1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

 † Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{IN} = V_R + 1.5V$, (Note 1), $I_L = 100 \mu A$, $C_L = 3.3 \mu F$, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}C$. **Boldface** type specifications apply for junction temperatures of -40°C to +125°C.

T _A = +25°C. Boldface type specifications apply for junction temperatures of -40°C to +125°C.						
Parameters	Sym	Min	Тур	Max	Units	Conditions
Input Operating Voltage	V _{IN}	2.7	_	6.0	V	Note 2
Maximum Output Current	I _{OUTMAX}	800	_	_	mA	
Output Voltage	V _{OUT}	V _R - 2.5%	$V_R \pm 0.5\%$	V _R + 2.5%	V	$V_R \ge 2.5V$
		V _R – 2%	$V_{R} \pm 0.5\%$	V _R + 3%		V _R = 1.8V
		V _R – 7%	_	V _R + 3%		I _L = 0.1 mA to 800 mA (Note 3)
V _{OUT} Temperature Coefficient	$\Delta V_{OUT}/\Delta T$	_	40	_	ppm/°C	Note 4
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	_	0.007	0.35	%	$(V_R + 1V) \le V_{IN} \le 6V$
Load Regulation (Note 5)	$\Delta V_{OUT}/V_{OUT}$	-0.01	0.002	0	%/mA	$I_L = 0.1 \text{ mA to } I_{OUTMAX}$
Dropout Voltage (Note 6)	V_{IN} – V_{OUT}	_	20	30	mV	$V_R \ge 2.5 V$, $I_L = 100 \ \mu A$
		_	50	160		$I_{L} = 100 \text{ mA}$
		_	150	480		I _L = 300 mA
		_	260	800		I _L = 500 mA
		_	450	1300		I _L = 800 mA
		_	1000	1200		V _R = 1.8V, I _L = 500 mA
		_	1200	1400		I _L = 800 mA
Supply Current	I _{DD}		80	130	μA	SHDN = V _{IH} , I _L = 0
Power Supply Rejection Ratio	PSRR		64		db	F ≤ 1 kHz
Output Short Circuit Current	I _{OUTSC}	_	1200	_	mA	V _{OUT} = 0V

- Note 1: V_R is the regulator output voltage setting.
 - 2: The minimum V_{IN} has to justify the conditions: $V_{IN} \ge V_R + V_{DROPOUT}$ and $V_{IN} \ge 2.7V$ for $I_L = 0.1$ mA to I_{OUTMAX} .
 - 3: This accuracy represents the worst-case over the entire output current and temperature range.

4:
$$TCV_{OUT} = \frac{\left(V_{OUTMAX} - V_{OUTMIN}\right) - 10^6}{V_{OUT} \times \Delta T}$$

- 5: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- **6:** Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at a 1.5V differential.
- 7: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{LMAX} at V_{IN} = 6V for T = 10 ms.
- 8: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 5.0 "Thermal Considerations" for more details.

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, $V_{IN} = V_R + 1.5V$, (Note 1), $I_L = 100 \mu A$, $C_L = 3.3 \mu F$, $\overline{SHDN} > V_{IH}$, $T_A = +25^{\circ}C$. **Boldface** type specifications apply for junction temperatures of -40°C to +125°C.

Parameters	Sym	Min	Тур	Max	Units	Conditions
Thermal Regulation	$\Delta V_{OUT}/\Delta P_{D}$	_	0.04	_	V/W	Note 7
Output Noise	eN	_	260	_	nV/√Hz	$I_L = I_{OUTMAX}$, $F = 10 \text{ kHz}$

- Note 1: V_R is the regulator output voltage setting.
 - 2: The minimum V_{IN} has to justify the conditions: $V_{IN} \ge V_R + V_{DROPOUT}$ and $V_{IN} \ge 2.7V$ for $I_L = 0.1$ mA to I_{OUTMAX} .
 - 3: This accuracy represents the worst-case over the entire output current and temperature range.

4:
$$TCV_{OUT} = \frac{(V_{OUTMAX} - V_{OUTMIN}) - 10^6}{V_{OUT} \times \Delta T}$$

- 5: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- **6:** Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at a 1.5V differential.
- 7: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to I_{LMAX} at V_{IN} = 6V for T = 10 ms.
- 8: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 5.0 "Thermal Considerations" for more details.

TEMPERATURE CHARACTERISTICS

Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Specified Temperature Range	T _A	-40	_	+125	°C	(Note 1)
Operating Temperature Range	TJ	-40	T -	+125	°C	
Storage Temperature Range	T _A	-65	_	+150	°C	
Thermal Package Resistances	<u>.</u>		•			
Thermal Resistance, 3L-SOT-223	θ_{JA}	_	59	_	°C/W	
Thermal Resistance, 3L-DDPAK	θ_{JA}	_	71	_	°C/W	
Thermal Resistance, 3L-TO-220	θ_{JA}	_	71	_	°C/W	

Note 1: Operation in this range must not cause T_J to exceed Maximum Junction Temperature (+125°C).

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

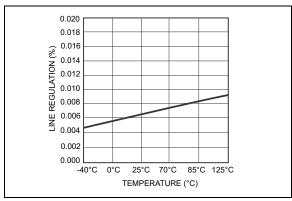


FIGURE 2-1: Temperature.

Line Regulation vs.

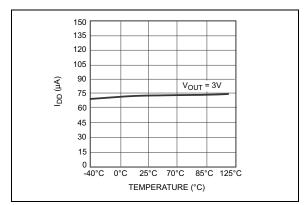


FIGURE 2-4: I_{DD} vs. Temperature.

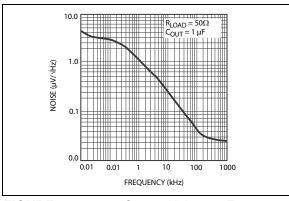
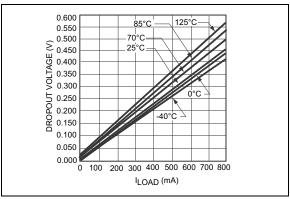



FIGURE 2-2: Output Noise vs. Frequency.

FIGURE 2-5: 3.0V Dropout Voltage vs. I_{LOAD} .

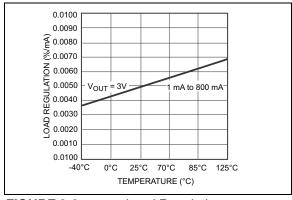


FIGURE 2-3: Temperature.

Load Regulation vs.

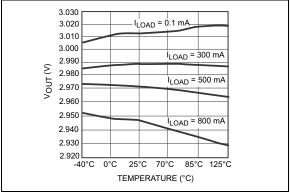


FIGURE 2-6: 3.0V V_{OUT} vs. Temperature.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin No. 3-Pin SOT-223 3-Pin TO-220 3-Pin DDPAK	Symbol	Description
1	V _{IN}	Unregulated supply input
2	GND	Ground terminal
3	V _{OUT}	Regulated voltage output

3.1 Unregulated Supply (V_{IN})

Unregulated supply input.

3.2 Ground (GND)

Ground terminal.

3.3 Regulated Output Voltage (V_{OUT})

Regulated voltage output.

4.0 DETAILED DESCRIPTION

The TC1264 is a precision, fixed output LDO. Unlike bipolar regulators, the TC1264's supply current does not increase with load current. In addition, V_{OUT} remains stable and within regulation over the entire 0mA to $I_{LOADMAX}$ load current range (an important consideration in RTC and CMOS RAM battery back-up applications).

Figure 4-1 shows a typical application circuit.

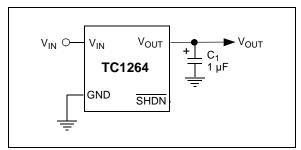


FIGURE 4-1: Typical Application Circuit.

4.1 Output Capacitor

A 1 μ F (min) capacitor from V_{OUT} to ground is required. The output capacitor should have an effective series resistance greater than 0.1 Ω and less than 5 Ω . A 1 μ F capacitor should be connected from V_{IN} to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalums are recommended for applications operating below -25°C.) When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

5.0 THERMAL CONSIDERATIONS

5.1 Thermal Shutdown

Integrated thermal protection circuitry shuts the regulator off when die temperature exceeds 160°C. The regulator remains off until the die temperature drops to approximately 150°C.

5.2 Power Dissipation

The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst-case actual power dissipation:

EQUATION 5-1:

$$P_D = (V_{INMAX} - V_{OUTMIN})I_{LOADMAX}$$

Where:

P_D = Worst-case actual power dissipation

 V_{INMAX} = Maximum voltage on V_{IN}

V_{OUTMIN} = Minimum regulator output voltage

I_{LOADMAX} = Maximum output (load) current

The maximum allowable power dissipation (Equation 5-2) is a function of the maximum ambient temperature (T_{AMAX}), the maximum allowable die temperature (T_{JMAX}) and the thermal resistance from junction-to-air (θ_{JA}).

EQUATION 5-2:

$$P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}$$

Where all terms are previously defined.

Table 5-1 and Table 5-2 show various values of θ_{JA} for the TC1264 packages.

TABLE 5-1: THERMAL RESISTANCE
GUIDELINES FOR TC1264 IN
SOT-223 PACKAGE

001 ==017101#10=						
Copper Area (Topside)*	Copper Area (Backside)	Board Area	Thermal Resistance (θ_{JA})			
2500 sq mm	2500 sq mm	2500 sq mm	45°C/W			
1000 sq mm	2500 sq mm	2500 sq mm	45°C/W			
225 sq mm	2500 sq mm	2500 sq mm	53°C/W			
100 sq mm	2500 sq mm	2500 sq mm	59°C/W			
1000 sq mm	1000 sq mm	1000 sq mm	52°C/W			
1000 sq mm	0 sq mm	1000 sq mm	55°C/W			

^{*} Tab of device attached to topside copper

TABLE 5-2: THERMAL RESISTANCE
GUIDELINES FOR TC1264 IN
3-PIN DDPAK/TO-220
PACKAGE

Copper Area (Topside)*	Copper Area (Backside)	Board Area	Thermal Resistance (θ_{JA})
2500 sq mm	2500 sq mm	2500 sq mm	25°C/W
1000 sq mm	2500 sq mm	2500 sq mm	27°C/W
125 sq mm	2500 sq mm	2500 sq mm	35°C/W

^{*} Tab of device attached to topside copper

Equation 5-1 can be used in conjunction with Equation 5-2 to ensure regulator thermal operation is within limits. For example:

Given:

$$V_{\text{INMAX}} = 3.3V \pm 10\%$$

 $V_{\text{OUTMIN}} = 2.7V \pm 0.5\%$
 $I_{\text{LOADMAX}} = 275 \text{ mA}$
 $T_{\text{JMAX}} = 125^{\circ}\text{C}$
 $T_{\text{AMAX}} = 95^{\circ}\text{C}$
 $\theta_{\text{JA}} = 59^{\circ}\text{C/W} \text{ (SOT-223)}$

Find:

- 1. Actual power dissipation.
- 2. Maximum allowable dissipation.

Actual power dissipation:

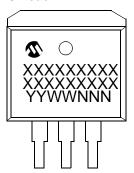
$$P_D \approx (V_{INMAX} - V_{OUTMIN})I_{LOADMAX}$$

 $P_D = (3.3 \times 1.1) - (2.7 \times .995)275 \times 10^{-3}$
 $P_D = 260 \text{ mW}$

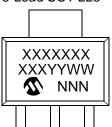
Maximum allowable power dissipation:

$$P_{DMAX} = \frac{T_{JMAX} - T_{AMAX}}{\theta_{JA}}$$

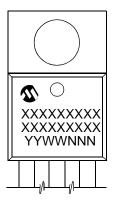
$$P_{DMAX} = \frac{(125 - 95)}{59}$$


$$P_{DMAX} = 508 \text{ mW}$$

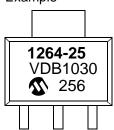
In this example, the TC1264 dissipates a maximum of 260 mW, which is below the allowable limit of 508 mW. In a similar manner, Equation 5-1 and Equation 5-2 can be used to calculate maximum current and/or input voltage limits. For example, the maximum allowable V_{IN} , is found by substituting the maximum allowable power dissipation of 508 mW into Equation 5-1, from which $V_{\text{INMAX}}=4.6\text{V}$.

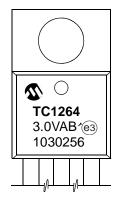

6.0 PACKAGING INFORMATION

6.1 **Package Marking Information**



3-Lead SOT-223


3-Lead TO-220


Example

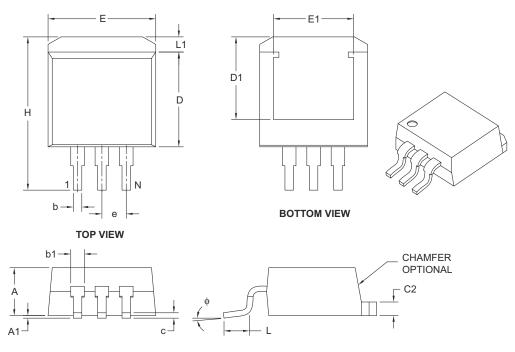
Example

Example

Legend: XX...X Customer-specific information

> Year code (last digit of calendar year) ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code

(e3) Pb-free JEDEC designator for Matte Tin (Sn)


This package is Pb-free. The Pb-free JEDEC designator (@3)

can be found on the outer packaging for this package.

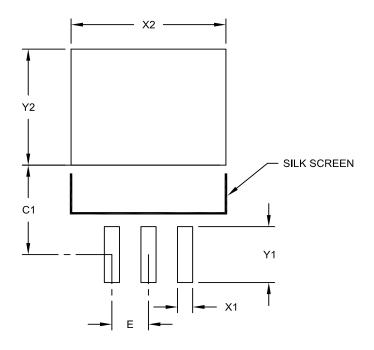
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

3-Lead Plastic (EB) [DDPAK]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		3	
Pitch	е		.100 BSC	
Overall Height	А	.160	_	.190
Standoff §	A1	.000	_	.010
Overall Width	Е	.380	_	.420
Exposed Pad Width	E1	.245	_	_
Molded Package Length	D	.330	_	.380
Overall Length	Н	.549	_	.625
Exposed Pad Length	D1	.270	_	_
Lead Thickness	С	.014	_	.029
Pad Thickness	C2	.045	_	.065
Lower Lead Width	b	.020	_	.039
Upper Lead Width	b1	.045	_	.070
Foot Length	L	.068	-	.110
Pad Length	L1	_	_	.067
Foot Angle	ф	0°	_	8°

Notes:


- 1. § Significant Characteristic.
- 2. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-011B

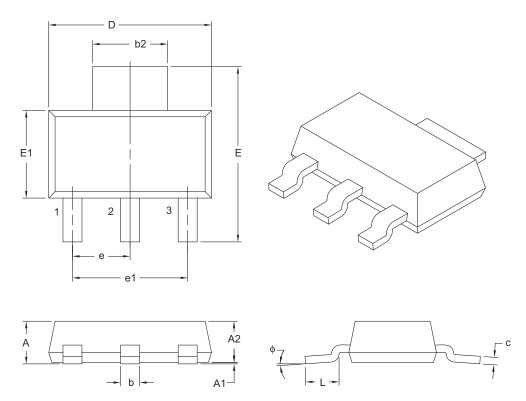
3-Lead Plastic (EB) [DDPAK]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units			INCHES	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		.100 BSC	
Pad Width	X2			.423
Pad Length	Y2			.327
Contact Pad Spacing	C1		.252	
Contact Pad Width (X3)	X1			.041
Contact Pad Length (X3)	Y1			.157

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

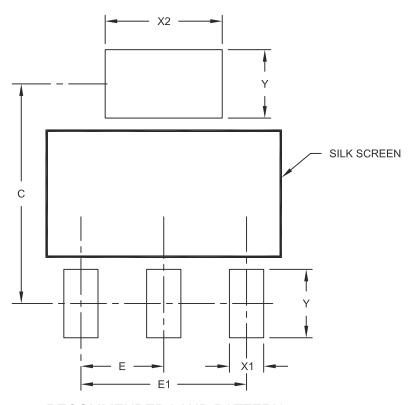
Microchip Technology Drawing No. C04-2011A

3-Lead Plastic Small Outline Transistor (DB) [SOT-223]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		3	
Lead Pitch	е		2.30 BSC	
Outside Lead Pitch	e1		4.60 BSC	
Overall Height	A	_	_	1.80
Standoff	A1	0.02	_	0.10
Molded Package Height	A2	1.50	1.60	1.70
Overall Width	E	6.70	7.00	7.30
Molded Package Width	E1	3.30	3.50	3.70
Overall Length	D	6.30	6.50	6.70
Lead Thickness	С	0.23	0.30	0.35
Lead Width	b	0.60	0.76	0.84
Tab Lead Width	b2	2.90	3.00	3.10
Foot Length	L	0.75	_	-
Lead Angle	ф	0°	_	10°

Notes:


- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-032B

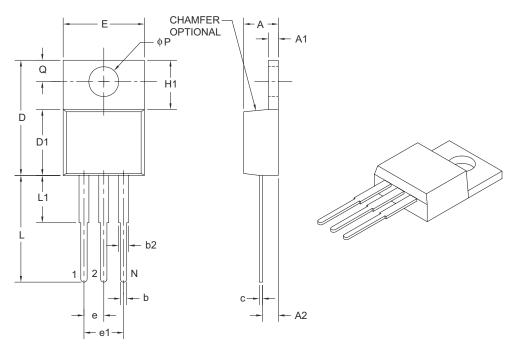
3-Lead Plastic Small Outline Transistor (DB) [SOT-223]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETER		
Dimension	n Limits	MIN	NOM	MAX	
Contact Pitch	E		2.30 BSC		
Overall Pitch	E1		4.60 BSC		
Contact Pad Spacing	С		6.10		
Contact Pad Width	X1			0.95	
Contact Pad Width	X2			3.25	
Contact Pad Length	Y			1.90	

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2032A

3-Lead Plastic Transistor Outline (AB) [TO-220]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		3	
Pitch	е		.100 BSC	
Overall Pin Pitch	e1		.200 BSC	
Overall Height	А	.140	_	.190
Tab Thickness	A1	.020	_	.055
Base to Lead	A2	.080	_	.115
Overall Width	E	.357	_	.420
Mounting Hole Center	Q	.100	_	.120
Overall Length	D	.560	_	.650
Molded Package Length	D1	.330	_	.355
Tab Length	H1	.230	_	.270
Mounting Hole Diameter	φР	.139	_	.156
Lead Length	L	.500	_	.580
Lead Shoulder	L1	_	_	.250
Lead Thickness	С	.012	_	.024
Lead Width	b	.015	.027	.040
Shoulder Width	b2	.045	.057	.070

Notes:

- 1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-034B

TC1264

NOTES:

APPENDIX A: REVISION HISTORY

Revision D (September 2010)

The following is the list of modifications:

- 1. Updated Figure 2-4.
- Updated package drawings (C04-011B, C04-2011A, C04-032B, C04-2032A, C04-034B).

Revision C (October 2006)

The following is the list of modifications:

- 1. Section 1.0 "Electrical Characteristics": Changed dropout voltage typical value for $I_L = 500$ mA from 700 to 1000 and maximum value from 1000 to 1200 for. Changed typical value for $I_L = 800$ mA from 890 to 1200.
- Section 6.0 "PackAging Information": Added package marking information and package outline drawings.
- 3. Added disclaimer to package outline drawings.

Revision B (May 2002)

· Undocumented Changes.

Revision A (March 2002)

· Original Release of this Document.

TC1264

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x.xx xx xx	Examples:
Device	 Voltage Package Tape and Option Reel	 a) TC1264-1.8VAB 1.8V LDO, TO-220-3 pkg. b) TC1264-2.5VAB 2.5V LDO, TO-220-3 pkg. c) TC1264-3.0VAB 3.0V LDO, TO-220-3 pkg. d) TC1264-3.3VAB 3.3V LDO, TO-220-3 pkg.
Device	TC1264 Fixed Output CMOS LDO	a) TC1264-1.8VEBTR 1.8V LDO, DDPAK-3 pkg., Tape and Reel b) TC1264-2.5VEBTR 2.5V LDO, DDPAK-3 pkg.,
Voltage Option:*	1.8V = 1.8V 2.5V = 2.5V 3.0V = 3.0V	Tape and Reel c) TC1264-3.0VEBTR 3.0V LDO, DDPAK-3 pkg., Tape and Reel
	 3.3V = 3.3V * Other output voltages are available. Please contact your local Microchip sales office for details. 	d) TC1264-3.3VEBTR 3.3V LDO, DDPAK-3 pkg., Tape and Reel a) TC1264-1.8VDB 1.8V LDO, SOT-223 pkg. b) TC1264-1.8VDBTR 1.8V LDO, SOT-223 pkg.,
Package	AB = Plastic (TO-220), 3-Lead DB = Plastic (SOT-223), 3-lead DBTR = Plastic (SOT-223), 3-lead, Tape and Reel EB = Plastic Transistor Outline (DDPAK), 3-Lead EBTR = Plastic Transistor Outline (DDPAK), 3-Lead, Tape and Reel	Tape and Reel c) TC1264-2.5VDB 2.5V LDO, SOT-223 pkg. d) TC1264-2.5VDBTR 2.5V LDO, SOT-223 pkg., Tape and Reel e) TC1264-3.0VDB 3.0V LDO, SOT-223 pkg., Tape and Reel f) TC1264-3.0VDBTR 3.0V LDO, SOT-223 pkg., Tape and Reel g) TC1264-3.3VDB 3.3V LDO, SOT-223 pkg.
		h) TC1264-3.3VDBTR 3.3V LDO, SOT-223 pkg., Tape and Reel

TC1264

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-564-0

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca. IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario, Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200

Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040

Fax: 86-756-3210040

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung

Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350 EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/04/10