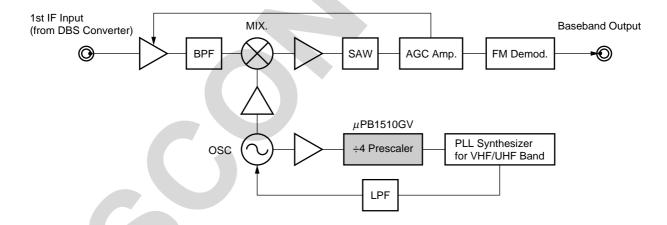

PIN CONNECTIONS


Pin No.	Pin Name
1	Vcc
2	IN
3	ĪN
4	GND
5	GND
6	NC
7	OUT
8	NC

INTERNAL BLOCK DIAGRAM

SYSTEM APPLICATION EXAMPLE

RF unit block of DBS tuners

PIN EXPLANATION

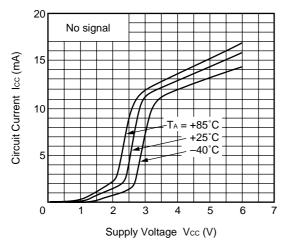
Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V)	Function and Application
1	Vcc	4.5 to 5.5	-	Supply voltage pin.
				This pin must be equipped with bypass capacitor (example: 1 000 pF) to minimize ground impedance.
2	IN	_	1.7 to 4.95	Signal input pin.
				This pin should be coupled to signal source with capacitor (example: 1 000 pF) for DC cut.
3	ĪN	_	1.7 to 4.95	Signal input bypass pin.
				This pin must be equipped with bypass capacitor (example: 1 000 pF) to minimize ground impedance.
4, 5	GND	0	-	Ground pin.
				Ground pattern on the board should be formed as wide as possible to minimize ground impedance.
6, 8	NC	_	-	Non connection pins.
				These pins should be opened.
7	OUT	_	1.0 to 4.7	Divided frequency output pin.
				This pin is designed as emitter follower output. This pin can be connected to input of prescaler within PLL synthesizer through DC cut capacitor.

ABSOLUTE MAXIMUM RATINGS

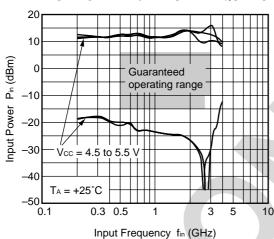
Parameter	Symbol	Test Conditions		Ratings	Unit
Supply Voltage	Vcc	T _A = +25°C		6.0	V
Power Dissipation	Po	T _A = +85°C	Note	250	mW
Operating Ambient Temperature	TA			-40 to +85	°C
Storage Temperature	Tstg			-55 to +150	°C

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB

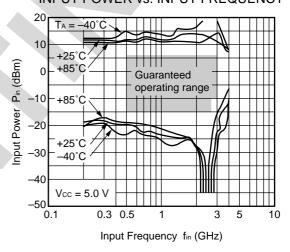
RECOMMENDED OPERATING RANGE

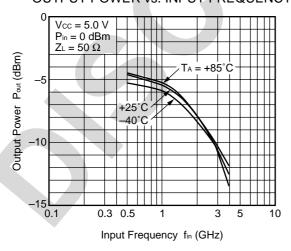

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Operating Ambient Temperature	TA	-40	+25	+85	°C

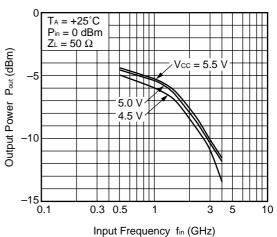
ELECTRICAL CHARACTERISTICS (TA = -40 to +85°C, Vcc = 4.5 to 5.5 V, Zs = ZL = 50 Ω)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No Signals	10.5	14	17	mA
Upper Limit Operating Frequency 1	fin (U)1	$P_{in} = -10 \text{ to } +6 \text{ dBm}$	3.0	-	-	GHz
Upper Limit Operating Frequency 2	fin (U)2	Pin = -15 to +6 dBm	2.7	-	-	GHz
Lower Limit Operating Frequency	fin (L)	$P_{in} = -15 \text{ to } +6 \text{ dBm}$	-	-	0.5	GHz
Input Power 1	Pin1	fin = 2.7 to 3.0 GHz	-10	=	+6	dBm
Input Power 2	Pin2	fin = 0.5 to 2.7 GHz	-15	-	+6	dBm
Output Power	Pout	Pin = 0 dBm, fin = 2.0 GHz	-12	-7	_	dBm

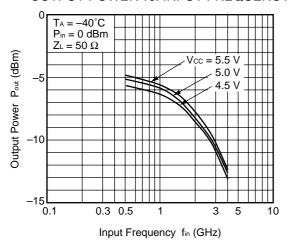
TYPICAL CHARACTERISTICS (TA = +25°C, Vcc = 5 V, unless otherwise specified)


CIRCUIT CURRENT vs. SUPPLY VOLTAGE

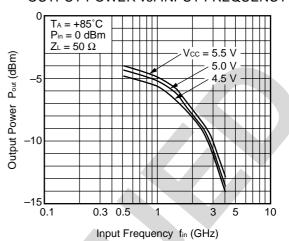

INPUT POWER vs. INPUT FREQUENCY


INPUT POWER vs. INPUT FREQUENCY

OUTPUT POWER vs. INPUT FREQUENCY

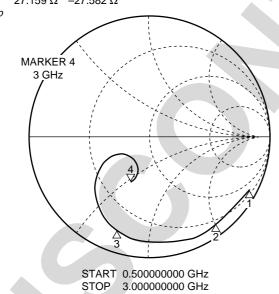


OUTPUT POWER vs. INPUT FREQUENCY


5

OUTPUT POWER vs. INPUT FREQUENCY

Remark The graphs indicate nominal characteristics.

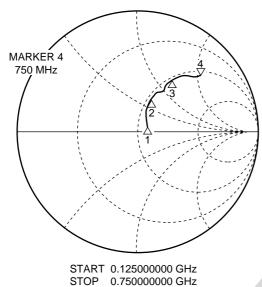

OUTPUT POWER vs. INPUT FREQUENCY

S₁₁ vs. INPUT FREQUENCY

Vcc = 5.0 V, Ta = +25°C, Zo = 50 Ω

 $\begin{array}{lll} S_{11} & Z \\ REF \ 1.0 \ Units \\ 4 & 200.0 \ mUnits / \\ \nabla & 27.159 \ \Omega & -27.582 \ \Omega \\ \textit{hp} \end{array}$

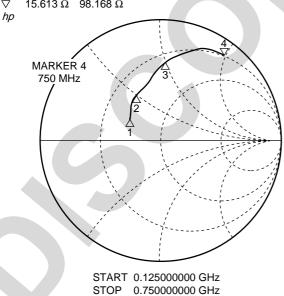
▽1:	500 MHz
▽2:1	000 MHz
▽3:2	000 MHz
∇4:3	000 MHz


Frequency (MHz)	S ₁₁ (Ω)
500	37.1-j207.8
1 000	14.2-j105.1
2 000	7.9–j35.8
3 000	27.1-j27.5

S₂₂ vs. OUTPUT FREQUENCY

Vcc = 5.0 V, fin = 500 MHz, TA = +25°C, Zo = 50 Ω

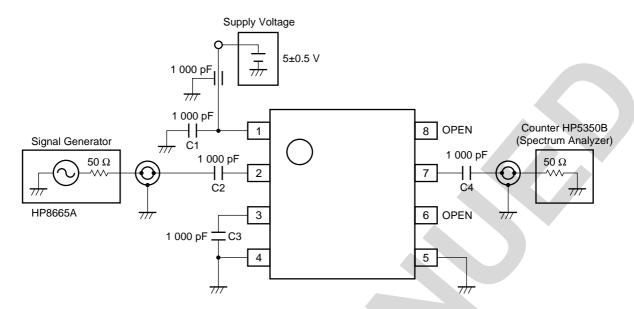
REF 1.0 Units 4 200.0 mUnits/ ∇ 60.925 Ω 104.77 Ω


hр

Frequency (MHz)	S ₂₂ (Ω)
125	55.5+j6.7
250	53.7+j30.4
500	55.0+j60.3
750	60.9+j104.8

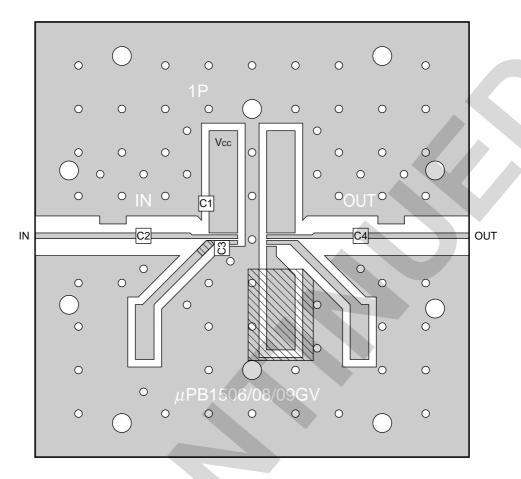
VCC = 5.0 V, fin = 3.0 GHz, TA = +25°C, ZO = 50 Ω

 S_{22} Z REF 1.0 Units 4 200.0 mUnits/ ∇ 15.613 Ω 98.168 Ω



Frequency (MHz)	S ₂₂ (Ω)
125	28.5+j11.5
250	27.6+j23.6
500	20.5+j50.7
750	15.6+j98.2

∇1:125 MHz ∇2:250 MHz ∇3:500 MHz ∇4:750 MHz


▽1:125 MHz ▽2:250 MHz ▽3:500 MHz ▽4:750 MHz

TEST CIRCUIT

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

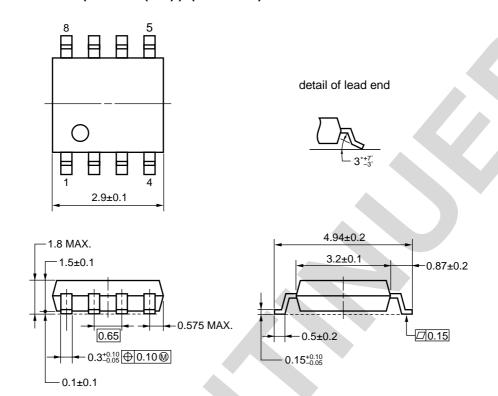
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

COMPONENT LIST

	Value
C1 to C4	1 000 pF

Notes

(1) 35 μ m thick double-sided copper-clad 50 \times 50 \times 0.4 mm polyimide board.


(2) Back side : GND pattern(3) Solder plated on pattern

(4) ○ ○: Through holes(5) of pin 3: Pattern should be removed.

(6) of pin 5: Short chip must be attached to be grounded.

★ PACKAGE DIMENSIONS

8-PIN PLASTIC SSOP (4.45 mm (175)) (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
- (3) Keep the wiring length of the ground pins as short as possible.
- (4) Connect a bypass capacitor (example: 1 000 pF) to the Vcc pin.

★ RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

11