RClamp0542T

Absolute Maximum Rating

SEMTECH

Rating	Symbol	Value	Units
Peak Pulse Power (tp = 8/20µs)	P _{pk}	75	Watts
Peak Pulse Current (tp = 8/20µs)	۱ _{РР}	5	A
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	V_{ESD}	+/- 18 +/- 12	kV
Operating Temperature	T,	-55 to +125	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Electrical Characteristics ($T = 25^{\circ}C$)

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}	Any I/O to GND			5	V
Reverse Breakdown Voltage	V _{BR}	I _t = 1mA, Any I/O to GND	6.5	8	11	V
Reverse Leakage Current	I _R	V _{RWM} = 5.0V, Any I/O to GND		0.005	0.050	μA
Forward Voltage	V _F	I _r = 15mA Any I/O to GND	0.6		1.2	V
Clamping Voltage	V _c	I _{PP} = 1A, tp = 8/20µs Any I/O to GND			12	V
Clamping Voltage	V _c	I _{PP} = 5A, tp = 8/20µs Any I/O to GND			15	V
Junction Capacitance	C _j	V _R = 0V, f = 1MHz, Any I/O to GND		0.45	0.60	pF
		V _R = 0V, f = 1MHz, Between I/O pins		0.25	0.4	pF

Typical Characteristics

Non-Repetitive Peak Pulse Power vs. Pulse Time

Clamping Voltage vs. Peak Pulse Current

Note: Data is taken with a 10x attenuator

Normalized Capacitance vs. Reverse Voltage

© 2010 Semtech Corp.

Typical Characteristics

Insertion Loss S21 - I/O to I/O

CH1S21 LOG 6 dB / REF 0 dB 1: -0.2214 dB 800 MHz 2: -0.2095 dB 0 dB 900 MHz 錙 3: -0.6419 dB -6 dB 1.8 GHz -12 dB 4: -0.2029 dB 2.5 GHz -18 dB -24 dB -30 dB -36 dB -42 dB -48 dB 10 100 MHz MHz MHz GHz GHz START. 030 MHz STOP 300000000MHz

Insertion Loss S21 - I/O to GND

Applications Information

Device Connection and Layout for Protecting 2 High-Speed Lines

Selecting the correct component for ESD protection of high-speed circuits is critical. Not only does the designer have to consider device characteristics such as clamping voltage and junction capacitance, but package layout as well. A carefully chosen package can mean the difference between a layout optimized for high speed signals and one that requires uneven trace routing, vias, and transmission line stubs. The RClamp0542T is optimized for use on high-speed lines. It utilizes a flow through design that allows traces to be routed uninterrupted through the device. This virtually eliminates impedance mismatches and stubs in the high speed signal path. It also allows traces to remain tightly coupled, reducing EMI interference. Data lines enter the device at pins 1 and 2 and exit the devices at pins 5 and 6. Traces are kept continuous and unbroken. Ground connection is made at pins 3 and 4. The location and size of the pins simplifies connection to the ground plane using multiple vias. Parasitic inductance is thus reduced enhancing ESD clamping performance.

Protection USB 3.0 Interfaces

USB 3.0 expands the USB interface to include two superspeed differential pairs. These pairs are capable of transmitting data up to 5Gbps or almost 10 times faster than USB 2.0 high speed lines. In order to maintain backwards compatibility, the USB connector still retains the high speed D+ and D- differential pair and one VBus line. There are several advantages in using the RClamp0542T to protect the USB 3.0 superspeed lines. First, as mentioned above the flow through design of the package minimizes any discontinuity in the signal path. Also, using one package per signal pair eliminates cross talk between the transmit and receive pairs. Electrically, the low leakage current (5nA typical) will not affect the line termination impedance. Finally, it presents a typical loading capacitance of <0.5pF between I/O and ground. In some cases another device may be better suited for use on the high speed lines. For example, in mobile applications, RClamp1624T or RClamp3624T are better solutions for the high speed lines since they integrate high voltage protection for the VBus lines. Some USB 3.0 protection examples are shown in Figure 4 and 5.

Figure 1- Pin Configuration

Pin	Identification
1 - 2	Input Lines
5 - 6	Output Lines (No Internal Connection)
3 - 4	Ground

Figure 2 - Circuit Diagram

Applications Information

Figure 4 - USB 3.0 Protection Example (Standard Type A Receptacle)

Applications Information

10GbaseT Ethernet Protection

When designing Ethernet protection, the entire system must be considered. An Ethernet port includes interface magnetics in the form of transformers and common mode chokes. Transformers and chokes can be discrete components, but integrated solutions that include the RJ-45 connector, resistors, capacitors, and protection are also available. In either case, the transformer will provide a high level of common mode isolation to external voltages, but no protection for metallic (line-to-line) surges. During a metallic transient event, current will flow into one line, through the transformer and back to the source. As the current flows, it charges the windings of the transformer on the line side. Once the surge is removed, the windings on the line side will stop charging and will transfer its stored energy to the IC side where the PHY is located. The magnitude and duration of the surge is attenuated by the inductance

of the magnetics. The amount of attenuation will vary by vendor and configuration of the magnetics. It is this transferred energy that must be clamped by the protection circuitry.

A typical protection scheme which utilizes the RClamp0542T is shown in Figure 5. One device is placed across each line pair and is located on the PHY side of the transformer as close to the magnetics as possible. This is done to minimize parasitic inductance and improve clamping performance. Data lines are routed through the device minimizing any discontinuity in the signal path. The ground pins of the RClamp0542T are left unconnected. When connected in this configuration, the RClamp0542T presents a typical capcitance of less than 0.3pF between each line pair.

RClamp0542T

PROTECTION PRODUCTS

Outline Drawing - SLP1610P4T

Land Pattern - SLP1610P4T

RClamp0542T

Marking

Ordering Information

Part Number	iber Lead Finish		Reel Size	
RClamp0542T.TCT	Pb Free	3,000	7 Inch	

RailClamp and RClamp are marks of Semtech Corporation

YW = Date Code

Tape and Reel Specification

USER DIRECTION OF FEED

Pin 1 Location

User Direction of feed

Device Orientation in Tape Pin 1 in upper left towards sprocket holes

			Г

AO	В0	KO
1.30 +/-0.05 mm	1.75 +/-0.05 mm	0.70 +/-0.05 mm

Tape Width	B, (Max)	D	D1	E	F	K (MAX)	Ρ	PO	P2	T(MAX)	W
8 mm	4.2 mm	1.5 + 0.1 mm - 0.0 mm)	0.5 mm ±0.05	1.750±.10 mm	3.5±0.05 mm	2.4 mm	4.0±0.1 mm	4.0±0.1 mm	2.0±0.05 mm	0.4 mm	8.0 mm + 0.3 mm - 0.1 mm

Contact Information

Semtech Corporation **Protection Products Division** 200 Flynn Rd., Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804