1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	,	Unit
		TO-220	TO-220FP	
V _{DS}	Drain-Source Voltage (V _{GS} = 0)	700		V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20k\Omega$)	700		V
V _{GS}	Gate-Source Voltage	± 30		V
I _D	Drain Current (continuous) at T _C = 25°C	8.6	8.6 (Note 3)	А
I _D	Drain Current (continuous) at T _C = 100°C	5.4	5.4 (Note 3)	А
I _{DM} Note 2	Drain Current (pulsed)	34	34 (Note 3)	А
P _{TOT}	Total Dissipation at T _C = 25°C	150	35	W
	Derating Factor	1.20	0.28	W/°C
Vesd(G-S)	G-S ESD (HBM C=100pF, R=1.5kΩ)	4000		V
dv/dt Note 1	Peak Diode Recovery voltage slope	4.5		V/ns
V _{ISO}	Insulation Withstand Volatge (DC)	2500		V
T _j T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 150		°C

Table 2. Thermal data

		TO-220	TO-220FP	Unit
Rthj-case	Thermal Resistance Junction-case Max	0.83	3.6	°C/W
Rthj-amb	Thermal Resistance Junction-amb Max	62.5		°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	300		°C

Table 3. Avalanche characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, repetitive or Not-Repetitive (pulse width limited by Tj max)	8.6	А
E _{AS}	Single Pulse Avalanche Energy (starting Tj=25°C, I _D =I _{AR} , V _{DD} = 50V)	350	mJ

577

2 Electrical characteristics

 $(T_{CASE} = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 4. On/off states

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	I _D = 1mA, V _{GS} = 0	700			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating, V_{DS} = Max Rating,Tc = 125°C			1 50	μΑ μΑ
I _{GSS}	Gate Body Leakage Current (V _{DS} = 0)	V _{GS} = ±20V, V _{DS} = 0			±10	μΑ
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static Drain-Source On Resistance	V _{GS} = 10 V, I _D = 4.5 A		0.75	0.85	Ω

Table 5. Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} Note 4	Forward Transconductance	$V_{DS} = 15V, I_D = 4.5A$		7.7		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V_{DS} =25V, f=1 MHz, V_{GS} =0		2000 190 41		pF pF pF
C _{oss eq.} Note 5	Equivalent Ouput Capacitance	V _{GS} =0, V _{DS} =0V to 560V		98		pF
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} =560V, I_{D} = 9 A V_{GS} =10V (see Figure 17)		64 12 33	90	nC nC nC

Table 6. Switching times

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time Rise Time	V_{DD} =350 V, I_{D} =4.5 A, R_{G} =4.7 Ω , V_{GS} =10V (see Figure 18)		22 19		ns ns
t _{d(off)}	Turn-off Delay Time Fall Time	V_{DD} =350 V, I_{D} =4.5A, R_{G} =4.7 Ω , V_{GS} =10V (see Figure 18)		46 19		ns ns
t _{r(Voff)} t _f t _c	Off-voltage Rise Time Fall Time Cross-over Time	V_{DD} =560 V, I_{D} =9A, R_{G} =4.7 Ω , V_{GS} =10V (see Figure 18)		11 10 22		ns ns ns

577

Table 7. Source drain diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} Note 2	Source-drain Current Source-drain Current (pulsed)				8.6 34	A A
V _{SD} Note 4	Forward on Voltage	I _{SD} =8.6 A, V _{GS} =0			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} =9A, di/dt = 100A/μs, V _{DD} =35 V, Tj=150°C		720 5.4 15		ns µC A

Table 8. Gate-source zener diode

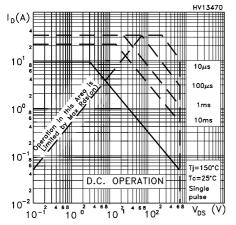
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{GSO} Note 6	Gate-Source Breakdown Voltage	Igs=±1mA (Open Drain)	30			V

- (1) $I_{SD} \le 8.6$ A, $di/dt \le 200 A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$
- (2) Pulse width limited by safe operating area
- (3) Limited only by maximum temperature allowed
- (4) Pulsed: pulse duration = $300\mu s$, duty cycle 1.5%
- (5) $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to $80\%V_{DSS}$
- (6)The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

5//

Electrical Characteristics (curves) 2.1

Safe Operating Area for TO-220



Thermal Impedanc for TO-220

D.C. OPERATION 10 1 102

Figure 3. Safe Operating Area for TO-220FP Thermal Impedance for TO-220FP Figure 4.

Figure 2.

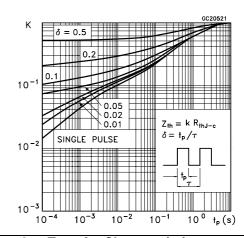
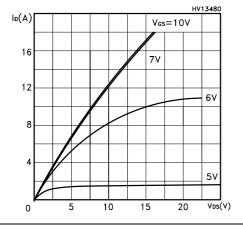



Figure 5. Output Characteristics

Figure 6. **Transfer Characteristics**

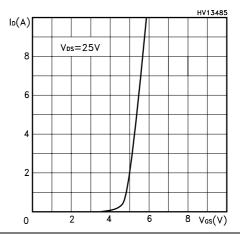


Figure 7. Transconductance

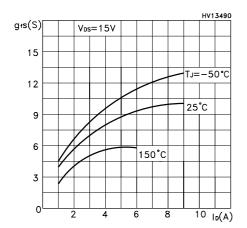


Figure 8. Static Drain-Source on Resistance

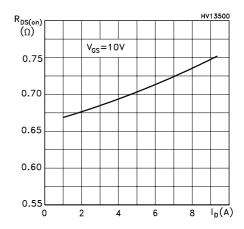


Figure 9. Gate Charge vs Gate -Source Voltage

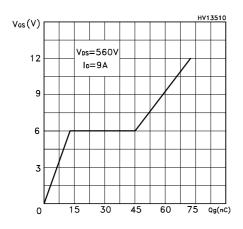


Figure 11. Capacitance Variations

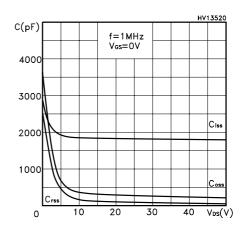
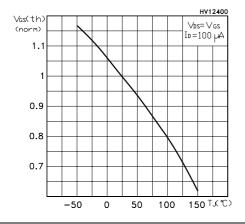
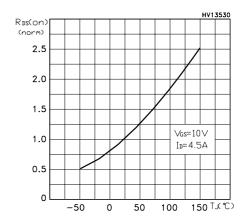




Figure 10. Normalized Gate Threshold Voltage Figure 12. Normalized on Resistance vs vs Temperature Temperature

5//

Figure 13. Source-drain Diode Forward Characteristics

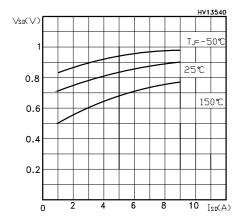
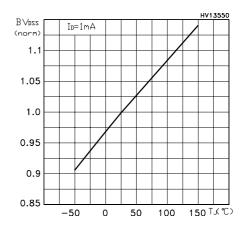
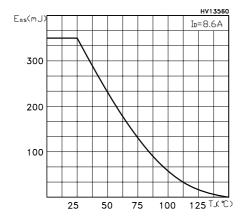
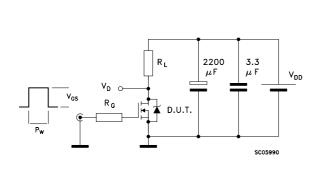


Figure 14. Normalized BVDSS vs Temperature


Figure 15. Maximum Avalanche Energy vs Temperature

3 Test circuits

Figure 16. Switching Times Test Circuit For Resistive Load

Figure 17. Gate Charge Test Circuit

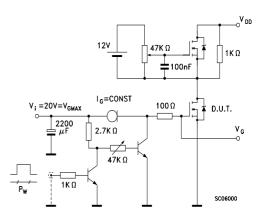
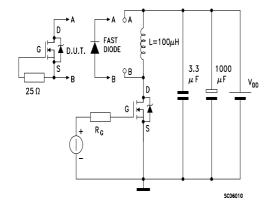



Figure 18. Test Circuit For Indictive Load
Switching and Diode Recovery
Times

Figure 20. Unclamped Inductive Load Test Circuit

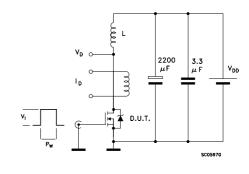
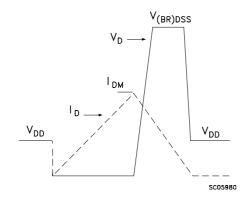
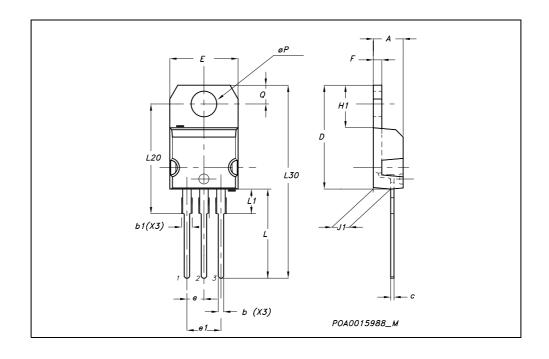



Figure 19. Unclamped Inductive Waveform

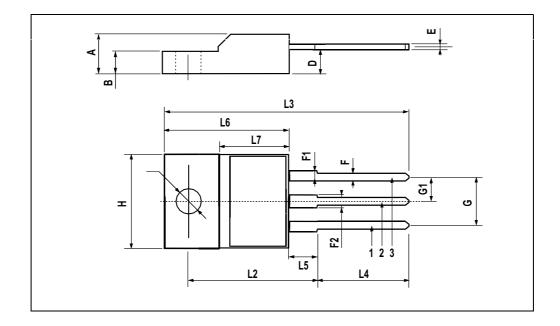
5//


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

577

TO-220 MECHANICAL DATA


DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
С	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
Е	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øΡ	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

5//

TO-220FP MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

5 Revision History

Date	Revision	Changes
22-Aug-2005	2	Inserted Ecopack indication

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

