTX} = 0 \text{ A}$; Ch_X diagnostic selected; - E.G. Ch_0 : $V_{IN0} = 5 \text{ V}$; $V_{IN1,2,3} = 5 \text{ V}$; $V_{SEL0,1,2} = 0 \text{ V}$; $I_{OUT0} = 0 \text{ A}$; $I_{OUT1,2,3} = 2.5 \text{ A}$	0		2	μА
		$\begin{split} & \text{MultiSense enabled: V}_{\text{SEn}} = 5 \text{ V} \\ & \text{Ch}_{\text{X}} \text{ OFF; Ch}_{\text{X}} \text{ diagnostic selected:} \\ & - \text{E.G. Ch}_{0}\text{:} \\ & \text{V}_{\text{IN0}} = 0 \text{ V; V}_{\text{IN1,2,3}} = 5 \text{ V;} \\ & \text{V}_{\text{SEL0,1,2}} = 0 \text{ V; I}_{\text{OUT0}} = 0 \text{ A;} \\ & \text{I}_{\text{OUT1,2,3}} = 2.5 \text{ A} \end{split}$	0		2	
V _{OUT_MSD} ⁽¹⁾	Output Voltage for MultiSense shutdown	$V_{SEn} = 5 \text{ V}; R_{SENSE} = 2.7 \text{ k}\Omega$ - E.g. Ch ₀ : $V_{IN0} = 5 \text{ V}; V_{SEL0,1,2} = 0 \text{ V};$ $I_{OUT0} = 2.5 \text{ A}$		5		V
V _{SENSE_SAT}	Multisense saturation voltage	$V_{CC} = 7 \text{ V; } R_{SENSE} = 2.7 \text{ K;}$ $V_{SEn} = 5 \text{ V; } V_{IN0} = 5 \text{ V; } V_{SEL0,1,2} = 0 \text{ V;}$ $I_{OUT0} = 4.5 \text{ A; } T_j = 150^{\circ}\text{C}$	5			٧
I _{SENSE_SAT} (1)	CS saturation current	V _{CC} = 7 V; V _{SENSE} = 4 V; V _{IN0} = 5 V; V _{SEn} = 5 V; V _{SEL0,1,2} = 0 V; T _j = 150°C	4			mA
I _{OUT_SAT_BULB} ⁽¹⁾	Output saturation current in BULB mode	V _{CC} = 7 V; V _{SENSE} = 4 V; V _{IN0} = 5 V; V _{SEn} = 5 V; V _{SEL0,1,2} = 0 V; T _j = 150°C	8			Α
I _{OUT_SAT_LED} (1)	Output saturation current in LED mode	V _{CC} = 7 V; V _{SENSE} = 4 V; V _{IN0} = 5 V; V _{SEn} = 5 V; V _{SEL0,1,2} = 0 V; T _j = 150°C	2.3			Α
OFF-state diagno	estic					
V _{OL}	OFF state open load voltage detection threshold	V _{SEn} = 5V; Ch _X OFF; Ch _X diagnostic selected - E.G: Ch ₀ V _{IN0} = 0 V; V _{SEL0,1,2} = 0 V	2	3	4	V
I _{L(off2)}	OFF state output sink current	$V_{IN} = 0 \text{ V; } V_{OUT} = V_{OL};$ $T_j = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	-100		-15	μA

Table 8. MultiSense (7 V < V_{CC} < 18 V; -40 °C < T_{j} < 150 °C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{DSTKON}	OFF state diagnostic delay time from falling edge of INPUT (see Figure 35)	$\begin{split} &V_{\text{SEn}} = 5 \text{ V; Ch}_{\text{X}} \text{ ON to OFF transition;} \\ &Ch_{\text{X}} \text{ diagnostic selected} \\ &- \text{ E.G: Ch}_{0} \\ &V_{\text{IN0}} = 5 \text{ V to 0 V; V}_{\text{SEL0,1,2}} = 0 \text{ V;} \\ &V_{\text{OUT0}} > 4 \text{ V} \end{split}$	100	350	700	μs		
t _{D_OL_V}	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn	V _{INx} = 0 V; V _{FR} = 0 V; V _{SEL0,1,2} = 0 V; V _{OUT0} = 4 V; V _{SEn} = 0 V to 5 V			60	μs		
t _{D_VOL}	OFF state diagnostic delay time from rising edge of V _{OUT}	$\begin{split} &V_{SEn} = 5\text{V; Ch}_{X} \text{ OFF;} \\ &Ch_{X} \text{ diagnostic selected} \\ &- \text{ E.G: Ch}_{0} \\ &V_{IN0} = 0 \text{ V; } V_{SEL0,1,2} = 0 \text{ V;} \\ &V_{OUT0} = 0 \text{ V to 4 V} \end{split}$		5	30	μs		
Chip temperature analog feedback								
V _{SENSE_TC}		$\begin{aligned} & V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V; } \\ & V_{SEL2} = 5 \text{ V; } R_{SENSE} = 1 \text{ K}\Omega; \\ & V_{INx} = 0 \text{ V; } T_j = -40 ^{\circ}\text{C} \end{aligned}$	2.325	2.41	2.495	V		
	MultiSense output voltage proportional to chip temperature	$\begin{aligned} & V_{\text{SEn}} = 5 \text{ V; } V_{\text{SEL0}} = 0 \text{ V; } V_{\text{SEL1}} = 0 \text{ V; } \\ & V_{\text{SEL2}} = 5 \text{ V; } R_{\text{SENSE}} = 1 \text{ K}\Omega; \\ & V_{\text{INx}} = 0 \text{ V; } T_{\text{j}} = 25^{\circ}\text{C} \end{aligned}$	1.985	2.07	2.155	V		
		$\begin{aligned} & V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V; } \\ & V_{SEL2} = 5 \text{ V; } R_{SENSE} = 1 \text{ K}\Omega; \\ & V_{INx} = 0 \text{ V; } T_j = 125^{\circ}\text{C} \end{aligned}$	1.435	1.52	1.605	V		
dV _{SENSE_TC} /dT ⁽²⁾	Temperature coefficient	$T_j = -40$ °C to 150°C		-5.5		mV/K		
Transfer function		$V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + dV_{SENSE_TC}/dT * (T-T_0)$						
V _{CC} supply voltag	ge analog feedback							
V _{SENSE_VCC}	MultiSense output voltage proportional to V _{CC} supply voltage	$V_{CC} = 13 \text{ V; } V_{SEn} = 5 \text{ V; } V_{SEL0,1,2} = 5 \text{ V; } V_{INx} = 0 \text{ V; } R_{SENSE} = 1 \text{ K}\Omega$	3.16	3.23	3.3	V		
Transfer function ⁽²⁾	2)	V _{SENSE_VCC} = V _{CC} / 4						
Fault diagnostic t	feedback (see <i>Table 15</i>)							
V _{SENSEH}	MultiSense output voltage in fault condition ⁽	$V_{CC} = 13 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega$	5		6.6	V		
I _{SENSEH}	MultiSense output current in fault condition	V _{CC} = 13 V; V _{SENSE} = 5 V	7	20	30	mA		
MultiSense timings (Chip Temperature Sense mode - see Figure 37)								
^t DSENSE3H	V _{SENSE_TC} settling time from rising edge of SEn	$\begin{aligned} &V_{SEn} = 0 \; V \; to \; 5 \; V; \\ &V_{SEL0} = V_{SEL1} = 0 \; V; \; V_{SEL2} = 5 \; V; \\ &R_{SENSE} = 1 \; k \Omega \end{aligned}$			60	μs		

DocID022412 Rev 8

Table 8. MultiSense (7 V < V_{CC} < 18 V; -40 °C < T_{j} < 150 °C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{DSENSE3L}	V _{SENSE_TC} disable delay time from falling edge of SEn	V_{SEn} = 5 V to 0 V; V_{SEL0} = V_{SEL1} = 0 V; V_{SEL2} = 5 V; R_{SENSE} = 1 k Ω			20	μs		
MultiSense timings (V _{CC} Voltage Sense mode - see <i>Figure 37</i>)								
t _{DSENSE4H}	V _{SENSE_VCC} settling time from rising edge of SEn	$V_{SEn} = 0 \text{ V to 5 V};$ $V_{SEL0} = V_{SEL1} = V_{SEL2} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			60	μs		
t _{DSENSE4L}	V _{SENSE_VCC} disable delay time from falling edge of SEn	V_{SEn} = 5 V to 0 V; V_{SEL0} = V_{SEL1} = V_{SEL2} = 5 V; R_{SENSE} = 1 k Ω			20	μs		
MultiSense Timir	ngs (Multiplexer transitio	n times) ⁽³⁾						
t _{D_XtoY}	MultiSense transition delay from Ch _X to Ch _Y	$\begin{aligned} &V_{\text{IN2}} = 5 \text{ V; } V_{\text{IN3}} = 5 \text{ V;} \\ &V_{\text{SEn}} = 5 \text{ V; } V_{\text{SEL0}} = 0 \text{ V to 5 V;} \\ &V_{\text{SEL1}} = 5 \text{ V; } V_{\text{SEL2}} = 0 \text{ V; } I_{\text{OUT2}} = 0 \text{ A;} \\ &I_{\text{OUT3}} = 2.5 \text{ A; } R_{\text{SENSE}} = 1 \text{ k}\Omega \end{aligned}$			20	μs		
t _{D_CStoTC}	MultiSense transition delay from current sense to T _C sense	$V_{IN0} = 5 \text{ V}; V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = V_{SEL2} = 0 \text{ V} \text{ to 5 V}; I_{OUT0} = 1.25 \text{ A}; R_{SENSE} = 1 \text{ k}\Omega$			60	μs		
t _{D_TCto} CS	MultiSense transition delay fromT _C sense to current sense	$V_{IN0} = 5 \text{ V}; V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V};$ $V_{SEL1} = V_{SEL2} = 5 \text{ V} \text{ to } 0 \text{ V};$ $I_{OUT0} = 1.25 \text{ A}; R_{SENSE} = 1 \text{ k}\Omega$			20	μs		
t _{D_CSto} vcc	MultiSense transition delay from current sense to V _{CC} sense	$V_{IN2} = 5 \text{ V}; V_{SEn} = 5 \text{ V}; V_{SEL0} = 5 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{SEL2} = 0 \text{ V to 5 V}; V_{IOUT2} = 1.25 \text{ A}; R_{SENSE} = 1 \text{ k}\Omega$			60	μs		
t _{D_VCCto} CS	MultiSense transition delay from V _{CC} sense to current sense	$V_{IN2} = 5 \text{ V}; V_{SEn} = 5 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{SEL0} = V_{SEL2} = 5 \text{ V} \text{ to 0 V}; I_{OUT2} = 1.25 \text{ A}; R_{SENSE} = 1 \text{ k}\Omega$			20	μs		
t _{D_TCtoVCC}	MultiSense transition delay from T _C sense to V _{CC} sense	$V_{SEn} = 5 \text{ V}; V_{SEL1,2} = 5 \text{ V};$ $V_{SEL0} = 0 \text{ V} \text{ to } 5 \text{ V}; R_{SENSE} = 1 \text{ k}\Omega$			20	μs		
t _{D_VCCtoTC}	MultiSense transition delay from V _{CC} sense to T _C sense	$V_{SEn} = 5 \text{ V}; V_{SEL1,2} = 5 \text{ V};$ $V_{SEL0} = 5 \text{ V} \text{ to } 0 \text{ V}; R_{SENSE} = 1 \text{ k}\Omega$			20	μs		
^t D_CStoVSENSEH	MultiSense transition delay from stable current sense on Ch _X to V _{SENSEH} on Ch _Y	$\begin{aligned} &V_{\text{IN0}} = 5 \text{ V; } V_{\text{IN1}} = 0 \text{ V; } V_{\text{OUT1}} > 4 \text{ V;} \\ &V_{\text{SEn}} = 5 \text{ V; } V_{\text{SEL2}} = 0 \text{ V; } V_{\text{SEL1}} = 0 \text{ V;} \\ &V_{\text{SEL0}} = 0 \text{ V to 5 V; } I_{\text{OUT0}} = 2.5 \text{ A;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega \end{aligned}$			60	μs		

- 1. Parameter guaranteed by design and characterization; not subject to production test.
- 2. V_{CC} sensing and T_{C} sensing are referred to GND potential.
- 3. Transition delay are measured up to +/- 10% of final conditions.

57/

2.3.2 Bulb mode (default)

Table 9. Power section in Bulb Mode (7 V < V_{CC} < 28 V; -40 °C < T_{j} < 150 °C, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	On-state resistance in Bulb Mode Ch0, Ch1, Ch2 and Ch3	$I_{OUT} = 2.5 \text{ A}; T_j = 25^{\circ}\text{C}$		40		
R _{ON_0,1,2,3_BULB}		$I_{OUT} = 2.5 \text{ A}; T_j = 150^{\circ}\text{C}$			80	mΩ
		$I_{OUT} = 2.5 \text{ A}; V_{CC} = 4 \text{ V};$ $T_j = 25^{\circ}\text{C}$			60	
R _{ON_REV_0,1,2,3}	On-state resistance in Reverse Battery Ch0, Ch1, Ch2 and Ch3	$V_{CC} = -13V;$ $I_{OUT} = -2.5A; T_j = 25^{\circ}C$		40		mΩ
(4)	DC short circuit current in Bulb Mode Ch0, Ch1, Ch2 and Ch3	V _{CC} = 13 V	24	34	48	
I _{LIMH_0,1,2,3_BULB} ⁽¹⁾		4 V < V _{CC} < 18 V ⁽²⁾			48	
I _{LIML_0,1,2,3} _BULB	Short circuit current during thermal cycling in Bulb Mode Ch0, Ch1, Ch2 and Ch3	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		9		A
V _{ON_0,1,2,3_BULB}	Output voltage drop limitation in Bulb Mode Ch0, Ch1, Ch2 and Ch3	I _{OUT} = 0.25 A		20		mV

- 1. Parameter guaranteed by an indirect test sequence.
- 2. Parameter guaranteed by design and characterization; not subject to production test.

Table 10. Switching in Bulb Mode (V_{CC} = 13 V; -40 °C < T_j < 150 °C, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
Channel 0, 1, 2 and 3								
t _{d(on)_0,1,2,3} (1)	Turn-on delay time at $T_j = 25$ °C	R _L = 5.2 Ω	10	60	120	ше		
t _{d(off)_0,1,2,3} ⁽¹⁾	Turn-off delay time at $T_j = 25$ °C	$R_L = 5.2 \Omega$	10	50	100	μs		
$(dV_{OUT}/dt)_{on_{0,1,2,3}}$	Turn-on voltage slope at $T_j = 25$ °C	R _L = 5.2 Ω	0.1	0.5	0.7	V/ue		
(dV _{OUT} /dt) _{off_0,1,2,3} ⁽¹⁾	Turn-off voltage slope at $T_j = 25$ °C	R _L = 5.2 Ω	0.1	0.5	0.7	- V/μs		
W _{ON_0,1,2,3}	Switching energy losses at turn-on (t _{won})	R _L = 5.2 Ω	_	0.2	0.52 ⁽²⁾	mJ		

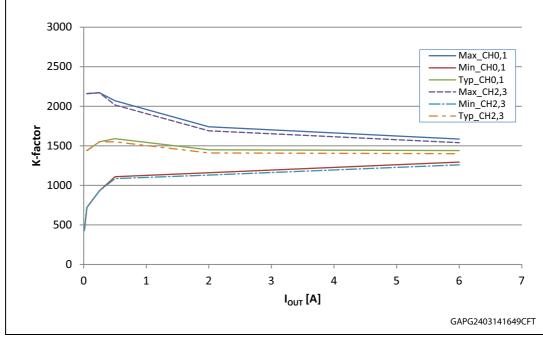
Table 10. Switching in Bulb Mode (V $_{CC}$ = 13 V; -40 °C < T $_{j}$ < 150 °C, unless otherwise specified) (continued)

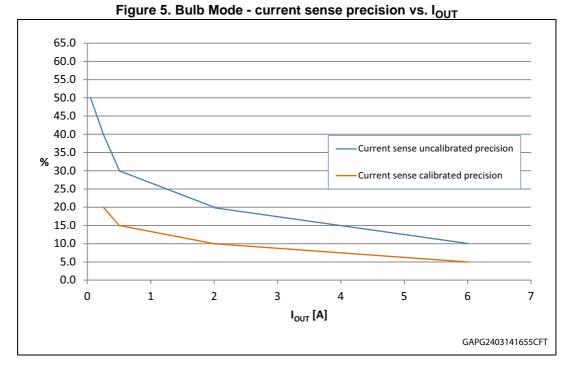
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
W _{OFF_0,1,2,3}	Switching energy losses at turn-off (twoff)	R _L = 5.2 Ω	1	0.2	0.5 ⁽²⁾	mJ
t _{SKEW_0,1,2,3} ⁽¹⁾	Differential pulse skew (t _{PHL} - t _{PLH})	$R_L = 5.2 \Omega$	-65	-15	35	μs

- 1. See Figure 35: Switching times and Pulse skew.
- 2. Parameter guaranteed by design and characterization, not subject to production test.

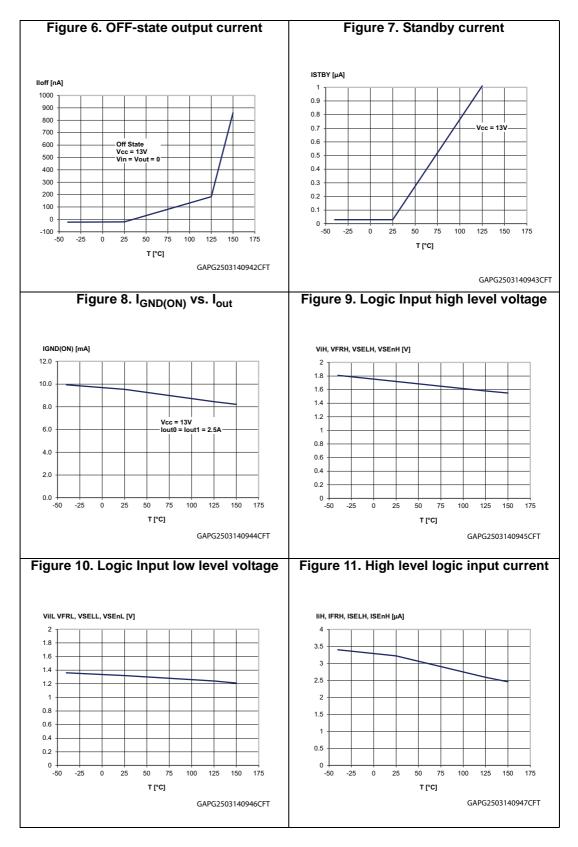
Table 11. MultiSense in Bulb Mode (7 V < V_{CC} < 18 V; -40 °C < T_{j} < 150 °C)

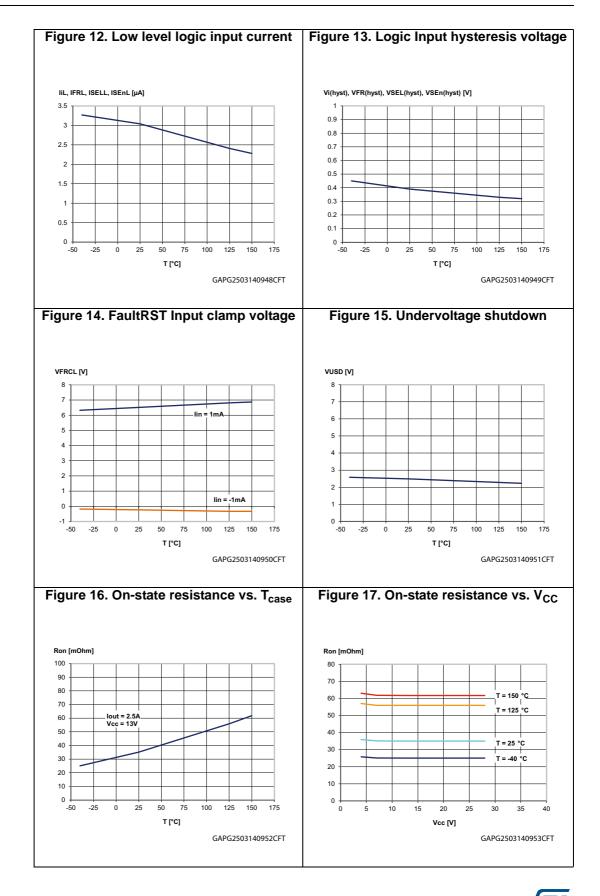
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Current sens	se characteristics					
Channel 0, 1,	2 and 3					
K _{OL_CH0,1_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 10 mA; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	430			
K _{OL_CH2,3_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 10 mA; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	430			
dK _{cal} /K _{cal} ⁽¹⁾⁽²⁾	Current sense ratio drift at calibration point	$I_{CAL} = 30 \text{ mA};$ $I_{OUT} = 10 \text{ mA to } 50 \text{ mA};$ $V_{SENSE} = 0.5 \text{ V; } V_{SEn} = 5 \text{ V}$	-35		35	%
K _{LED_CH0,1_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	720	1440	2160	
K _{LED_CH2,3_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	720	1440	2160	
K _{0_CH0,1_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	930	1550	2170	
K _{0_CH2,3_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	930	1550	2170	
$dK_0/K_0^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-20		20	%
K _{1_CH0,1_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1110	1590	2070	
K _{1_CH2,3_B}	l _{OUT} /l _{SENSE}	I _{OUT} = 0.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1085	1550	2015	
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.5 A; V _{SENSE} = 4V; V _{SEn} = 5 V	-15		15	%
K _{2_CH0,1_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 2 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1160	1450	1740	
K _{2_CH2,3_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 2 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1130	1410	1690	

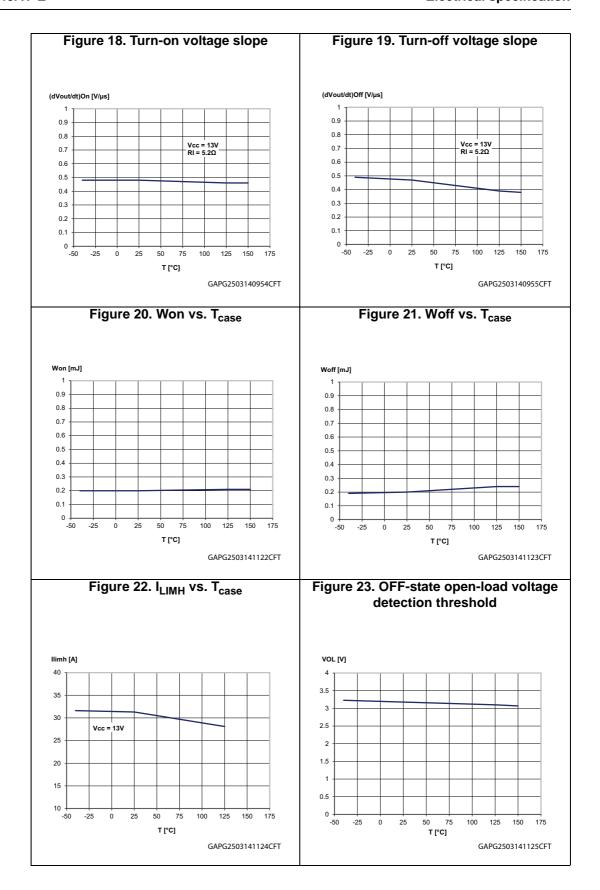

Table 11. MultiSense in Bulb Mode (7 V < V_{CC} < 18 V; -40 °C < T_i < 150 °C) (continued)


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
$dK_2/K_2^{(1)(2)}$	Current sense ratio drift	$I_{OUT} = 2 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{SEn} = 5 \text{ V}$	-10		10	%	
K _{3_CH0,1_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 6 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1295	1440	1585		
K _{3_CH2,3_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 6 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1260	1400	1540		
$dK_3/K_3^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 6 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-5		5	%	
MultiSense timings (Current Sense mode see Figure 36)							
Channel 0, 1,	2 and 3						
t _{DSENSE1H}	Current sense settling time from rising edge of SEn	$V_{IN} = 5 \text{ V}; V_{SEn} = 0 \text{ V to}$ 5 V; $R_{SENSE} = 1 \text{ k}\Omega; R_L = 5.2 \Omega$			60	μs	
t _{DSENSE1L}	Current sense disable delay time from falling edge of SEn	V_{SEn} = 5 V to 0 V; R_{SENSE} = 1 kΩ; R_L = 5.2 Ω		5	20	μs	
t _{DSENSE2H}	Current sense settling time from rising edge of INPUT	$\begin{aligned} &V_{\text{IN}} = 0 \text{ V to 5 V;} \\ &V_{\text{SEn}} = 5 \text{ V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega; \text{ R}_{\text{L}} = 5.2 \Omega \end{aligned}$		100	250	μs	
Δt _{DSENSE2} H	Current sense settling time from rising edge of I _{OUT} (dynamic response to a step change of I _{OUT})	V_{IN} = 5 V; V_{SEn} = 5 V; R_{SENSE} = 1 kΩ; R_L = 5.2 Ω			100	μs	
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	V_{IN} = 5 V to 0 V; V_{SEn} = 5 V; R_{SENSE} = 1 k Ω ; R_L = 5.2 Ω		50	250	μs	

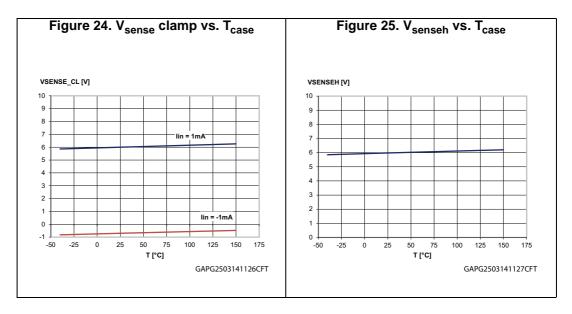
^{1.} Parameter specified by design; not subject to production test.


^{2.} All values refer to V_{CC} = 13 V; T_j = 25 °C, unless otherwise specified.




2.4 Electrical characteristics curves - Bulb Mode

57/


DocID022412 Rev 8

577

DocID022412 Rev 8

2.4.1 LED Mode (Channel 0 and 1)

Table 12. Switching in LED Mode (V_{CC} = 13 V; -40 °C < T_j < 150 °C, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)_0,1_LED} ⁽¹⁾	Turn-on delay time at T _j = 25 °C	$R_L = 22.8 \Omega$	10	65	120	116	
t _{d(off)_0,1_LED} ⁽¹⁾	Turn-off delay time at T _j = 25 °C	$R_L = 22.8 \Omega$	10	40	100	μs	
	Turn-on voltage slope at $T_j = 25 ^{\circ}\text{C}$	$R_L = 22.8 \Omega$	0.2	0.5	0.8	V/µs	
(dV _{OUT} /dt) _{off_0,1_LED} ⁽¹⁾	Turn-off voltage slope at T _j = 25 °C	R _L = 22.8 Ω	0.1	0.5	0.7	V/μS	
W _{ON_0,1_LED}	Switching energy losses at turn-on (t _{won})	$R_L = 22.8 \Omega$	_	0.04	0.1 ⁽²⁾	mJ	
W _{OFF_0,1_LED}	Switching energy losses at turn-off (t _{woff})	$R_L = 22.8 \Omega$	_	0.045	0.11 ⁽²⁾	mJ	
t _{SKEW_0,1_LED} (1)	Differential Pulse skew (t _{PHL} - t _{PLH})	$R_L = 22.8 \Omega$	-75	-25	25	μs	

^{1.} See Figure 35: Switching times and Pulse skew.

57

^{2.} Parameter guaranteed by design and characterization, not subject to production test.

Table 13. Power section in LED Mode (7 V < V_{CC} < 28 V; -40 °C < T_{j} < 150 °C, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	On-state resistance in LED Mode Ch0 and Ch1	$I_{OUT} = 0.57 \text{ A}; T_j = 25^{\circ}\text{C}$		140		
R _{ON_0,1_LED}		I _{OUT} = 0.57 A; T _j = 150°C			280	mΩ
		$I_{OUT} = 0.57 \text{ A}; V_{CC} = 5 \text{ V};$ $T_j = 25^{\circ}\text{C}$			210	
I _{LIMH_0,1_LED} ⁽¹⁾	DC short circuit current in Bulb Mode Ch0 and Ch1	V _{CC} = 13 V	5.5	8	44	
		4 V < V _{CC} < 18 V ⁽²⁾			11	
I _{LIML_0,1_} LED	Short circuit current during thermal cycling in Bulb Mode Ch0 and Ch1	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		2		Α
V _{ON_0,1_LED}	Output voltage drop limitation in LED Mode Ch0 and Ch1	I _{OUT} = 0.07 A		20		mV

- 1. Parameter guaranteed by an indirect test sequence.
- 2. Parameter guaranteed by design and characterization; not subject to production test.

Table 14. MultiSense in LED Mode (7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
K _{OL}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.01 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	120				
dK _{cal} /K _{cal} ⁽¹⁾⁽²⁾	Current sense ratio drift at calibration point	I_{cal} = 17.5 mA; I_{OUT} = 10 mA to 25 mA; V_{SENSE} = 0.5 V; V_{SEn} = 5 V	-30		30	%	
K _{LED}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.025 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	150	380	610		
$dK_{LED}/K_{LED}^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 0.025 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-25		25	%	
K _{0_CH0,1_L}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.15 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	240	405	570		
$dK_0/K_0^{(1)(2)}$	Current sense ratio drift	$I_{OUT} = 0.15 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{SEn} = 5 \text{ V}$	-15		15	%	
K _{1_CH0,1_L}	I _{OUT} /I _{SENSE}	$I_{OUT} = 0.7 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{SEn} = 5 \text{ V}$	300	380	460		
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	$I_{OUT} = 0.7 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{SEn} = 5 \text{ V}$	-8		8	%	
MultiSense timings (Current Sense mode - see Figure 36)							
^t DSENSE1H	Current sense settling time from rising edge of SEn	$\begin{aligned} &V_{\text{IN}} = 5 \text{ V;} \\ &V_{\text{SEn}} = 0 \text{ V to 5 V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega; \text{ R}_{\text{L}} = 22.8 \Omega \end{aligned}$			60	μs	

DocID022412 Rev 8

Table 14. MultiSense in LED Mode (7 V < V_{CC} < 18 V; -40 °C < T_{j} < 150 °C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{DSENSE1L}	Current sense disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to } 0 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega; R_L = 22.8 \Omega$		5	20	μs
t _{DSENSE2H}	Current sense settling time from rising edge of INPUT	V_{IN} = 0 V to 5 V; V_{SEn} = 5 V; R_{SENSE} = 1 k Ω ; R_L = 22.8 Ω			250	μs
Δt _{DSENSE2} H	Current sense settling time from rising edge of I _{OUT} (dynamic response to a step change of I _{OUT})	V_{IN} = 5 V; V_{SEn} = 5 V; R_{SENSE} = 1 kΩ; R_L = 22.8 Ω			100	μs
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	V_{IN} = 5 V to 0 V; V_{SEn} = 5 V; R_{SENSE} = 1 k Ω ; R_L = 22.8 Ω		50	250	μs

- 1. Parameter specified by design; not subject to production test.
- 2. All values refer to V_{CC} = 13 V; T_j = 25 °C, unless otherwise specified.

Figure 26. LED Mode - I_{OUT}/I_{SENSE} versus I_{OUT} 800 -Max_CH0,1 700 -Min_CH0,1 600 Typ_CH0,1 500 K-factor 000 300 200 100 0 0.2 0.4 0.6 0.8 I_{OUT} [A] GAPG2503140854CFT

577

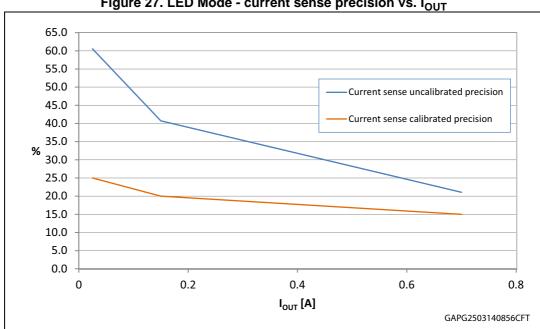
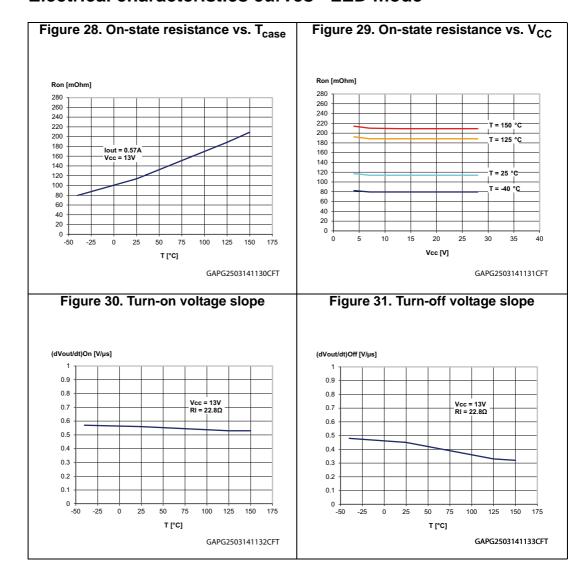
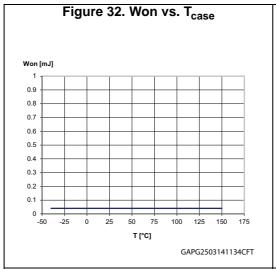




Figure 27. LED Mode - current sense precision vs. I_{OUT}

2.5 Electrical characteristics curves - LED mode

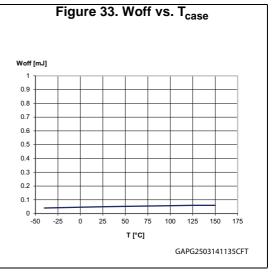
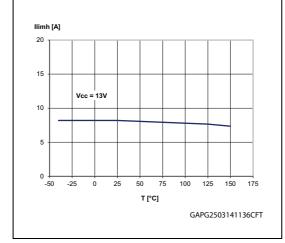



Figure 34. I_{LIMH} vs. T_{case}

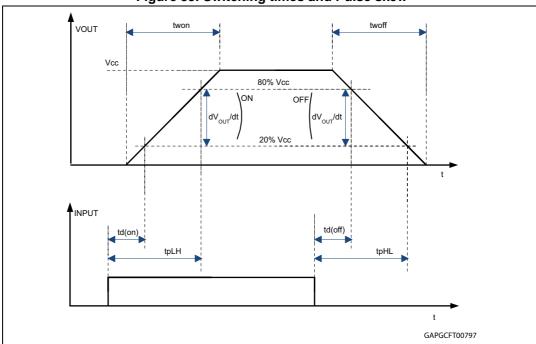
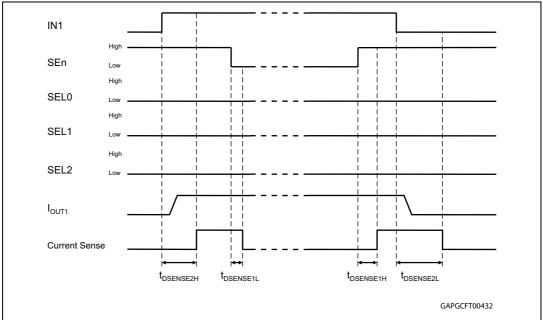



Figure 35. Switching times and Pulse skew

57

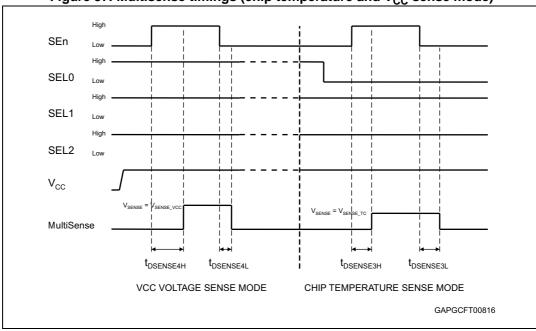
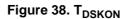
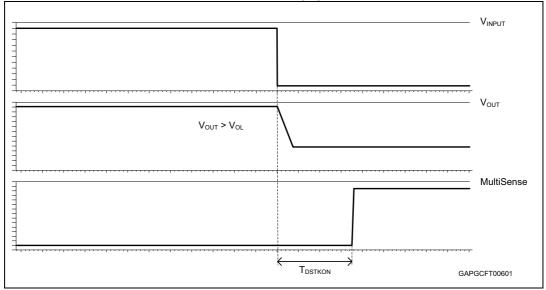




Figure 37. Multisense timings (chip temperature and V_{CC} sense mode)

2.5.1 Truth tables

Table 15. Truth table

Mode	Conditions	IN _X	FR	SEn	SEL _X	OUT _X	MultiSense	Comments
Standby	All logic inputs low	L	L	L	L	L	Hi-Z	Low quiescent current consumption
		L	Χ		l.	L		
Normal	Nominal load connected;	Н	L	Refer to		Н	Refer to Table 16	Outputs configured for auto-restart
	T _j < 150°C	Н	Н			Н	74510 70	Outputs configured for Latch-off
	Overload or short to GND causing: $T_{j} > T_{TSD} \text{ or } \Delta T_{j} > \Delta T_{j_SD}$	L	Χ			L		
Overload		H L			er to le 16	Н	Refer to Table 16	Output cycles with temperature hysteresis
		Н	Н			L		Output latches-off
Under-voltage	V _{CC} < V _{USD} (falling)	Х	Х	Х	Х	L L	Hi-Z Hi-Z	Re-start when V _{CC} > V _{USD} + V _{USDhyst} (rising)
OFF-state	Short to V _{CC}		Χ	Refer to		Н	Refer to	
diagnostics	Open load	L	Χ	Table 16		Н	Table 16	External pull-up
Negative output voltage	Inductive loads turn off	L	Х		er to le 16	< 0V	Refer to Table 16	

Table 16. MultiSense multiplexer addressing

				MUX	MultiSense output				
SEn	SEL ₂	SEL ₁	SEL ₀	channel	Normal mode	Overload	OFF-state diag. ⁽¹⁾	Negative output	
L	Х	Х	Х		Hi-Z				
Н	L	L	L	Channel 0 diagnostic	I _{SENSE} = 1/K * I _{OUT0}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z	
Н	L	L	Н	Channel 1 diagnostic	I _{SENSE} = 1/K * I _{OUT1}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z	
Н	L	Н	L	Channel 2 diagnostic	I _{SENSE} = V _{SENSE} = V _{SENSE} = V _{SENSEH}		V _{SENSE} = V _{SENSEH}	Hi-Z	
Н	L	Н	Н	Channel 3 diagnostic	I _{SENSE} = 1/K * I _{OUT3}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z	
Н	Н	L	L	T _{CHIP} Sense	V _{SENSE} = V _{SENSE_TC}				
Н	Н	L	Н	V _{CC} Sense	V _{SENSE} = V _{SENSE_VCC}				

 $\overline{\mathbf{A}}$

Table 16. MultiSense multiplexer addressing (continued)

				MUX	MultiSense output			
SEn	SEL ₂	SEL ₁	SEL ₀	channel	Normal mode	Overload	OFF-state diag. ⁽¹⁾	Negative output
Н	Н	Н	L	T _{CHIP} Sense	V _{SENSE} = V _{SENSE_TC}			
Н	Н	Н	Н	V _{CC} Sense	V _{SENSE} = V _{SENSE_VCC}			

In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN₀ = 0; OUT₀ = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0
 Example 2: FR = 1; IN₀ = 0; OUT₀ = latched, V_{OUT0} > V_{OL}; MUX channel = channel 0 diagnostic; Mutisense = V_{SENSEH}

Table 17. Bulb/LED Mode Configuration

LED ₁	LED ₀	Config	guration			
LLD ₁		Channel 1	Channel 0			
L	L	Bulb	Bulb			
L	Н	Bulb	LED			
Н	L	LED	Bulb			
Н	Н	LED	LED			

DocID022412 Rev 8

Immunity to electrical transient disturbances on V_{CC} (ISO 7637-2) 2.5.2

Table 18. Electrical transient requirements (part 1/3)

ISO 7637-2: 2004(E)	Test le	vels ⁽¹⁾	Number of pulses or	-	cle / pulse ion time	Delays and Impedance	
test pulse	III	IV	test times	Min.	Max.	impedance	
1	-75V	-100V	5000 pulses	0.5s	5s	2 ms, 10Ω	
2a	+37V	+50V	5000 pulses	0.2s	5s	50μs, 2Ω	
3a	-100V	-150V	1h	90ms	100ms	0.1μs, 50Ω	
3b	+75V	+100V	1h	90ms	100ms	0.1μs, 50Ω	
4	-6V	-7V	1 pulse			100ms, 0.01Ω	
5b ⁽²⁾	+65V	+87V	1 pulse			400ms, 2Ω	

- 1. The above test levels must be considered referred to V_{CC} = 13.5V except for pulse 5b.
- 2. Valid in case of external load dump clamp: 40V maximum referred to ground.

Table 19. Electrical transient requirements (part 2/3)

ISO 7637-2: 2004E	Test level results						
test pulse	III	VI					
1	С	С					
2a	С	С					
3a	С	С					
3b	С	С					
4	С	С					
5b ⁽¹⁾	С	С					

^{1.} Valid in case of external load dump clamp: 40V maximum referred to ground.

Table 20. Electrical transient requirements (part 3/3)

Class	Contents
С	All functions of the device performed as designed after exposure to disturbance.
E	One or more functions of the device did not perform as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

VNQ7040AY-E Protections

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (see *Table 7*, FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH}, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG} (see *Table 7*), allowing the inductor energy to be dissipated without damaging the device.

4 Application information

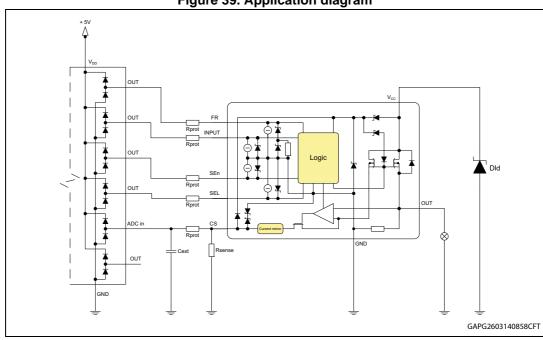


Figure 39. Application diagram

4.1 Protection against reverse battery

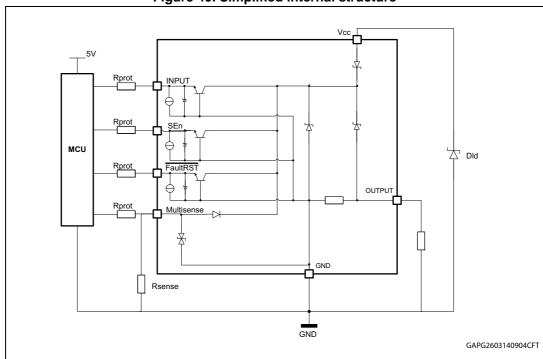


Figure 40. Simplified internal structure

57

The device does not need any external components to protect the internal logic in case of a reverse battery condition. The protection is provided by internal structures.

In addition, due to the fact that the output MOSFET turns on even in reverse battery mode, thus providing the same low ohmic path as in regular operating conditions, no additional power dissipation has to be considered.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 21*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through $V_{\rm CC}$ and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Test Pulse 2011(E)	Test pulse severity level with Status II functional performance status		Minimum number of pulses or test time	_	ele / pulse on time	Pulse duration and pulse generator internal impedance	
	Level	U _S ⁽¹⁾	time	min max			
1	III	-112V	500 pulses	0,5 s		2ms, 10Ω	
2a	III	+55V	500 pulses	0,2 s	5 s	50μs, 2Ω	
3a	IV	-220V	1h	90 ms	100 ms	0.1μs, 50Ω	
3b	IV	+150V	1h	90 ms	100 ms	0.1μs, 50Ω	
4 ⁽²⁾	IV	-7V	1 pulse			100ms, 0.01Ω	
Load dun	Load dump according to ISO 16750-2:2010						
Test B ⁽³⁾		40V	5 pulse	1 min		400ms, 2Ω	

Table 21, ISO 7637-2 - electrical transient conduction along supply line

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs.

DocID022412 Rev 8

^{1.} U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

^{2.} Test pulse from ISO 7637-2:2004(E).

^{3.} With 40 V external suppressor referred to ground (-40°C < T_j < 150°C).

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation 1

$$V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$$

Calculation example:

For
$$V_{CCpeak} = -150 \text{ V}$$
; $I_{latchup} \ge 20 \text{mA}$; $V_{OH\mu C} \ge 4.5 \text{V}$

$$7.5 \ k\Omega \leq R_{prot} \leq 140 \ k\Omega.$$

Recommended values: $R_{prot} = 15 \text{ k}\Omega$

4.4 Multisense - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (Multisense) delivering the following signals:

- Current monitor: current mirror of channel output current
- V_{CC} monitor: voltage propotional to V_{CC}
- T_{CASE}: voltage propotional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in *Table 16*.

38/55 DocID022412 Rev 8

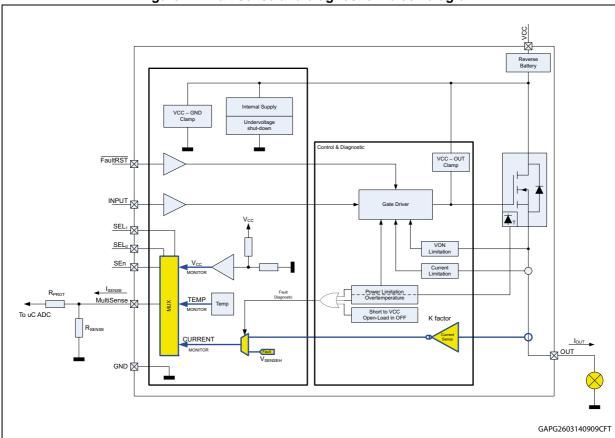


Figure 41. Multisense and diagnostic – block diagram

4.4.1 Principle of Multisense signal generation

Visat Monitor

Temperature monitor

Temperature monitor

Resort

Resor

Figure 42. Multisense block diagram

Current monitor

When current mode is selected in the Multisense, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, I_{SENSE} , can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE} , allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by Multisense output: I_{SENSE} = I_{OUT}/K

57

40/55 DocID022412 Rev 8

Voltage on R_{SENSE}: V_{SENSE} = R_{SENSE} · I_{SENSE} = R_{SENSE} · I_{OUT}/K

Where:

- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- I_{SENSE} is current provided from Multisense pin in current output mode
- I_{OUT} is current flowing through output
- K factor represent the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the Multisense pin which is switched to a "current limited" voltage source, V_{SENSEH} (see *Table 8*).

In any case, the current sourced by the Multisense in this condition is limited to I_{SENSEH} (see *Table 8*).

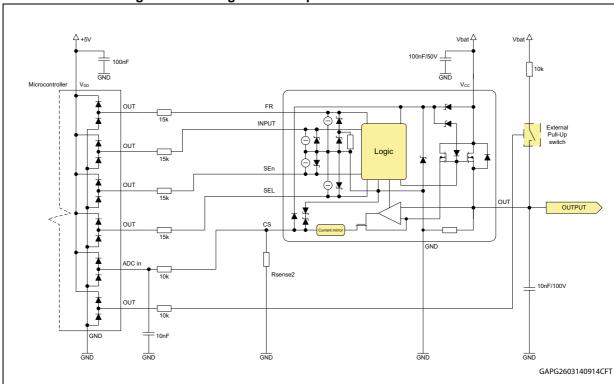


Figure 43. Analogue HSD – open-load detection in off-state

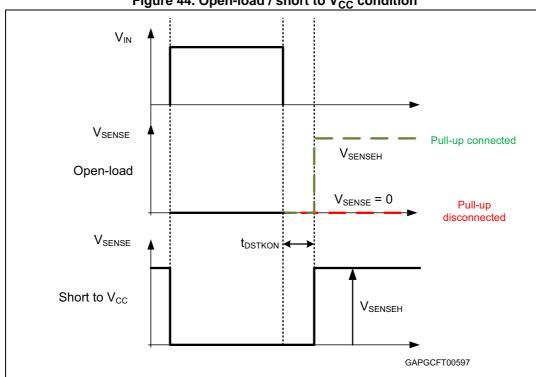


Figure 44. Open-load / short to $V_{\mbox{\scriptsize CC}}$ condition

Table 22. MultiSense pin levels in off-state

Condition	Output	MultiSense	SEn
	V _{OUT} > V _{OL}	Hi-Z	L
Open-load		V_{SENSEH}	Н
	V _{OUT} < V _{OL}	Hi-Z	L
		0	Н
Short to V _{CC}	V _{OUT} > V _{OL}	Hi-Z	L
		V _{SENSEH}	Н
Nominal	V _{OUT} < V _{OL}	Hi-Z	L
		0	Н

4.4.2 T_{CASE} and V_{CC} monitor

In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because of a voltage shift is generated between device GND and the microcontroller input GND reference.

Figure 45 shows link between V_{MEASURED} and real V_{SENSE} signal.

42/55 DocID022412 Rev 8

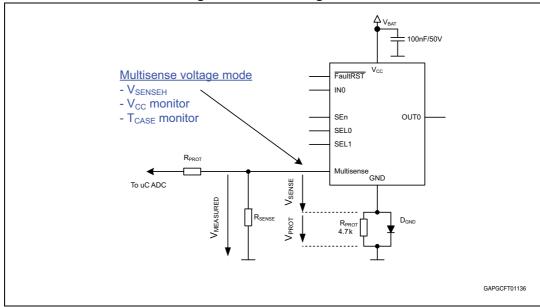


Figure 45. GND voltage shift

V_{CC} monitor

Battery monitoring channel provides V_{SENSE} = V_{CC} / 4.

Case temperature monitor

Case temperature monitor is capable to provide information about actual device temperature. Since diode is used for temperature sensing, following equation describe link between temperature and output V_{SENSE} level:

 $V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + dV_{SENSE_TC} / dT * (T - T_0)$

where $dV_{SENSE-TC}$ / $dT \sim typically -5.5$ mV/K (for temperature range (-40°C to +150°C).

4.4.3 Short to V_{CC} and OFF-state open-load detection

Short to V_{CC}

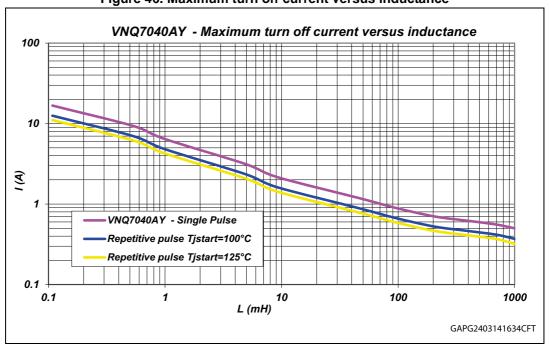
A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with to following equation:

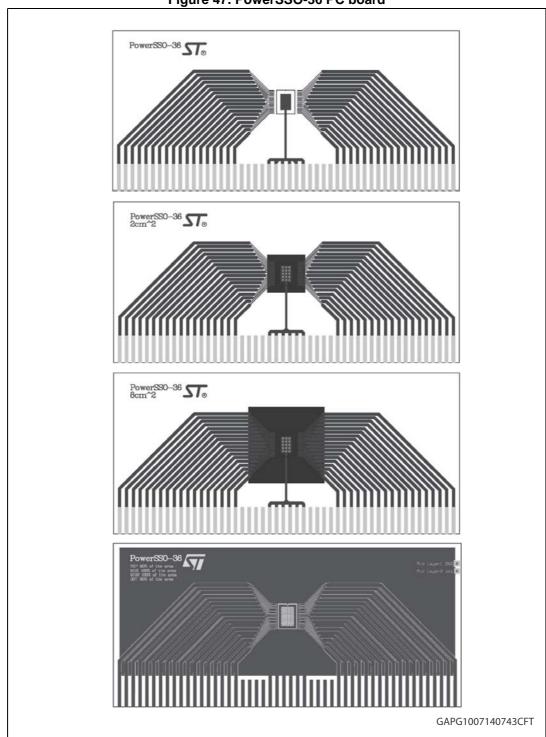

DocID022412 Rev 8

Equation 2

$$R_{PU} < \frac{V_{PU} - 4}{I_{L(off2)min @ 4V}}$$

4.5 Maximum demagnetization energy ($V_{cc} = 16 \text{ V}$)

Figure 46. Maximum turn off current versus inductance

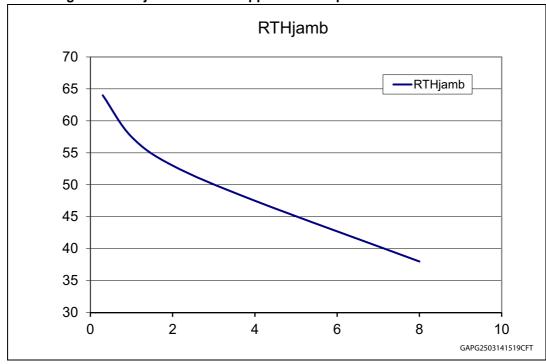


Downloaded from Arrow.com.

5 Package and PCB thermal data

5.1 PowerSSO-36 thermal data

Figure 47. PowerSSO-36 PC board



DocID022412 Rev 8

Table 23. PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	129 mm x 60 mm
Board Material	FR4
Cu thickness (outer layers)	0.070 mm
Cu thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Cu thickness on vias	0.025 mm
Footprint dimension	4.1 mm x 6.5 mm

Figure 48. Rthj-amb vs PCB copper area in open box free air condition

577

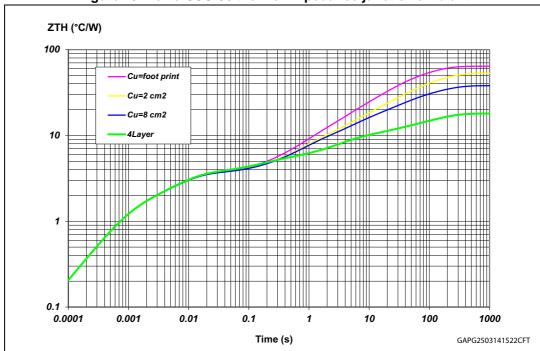


Figure 49. PowerSSO-36 thermal impedance junction ambient

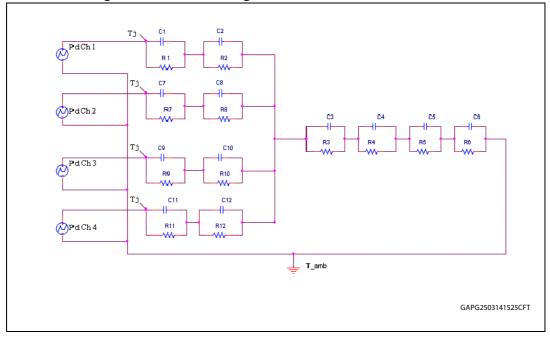


Table 24. Thermal parameters

Area/island (cm ²)	FP	2	8	4L
R1 = R7 = R9 = R11 (°C/W)	1.2			
R2 = R8 = R10 = R12 (°C/W)	2.3			
R3 (°C/W)	3.5	3.5	3.5	3.5
R4 (°C/W)	7	6	6	4
R5 (°C/W)	20	14	10	2
R6 (°C/W)	30	26	15	7
C1 = C7 = C9 = C11 (W·s/°C)	0.0006			
C2 = C8 = C10 = C12 (W·s/°C)	0.003			
C3 (W·s/°C)	0.02	0.02	0.02	0.01
C4 (W·s/°C)	0.5	0.8	0.8	0.8
C5 (W·s/°C)	1	2	3	10
C6 (W·s/°C)	3	5	9	18

VNQ7040AY-E Package information

6 Package information

6.1 ECOPACK®

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

6.2 PowerSSO-36 mechanical data

Figure 51. PowerSSO-36 package dimensions

| Complete |

Package information VNQ7040AY-E

Table 25. PowerSSO-36 mechanical data

Symbol	millimeters			
	Min	Тур	Max	
А	2.15	-	2.45	
A2	2.15	-	2.35	
a1	0	-	0.1	
b	0.18	-	0.36	
С	0.23	-	0.32	
D	10.10	-	10.50	
E	7.4	-	7.6	
е	-	0.5	-	
e3	-	8.5	-	
F	-	2.3	-	
G	-	-	0.1	
Н	10.1	-	10.5	
h	-	-	0.4	
k	0°	-	8°	
L	0.55	-	0.85	
М	-	4.3	-	
N	-	-	10°	
0	-	1.2		
Q	-	0.8	-	
S	-	2.9	-	
Т	-	3.65	-	
U	-	1.0	-	
X ⁽¹⁾	4.3	-	5.2	
Y ⁽¹⁾	6.9	-	7.5	

^{1.} Corresponding to internal variation C.

577

VNQ7040AY-E Package information

6.3 Packing information

Figure 52. PowerSSO-36 tube shipment (no suffix)

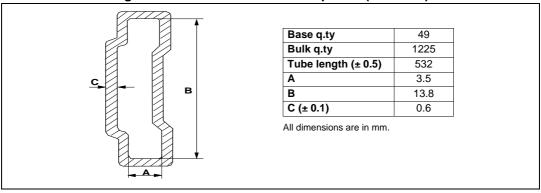
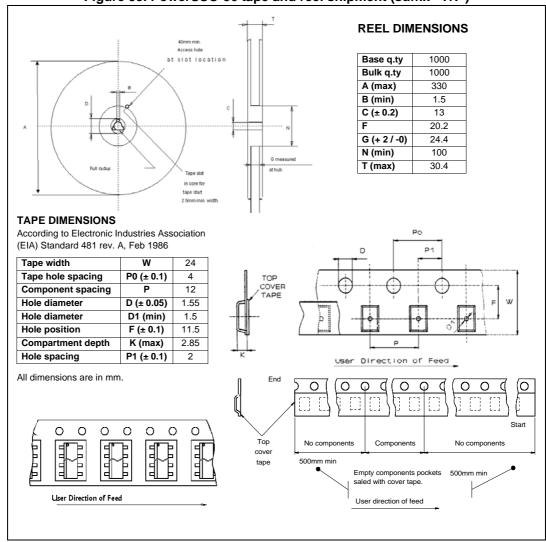



Figure 53. PowerSSO-36 tape and reel shipment (suffix "TR")

DocID022412 Rev 8

Order codes VNQ7040AY-E

7 Order codes

Table 26. Device summary

Package	Order codes		
Package	Tube	Tape and reel	
PowerSSO-36	VNQ7040AY-E	VNQ7040AYTR-E	

VNQ7040AY-E Revision history

8 Revision history

Table 27. Document revision history

Date	Revision	Changes
14-Nov-2011	1	Initial release.
14-Feb-2013	2	Updated Figure 2: Configuration diagram (top view) Table 1: Pin functions: - GND: updated function description
20-Mar-2013	3	Updated <i>Table 1: Pin functions</i> and <i>Table :</i> Table 3: Absolute maximum ratings: - V _{CC} , -V _{CC} , V _{FR} , -I _{OUT_0,1} , -I _{OUT_2,3} : updated value - V _{CCPK} , I _{SENSE} , V _{ESD} : updated parameter and value - V _{CCS} ; added row - V _{SENSE} : removed row Updated <i>Table 4: Thermal data</i> Table 5: Power section: - V _{USDReset} , I _{SND(ON)} : added row - t _{D_STBY} : updated test conditions and value - V _{clamp} , I _{STBY} , I _{S(ON)} , I _{L(off)} : updated test conditions row Table 7: Protections (7 V < V _{CC} < 18 V; -40 °C < T _j < 150 °C): - V _{DEMAG} T _{HYST} : updated value - t _{LATCH_RST} : updated test conditions and values Table 8: MultiSense (7 V < V _{CC} < 18 V; -40 °C < T _j < 150 °C): - V _{SENSE_CL} , V _{OL} , t _{STKON} , t _{D_COOL} , t _{D_SENSE3H} , t _{DSENSE3H} , t _{DSENSE3H} , t _{DSENSE4H} , t _{D_SENSE4L} , t _{D_COCCTC} , t _{D_COCOTC} , t _{D_COCCS} , t _{D_COCCCS} , t _{D_COCCC} , t _{D_COCCCS} , t _{D_TCOVCC} , t _{D_COCCTC} , t _{D_COCCC} , t _{D_COCCCC} , t _{D_COCCCCC} , t _{D_COCC}

Revision history VNQ7040AY-E

Table 27. Document revision history (continued)

Date	Revision	Changes
20-Mar-2013	3 (cont'd)	Added Figure 38: T _{DSKON} Table 15: Truth table: - Overload: updated conditions Updated Table 16: MultiSense multiplexer addressing Removed Section: Waveforms
22-Jul-2013	4	Table 10: Switching in Bulb Mode ($V_{CC} = 13 \text{ V}$; -40 °C < T_j < 150 °C, unless otherwise specified): - $t_{SKEW_0,1,2,3}$: updated values Updated Table 11: MultiSense in Bulb Mode ($7 \text{ V} < V_{CC} < 18 \text{ V}$; -40 °C < T_j < 150 °C) Table 12: Switching in LED Mode ($V_{CC} = 13 \text{ V}$; -40 °C < T_j < 150 °C, unless otherwise specified): - $t_{SKEW_0,1_LED}$: updated values Updated Table 14: MultiSense in LED Mode ($7 \text{ V} < V_{CC} < 18 \text{ V}$; -40 °C < T_j < 150 °C)
18-Sep-2013	5	Updated disclaimer.
11-Feb-2014	6	Updated Table 10: Switching in Bulb Mode ($V_{CC} = 13 \ V$; - $40 \ ^{\circ}\text{C} < T_j < 150 \ ^{\circ}\text{C}$, unless otherwise specified) and Table 12: Switching in LED Mode ($V_{CC} = 13 \ V$; - $40 \ ^{\circ}\text{C} < T_j < 150 \ ^{\circ}\text{C}$, unless otherwise specified)
19-Jun-2014	7	Table 3: Absolute maximum ratings: - E _{MAX} : updated value Table 4: Thermal data Added Figure 4: Bulb Mode - I _{OUT} /I _{SENSE} versus I _{OUT} and Figure 5: Bulb Mode - current sense precision vs. I _{OUT} Added Section 2.4: Electrical characteristics curves - Bulb Mode Added Figure 26: LED Mode - I _{OUT} /I _{SENSE} versus I _{OUT} and Figure 27: LED Mode - current sense precision vs. I _{OUT} Added Section 2.5: Electrical characteristics curves - LED mode Removed Section: Immunity to electrical transient disturbances on VCC (ISO 7637-2) Added Chapter 3: Protections, Chapter 4: Application information and Chapter 5: Package and PCB thermal data
30-Sep-2014	8	Updated Chapter 5: Package and PCB thermal data

54/55 DocID022412 Rev 8

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

DocID022412 Rev 8