

Block Diagram

Pin Description

Pin Number	Pin Name	Туре	Description		
1	FS0	Input (LVCMOS)	Frequency Select Pin. Use FS0=FS1=0 for all 25MHz input sources. Internal pull-down is 100K-Ohm		
2	X1	Input	Crystal input pin. No internal xtal load capacitance		
3	X2	Output	Crystal output pin. No internal xtal load capacitance		
4	V _{DD_OSC}	Power	V _{DD} for reference oscillator		
5	IN_SEL	Input (LVCMOS)	Input mux selection pin		
6	PLL_BYPS	Input (LVCMOS)	Optional mode to bypass PLL and have input reference source connect directly to outputs		
7	GND	Power	Ground pin		
8	FS1	Input (LVCMOS)	Frequency Select Pin. Use FS0=FS1=0 for all 25MHz input sources. Internal pull-down is 100K-Ohm		
9	QC_Mode	Input (LVCMOS)	Out mode control pin selects LVPECL or LVDS mode. If left floating, outputs are tri-stated		
10	V_{DDA}	Power	V _{DD} for analog circuitry		
11	GND	Power	Ground pin		
12	V _{DD_PLL}	Power	V _{DD} for PLL.		
13	GND	Power	Ground pin		
14	FS_B	Input (LVCMOS)	Frequency Select Pin for Bank B, Output Divider		
15	GND	Power	Ground pin		
16	FS_A	Input (LVCMOS)	Frequency Select Pin for Bank A, Output Divider		
17	GND	Power	Ground pin		
18	FS_C	Input (LVCMOS)	Frequency Select Pin for Bank C, Output Divider		
19	QA_Mode1	Input (LVCMOS)	Out mode control pin selects LVPECL or LVDS mode. If left floating, outputs are tri-stated		
20	V_{DD}	Power	V_{DD}		
21	GND	Power	Ground pin		
22,	QC-,	Output (Differential)	Park CIVICUADECI adatable autout Controllable OC Madania		
23	QC+	Output (Differential)	Bank C LVDS/LVPECL selectable output. Controlled by QC_Mode pin		
24	V _{DD_QC}	Power	V _{DD} for bank C outputs		
25	V _{DD_QA}	Power	V _{DD} for bank A outputs		
26,	QA4-,	Output (D: 6	Dowled IVDC/IVDECI calcatable control Controlled by OA 34 11		
27	QA4+	Output (Differential)	Bank A LVDS/LVPECL selectable output. Controlled by QA_Mode1 pin		
28,	QA3-,	Output (Differential)	Pank A IVDC/IVDECI salastable outsut Controlled by OA Madalasia		
29	QA3+	Output (Differential)	Bank A LVDS/LVPECL selectable output. Controlled by QA_Mode1 pin		
30, 31	QA2-, QA2+	Output (Differential)	Bank A LVDS/LVPECL selectable output. Controlled by QA_Mode0 pin		

Pin Description (Continued..)

Pin Number	Pin Name	Туре	Description	
32,	QA1-,	Output (Differential)	Bank A LVDS/LVPECL selectable output. Controlled by QA_Mode0 pin	
33	QA1+	Output (Differential)		
34,	QA0-,	Output (Differential)	Bank A LVDS/LVPECL selectable output. Controlled by QA_Mode0 pin	
35	QA0+	Output (Differential)		
36	$V_{\mathrm{DD}_\mathrm{QA}}$	Power	V _{DD} for bank A outputs	
37	$V_{\mathrm{DD}_\mathrm{QB}}$	Power	V _{DD} for bank B outputs	
38,	QB0-,	Output (Differential)	Pank P IVDC/IVDECI salastable output Controlled by OP Mode nin	
39	QB0+	Output (Differential)	Bank B LVDS/LVPECL selectable output. Controlled by QB_Mode pin	
40,	QB1-,	Output (Differential)	Dank D. IVDC/IVDECI calcatable output Controlled by OD. Medenia	
41	QB1+	Output (Differential)	Bank B LVDS/LVPECL selectable output. Controlled by QB_Mode pin	
42,	QB2-,	Output (Differential)	Donk D. IVDC/IVDECI calcatable output Controlled by OD. Moderin	
43	QB2+	Output (Differential)	Bank B LVDS/LVPECL selectable output. Controlled by QB_Mode pin	
44,	QA_Mode0,	Innut (INCMOS)	Out mode control pins select LVPECL, LVDS mode. If left floating,	
45	QB_Mode	Input (LVCMOS)	outputs are tri-stated	
46	IN-	Input (Differential)	Frequency input pin, differential (accepts: LVDS, LVPECL, HCSL)	
47	IN+	Input (Differential)	Frequency input pin, differential (accepts: LVDS, LVPECL, HCSL)	
48	IN_SE	Input	Frequency input pin, Single Ended	

Input Mux Selection

IN_SEL	Input
0	Select Crystal Input (Pins 2, 3)
1	Select IN+, IN- Differential Input (Pins 46, 47)
NC	Select IN_SE LVCMOS Input (pin 48)

PLL Bypass Control Function

PLL_BYPS	PLL operation
0	PLL enabled
1	PLL bypassed
NC	PLL enabled for Banks A, B; Bank C is driven directly by the output of the input mux.

Input Divider Control Table

FS0	Divider Ratio
0	1
1	5

PLL Feedback Divider Control Table

FS1	Feedback Divider Ratio	
0	25	
1	20	

Output Frequency Control Table

FS_A	FS_B	FS_C	Output Frequency
0	0	0	156.25
1	1	1	125
NC	NC	NC	312.5

Bank A Output Control

QA_Mode0	QA[2:0]	QA_Mode1	QA[4:3]
0	LVDS	0	LVDS
1	LVPECL	1	LVPECL
NC	Hi-Z	NC	Hi-Z

Bank B Output Control

QB_Mode	QB[2:0]
0	LVDS
1	LVPECL
NC	Hi-Z

C-bank Output Interface Control Configuration

QC_Mode	QC+/-
0	LVDS
1	LVPECL
NC	Hi-Z

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential, VDD	0.5V to +4.6V
ESD Protection (HBM)	2000 V

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Conditions

Symbol	Parameters	Min.	Max.	Units
V_{DD}	General Power Supply Voltage	3.0	3.6	V
T_{A}	Ambient Temperature	-40	85	°C
I_{DD}	Power Supply Current	All outputs loaded	425	
I_{DD_A}	Power Supply Current for pin10		13	mA
I _{DD_PLL}	Power Supply Current for pin12		30	
V_{DDA}	Analog Power Supply Voltage	2.7	3.6	7.7
$V_{\mathrm{DD_PLL}}$	PLL Power Supply Voltage	2.7	3.6	V

LVCMOS Input Electrical Characteristics

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
V _{IH}	Input High Voltage	ECO EC1	2			V
$V_{\rm IL}$	Input Low Voltage	FS0, FS1			0.8	V
V_{IH}	Input High Current	IN_SEL, PLL_BYPS,	2.6			V
V_{IL}	Input Low Current	FS_A, FS_B, FS_C, QA_Mode, QB_Mode, QC_Mode			0.8	V
I_{IH}	Input High Current	$V_{IN} = V_{DD}$			45	μΑ
I_{IL}	Input Low Current	$V_{IN} = 0V$	-45			μΑ
R _{pu}	Internal pull up resistance			100		ΚΩ
R _{dn}	Internal pull down resistance			100		ΚΩ
T_{DC}	Input Duty Cycle		35		65	%
C _{IN}	Input Capacitance ¹			1.5		pF
F _{IN}	Input Frequency		15		160	MHz

Note:

1. There is no internal load capacitance built in to the X1 and X2 pins

Differential Input Characteristics

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
V_{IH}	Input High Voltage				V _{DD} - 0.7	V
$V_{\rm IL}$	Input Low Voltage		V _{DD} - 2.0			V
V_{CM}	Input Bias Voltage		V _{DD} - 1.8	V _{DD} /2		V
R _{IN}	Input Differential Impedence ²		80	100	120	Ω
V _{IN-PP}	Input Differential Swing		0.3		1.8	V _{PP}
C _{IN}	Differential Input Capacitance			1.5		pF

Note:

LVPECL Output Characteristics (Over Operating Conditions. See Fig. 1 and 2 for load conditions.)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
F _{OUT}	Output Frequency		25		312.5	MHz
Trise / Tfall	Rise and Fall Time	20% to 80%, single- ended			400	ps
T _{DC}	Duty Cycle	Differential	47		53	%
J _{phase}	Integrated phase jitter	12KHz-20MHz @ 156.25MHz, 25MHz Xtal input		0.54	1	ps rms
T _{DIS}	Output Disable Time				80	ns
T _{EN}	Output Enable Time				80	ns
T _{LOCK}	PLL Lock Time				2	ms
V _{PP}	Output peak-peak Voltage	Single-ended	0.6		1	V
V _{OH}	Output High Voltage	$V_{\mathrm{DD}} = 3.3 \mathrm{V}$	V _{DD} -1.4		V _{DD} -0.9	V
V _{OL}	Output Low Voltage	$V_{\mathrm{DD}} = 3.3 \mathrm{V}$	V _{DD} -2.0		V _{DD} -1.7	V

LVDS Output Characteristics (Over Operating Conditions See Fig. 1 and 2 for load conditions.)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
F _{OUT}	Output Frequency		25		312.5	MHz
T _{rise} / T _{fall}	Rise and Fall Time	20% to 80%, single- ended			270	ps
T_{DC}	Duty Cycle	Differential	47		53	%
J _{phase}	Integrated phase jitter	12KHz-20MHz @ 156.25MHz, 25MHz Xtal input		0.54	1	ps rms

^{1. 2.} Differential input can be AC or DC coupled.

LVDS Output Characteristics (Continued..)

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
T _{DIS}	Output Disable Time				80	
T _{EN}	Output Enable Time				80	ns
T _{LOCK}	PLL Lock Time				2	ms
$ V_{AMP} ^1$	Differential Output Voltage Amplitude	$\begin{array}{c c} V_{OH} \ _{\text{-}} V_{OL} \ with \\ 100\Omega \ external \ termination \end{array}$	250		520	17
		$ V_{OH} - V_{OL} $ with 120Ω external termination	250		600	mV
V _{OH}	Output High Voltage				1.8	
V _{OL}	Output Low Voltage		0.925			V
Vos	Output offset voltage		1.125		1.375	
R _{OL}	Differential output impedance		85		140	Ω

Note:

Power Supply Noise Rejection Specification

Parameter	Conditions	Min.	typ	Max.	Units
Supply Noise induced phase spur @ 156.25 NHz output (see note)	Fm = 100kHz to 400KHz		-50		dBc

Note:

Crystal Characteristic (link to "http://www.pericom.com/saronix" for more detailed crystal specifications)

Parameters	Description	Min	Тур	Max.	Units
OSCmode	Mode of Oscillation	Fundamental			
FREQ	Frequency		25		MHz
ESR ⁽¹⁾	Equivalent Series Resistance			50	Ohm
Cload	Load Capacitance		18		pF
Cshunt	Shunt Capacitance			7	pF
	Drive Level			0.1	mW

Note:

 $^{1. \ \} Valid \ for \ part \ numbers \ with \ date \ code \ after \ Y1338.$

 $^{1. \ \} Measured with 50 mVp-p Sinusoidal Interference on the supply VDDQx, measured with the supply filter as shown in Figure 2.$

^{1.} ESR value is dependent upon frequency of oscillation

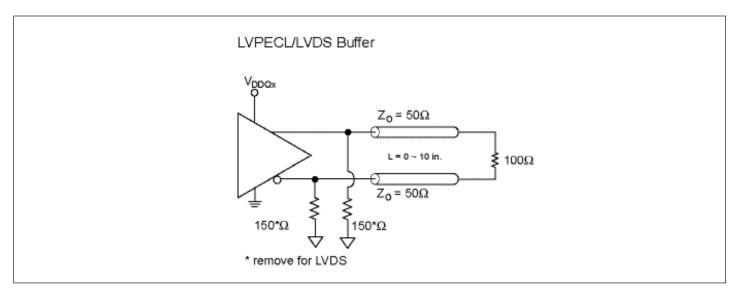
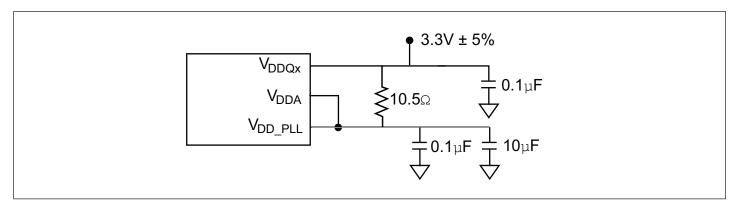
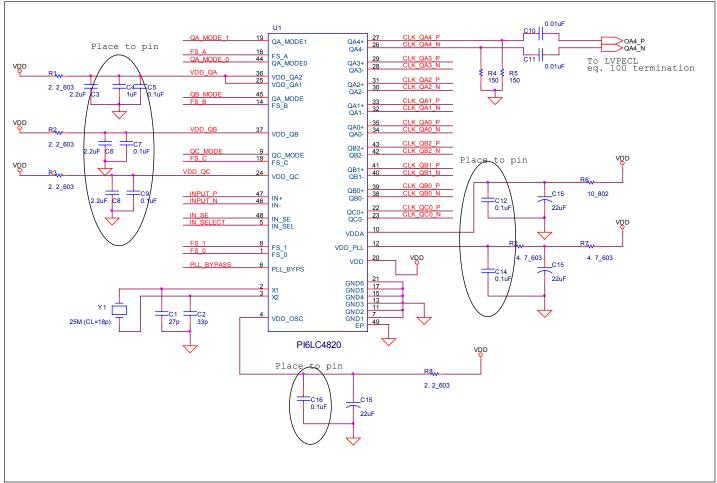


Figure 1. Test Circuit

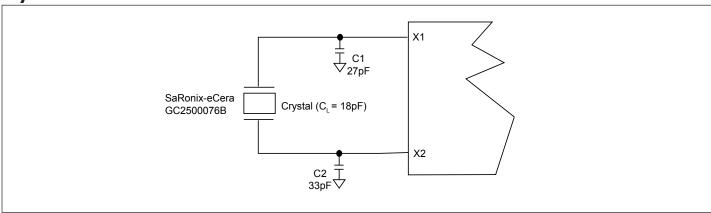


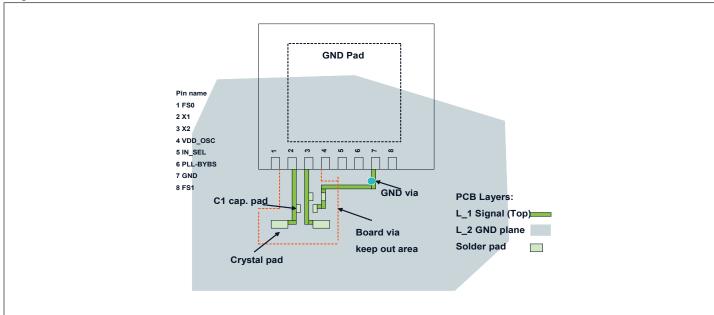

Figure 2. Power Supply Filter

Application Notes

PI6LC4820 is a high performance and low jitter clock generator for advanced Gigabit Ethernet systems. It has three independent banks whose outputs can be set to LVPECL or LVDS and in 3 outputs frequencies: 125MHz, 156.25MHz, and 312.5MHz. It is critical to ensure the power supply is properly decoupled and the layout around the crystal is properly routed to achieve this low jitter performance. The following guide is highly recommended to be adopted into the system PCB designs.

Power Decoupling Schematic

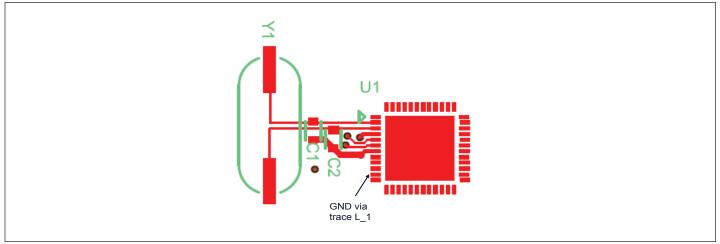

- 1) It is suggested to use the schematic's decoupling RC value to get best board noise filtering
- 2) Typical LVPECL is using 150Ω pull down in AC or DC coupling drive according to ASIC ref_clk I/O spec
- 3) The crystal circuit C1/C2 load values are for CL=18pF crystal, they can be adjusted for other CL crystals
- 4) Please refer to the datasheet for other static I/O logic set for the request work modes and output frequencies


Crystal circuit connection

The following diagram shows PI6LC4820 crystal circuit connection with a parallel crystal. For the CL=18pF crystal, it is suggested to use C1=27pF, C2=33pF. C1 and C2 can be adjusted to fine tune to the target ppm of crystal oscillator according to different board layouts.

Crystal Oscillator Circuit

Crystal Circuit Oscillator


Recommended Crystal Specification

Pericom recommends:

- a) GC2500003 XTAL 49S/SMD(4.0 mm), 25M, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/GC_GF.pdf
- b) FY2500081, SMD 5x3.2(4P), 25M, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/FY F9.pdf
- c) FL2500047, SMD 3.2x2.5(4P), 25M, CL=18pF, +/-20ppm, http://www.pericom.com/pdf/datasheets/se/FL.pdf

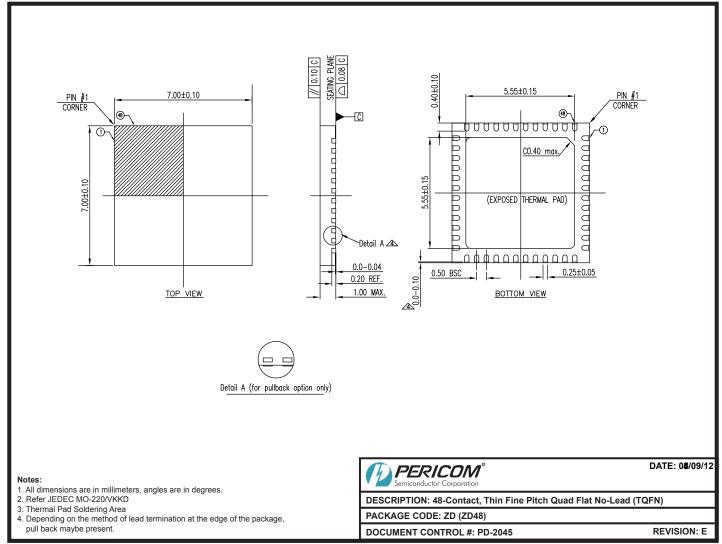
Crystal Layout Example

- 1) X1 pin is the most sensitive as crystal amplifier input
- 2) X1 and X2 pins connected to crystal trace loop should be very narrow without any board via in the loop and keep the via out of the area
- 3) Place crystal as close to the IC as possible along with C1/C2 load caps. There should be no via at the top layer to the crystal
- 4) Keep crystal load cap. C1/C2 to GND sides as close as possible so that the minimum board noise could be coupled into the caps

4. VDD and GND Pins Layout

- 1) Small value decoupling caps. (0.1uF, 1uF, and 2.2uF) should be placed close to each VDD pin or via
- 2) Each GND pin should have its own via to the common GND plane
- 3) Thermal pad must be connected to the GND plane for better thermal distribution and signal conducting with reasonable via counts (>6)

5. LVPECL Differential Output Layout


- 1) 150Ω pull-down should be put close to clock output side with symmetrical position in one pair
- 2) Do not share 150Ω pull-down GND via between each pairs

6. Differential Input

- 1) This device differential input (pin 47, 48) can accept 25MHz, 125MHz, and 156.25MHz frequencies in most common differential signals (LVPECL, LVDS, HCSL etc.) in either AC or DC coupling, with proper IN_SEL, FS0, and FS1 setting
- 2) The device differential input has equivalent 100Ω differential termination on chip, so PCB 100Ω external termination is normally not necessary.

Packaging Mechanical: 48-Pin TQFN (ZD)

12-0458

Note:

1. • For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description
PI6LC4820ZDE	ZD	48-Pin, Pb-free & Green (TQFN)

Notes

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com