

2.0 AMPS. Surface Mount Schottky Barrier Rectifiers Sub SMA

Features

- ♦ For surface mounted application
- ♦ Low-Profile Package
- ♦ Ideal for automated pick & place
- ♦ Low power loss, high efficiency
- ♦ High current capability, low VF
- High surge current capability
- Plastic material used carriers Underwriters Laboratory Classification 94V-0
- ♦ Epitaxial construction
- High temperature soldering:
 260°C / 10 seconds at terminals
- Green compound with suffix "G" on packing code & prefix "G" on datecode.

Mechanical Data

- ♦ Cases: Sub SMA plastic case
- → Terminal : Pure tin plated, lead free.
- Polarity: Color band denotes cathode end
- ♦ Packaging: 12mm tape per EIA STD RS-481
- ♦ Weight approx. 15mg

Cathode Band (5 1)3,100 0.114(2.9) 0.106(2.7)

Dimensions in inches and (millimeters) Marking Diagram

2XL = Specific Device Code G = Green Compound

Y = Year

M = Work Month

Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60 Hz, resistive or inductive load.

For capacitive load, de-rate current by 20%

Type Number	Symbol	SS 22L	SS 23L	SS 24L	SS 25L	SS 26L	SS 29L	SS 210L	SS 215L	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	20	30	40	50	60	90	100	150	V
Maximum RMS Voltage	V _{RMS}	14	21	28	35	42	63	70	105	V
Maximum DC Blocking Voltage	V _{DC}	20	30	40	50	60	90	100	150	٧
Marking Code		22LY M	23LY M	24LY M	25LY M	26LY M	29LY M	20LY M	2ALYM	
Maximum Average Forward Rectified Current at T _L (See Fig. 1)	I _(AV)	2.0								Α
Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method)	I _{FSM}	50								А
Maximum Instantaneous Forward Voltage (Note 1) @ 2.0A	V _F	0.5				70	0.85		0.95	V
Maximum DC Reverse Current @ T _A =25 °C at Rated DC Blocking Voltage @ T _A =125 °C	I _R	0.4 0.1							mA	
	'K	15 10				5			mA	
Typical Junction Capacitance (Note 3)	Cj	130 50						pF		
Typical Thermal Resistance (Note 2)	R _{ØJL} R _{ØJA}	17 75								°C/W
Operating Temperature Range	TJ	-65 to +125 -65 to +150						°C		
Storage Temperature Range	Тѕтс	-65 to +150								°C

Notes: 1. Pulse Te

- 1. Pulse Test with PW=300 usec, 1% Duty Cycle
- 2. Measured on P.C.Board with 0.27" x 0.27"(7.0mm x 7.0mm) Copper Pad Areas.
- 3. Measured at 1 MHz and Applied Reverse Voltage of 4.0V D.C.

Version: E08