UPS120e3 # 1.0 A Schottky Barrier Rectifier | Parameter | Symbol | Conditions | $T_{\rm J} = 25^{\rm o}C$ | T _J =85°C | Units | |--|----------------|--|---------------------------|-----------------------|-------| | Maximum Forward Voltage (Note 1)
See Figure 2 | V_{F} | I _F = 0.1 A
I _F = 1.0 A
I _F = 3.0 A | 0.34
0.45
0.65 | 0.25
0.415
0.67 | ٧ | | Maximum Instantaneous Reverse Current (Note 1) | I _R | V _R = 20 V
V _R = 10 V | 0.40
0.10 | 25
18 | mA | Note: 1 Short duration test pulse used to minimize self – heating effect. #### PACKAGE & MOUNTING PAD DIMENSIONS DO-216 Package (All dimensions +/-.005 inches) MOUNTING PAD in inches ### **UPS120e3** # 1.0 A Schottky Barrier Rectifier #### **CHARTS AND GRAPHS** FIGURE 1 FIGURE 2 Forward Power Dissipation * Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{J \text{ max}} = r(t)(Pf+Pr)$ where r(t) = thermal impedance under given conditions. Pf = forward power dissipation, and Pr = reverse power dissipation This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{J \text{ max}} - r(t)$ Pr, Where r(t)=Rthja. For other power applications further calculations must be performed. ### **UPS120e3** # 1.0 A Schottky Barrier Rectifier FIGURE 3 – Thermal Impedance Junction to Case (bottom) FIGURE 4 - Thermal Impedance Junction to Ambient