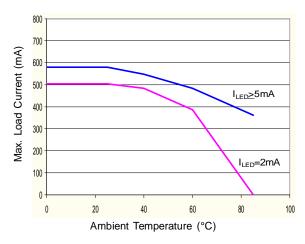


Electrical Specifications (-40°C \leq T_A \leq +85°C unless otherwise specified)

INPUT CHARACTERISTICS	PVD1352N	PVD1354N	Units
Minimum Control Current (see figures 1 and 2)			DC
For 500mA Continuous Load Current	2		mA@25°C
For 550mA Continuous Load Current	5		mA@40°C
For 350mA Continuous Load Current	5		mA@85°C
Maximum Control Current for Off-State Resistance at 25°C	10		μA(DC)
Control Current Range (Caution: current limit input LED. See figure 6)	2.0 to 25		mA(DC)
Maximum Reverse Voltage	6.0		V(DC)


OUTPUT CHARACTERISTICS	PVD1352N	PVD1354N	Units
Operating Voltage Range	0 to + 100		V _(PEAK)
Maxiumum Load Current 40°C LED 5mA	550		mA(DC)
Response Time @25°C (see figures 7 and 8)			
Max. T(on) @ 12mA Control, 50 mA Load, 100 VDC	150		μs
Max. T _(off) @ 12mA Control, 50 mA Load, 100 VDC	125		μs
Max. On-state Resistance 25°C (Pulsed) (fig. 4) 200 mA Load, 5mA Contro	1.5		Ω
Min. Off-state Resistance 25°C @ 80 VDC (see figure 5)	10 ⁸	1010	Ω
Max. Thermal Offset Voltage @ 5.0mA Control	0.2		μvolts
Min. Off-State dv/dt	1000		V/µs
Typical Output Capacitance	20		pF @ 50VDC

GENERAL CHARACTERISTICS		(PVD1352N and PVD1354N)	Units
Dielectric Strength: Input-Output		4000	V_{RMS}
Insulation Resistance: Input-Output @ 90V _{DC}		10 ¹² @ 25°C - 50% RH	Ω
Maximum Capacitance: Input-Output		1.0	pF
Max. Pin Soldering Temperature (1.6mm below seating plane, 10 seconds max.)		+260	
Ambient Temperature Range:	Operating	-40 to +85	°C
	Storage	-40 to +100	

International Rectifier does not recommend the use of this product in aerospace, avionics, military or life support applications. Users of this International Rectifier product in such applications assume all risks of such use and indemnify International Rectifier against all damages resulting from such use.

<u>www.irf.com</u> 2

Series PVD13N & PbF

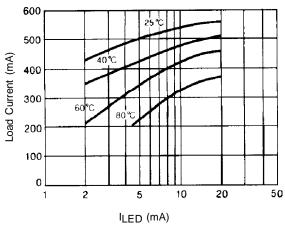
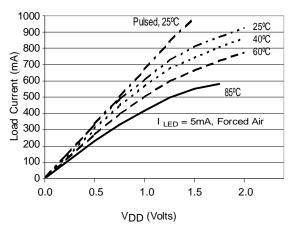



Figure 1. Current Derating Curves

Figure 2. Typical Control Current Requirements

5 mA Control | D = 100 mA | 5

Figure 3.Typical On Characteristics

Figure 4. Typical Normalized On-Resistance

<u>www.irf.com</u> 3

Series PVD13N & PbF

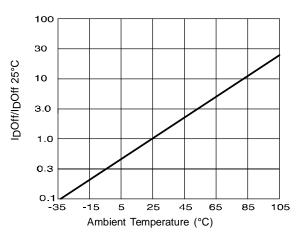


Figure 5. Typical Normalized Off-State Leakage

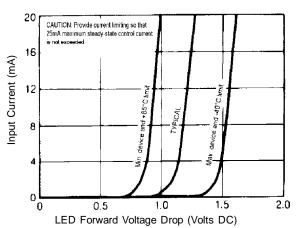


Figure 6. Input Characteristics (Current Controlled)

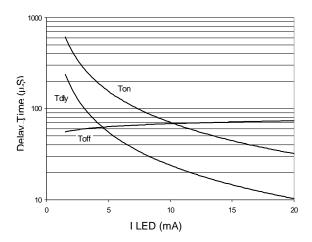


Figure 7.Typical Delay Times

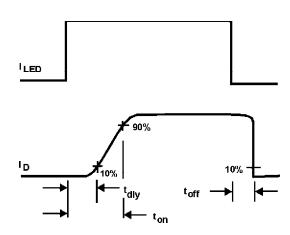
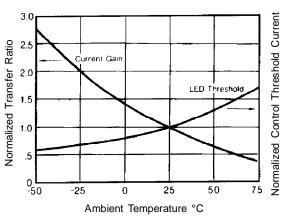



Figure 8. Delay Time Definitions

<u>www.irf.com</u> 4

International IOR Rectifier

Series PVD13N & PbF

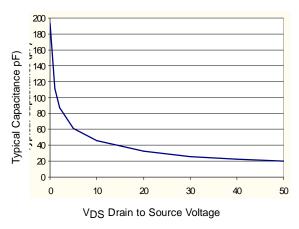
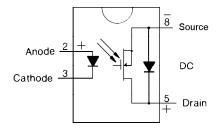
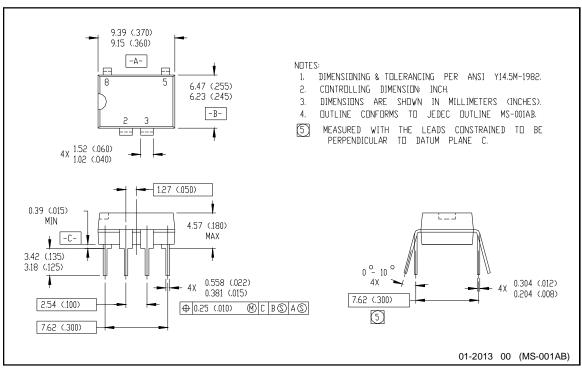
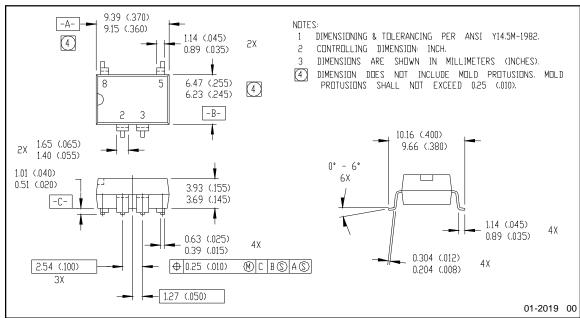



Figure 9. Typical Control Threshold and Transfer Ratio

Figure 10. Typical Output Capacitance


Wiring Diagram



www.irf.com 5

Series PVD13N & PbF

Case Outlines

2/2008

www.irf.com 6