MOSFET - Power, N-Channel 100 V, 17 A, 81 mΩ

NTD6416AN, NVD6416AN

Features

- Low R_{DS(on)}
- High Current Capability
- 100% Avalanche Tested
- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

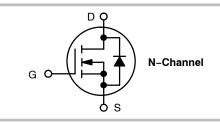
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Para	Symbol	Value	Unit		
Drain-to-Source Voltage			V_{DSS}	100	V
Gate-to-Source Voltag	ge – Conti	nuous	V_{GS}	±20	V
Continuous Drain	Steady State	T _C = 25°C	I _D	17	Α
Current	State	T _C = 100°C		11	
Power Dissipation	Steady State	T _C = 25°C	P _D	71	W
Pulsed Drain Current $t_p = 10 \mu s$			I _{DM}	62	Α
Operating and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			I _S	17	Α
Single Pulse Drain-to-Source Avalanche Energy (V_{DD} = 50 Vdc, V_{GS} = 10 Vdc, $I_{L(pk)}$ = 17 A, L = 0.3 mH, R_G = 25 Ω)			E _{AS}	43	mJ
Lead Temperature for Soldering Purposes, 1/8" from Case for 10 Seconds			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

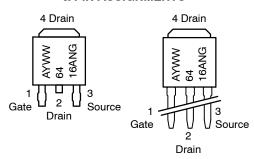
Parameter	Symbol	Max	Unit
Junction-to-Case (Drain) Steady State	$R_{\theta JC}$	2.1	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	40	


1. Surface mounted on FR4 board using 1 sq in pad size, (Cu Area 1.127 sq in [2 oz] including traces).

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
100 V	81 mΩ @ 10 V	17 A



DPAK CASE 369AA STYLE 2

IPAK CASE 369D STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENTS

A = Assembly Location*

Y = Year

WW = Work Week

6416AN = Device Code

G = Pb-Free Package

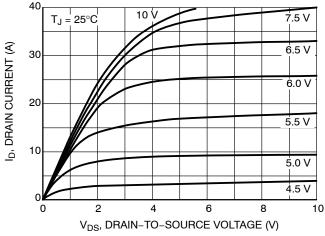
* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS			<u> </u>				•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				112		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		V _{DS} = 100 V	T _J = 125°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	±20 V			±100	nA
ON CHARACTERISTICS (Note 3)			•		•	•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 3$	250 μΑ	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				7.7		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	= 17 A		73	81	mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 5 V, I _D =	10 A		12		S
CHARGES, CAPACITANCES AND GA	TE RESISTAN	CE	•		•	•	
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V			620		pF
Output Capacitance	C _{OSS}				110		1
Reverse Transfer Capacitance	C _{RSS}				50		1
Total Gate Charge	Q _{G(TOT)}				20		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 80 V, I _D = 17 A			1.0		1
Gate-to-Source Charge	Q _{GS}				3.6		1
Gate-to-Drain Charge	Q_{GD}		-		10		1
Plateau Voltage	V_{GP}				5.8		V
Gate Resistance	R_{G}				2.4		Ω
SWITCHING CHARACTERISTICS (Not	e 4)		•		•	•	•
Turn-On Delay Time	t _{d(on)}				9.2		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD}	= 80 V,		22		
Turn-Off Delay Time	t _{d(off)}	I _D = 17 A, R _G =	6.1 Ω΄		24		1
Fall Time	t _f	1			20		1
DRAIN-SOURCE DIODE CHARACTER	RISTICS		•		•	•	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 17 A	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$		0.85	1.2	V
Reverse Recovery Time	+		1J = 125 C		56		- no
•	t _{rr}						ns
Charge Time	t _a	$V_{GS} = 0 \text{ V, } dI_{S}/dt = I_{S} = 17 \text{ A}$	100 A/μs,		41		4
Discharge Time	t _b	IS = 17 A			15	-	
Reverse Recovery Charge	Q_{RR}				135		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

3. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.

4. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

40 $V_{DS} \ge 10 V$ 35 ID, DRAIN CURRENT (A) 30 25 20 15 = 25°C 10 T_J = 125°C 5 $T_J' = -55^\circ C$ οL 2 3 6 8 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

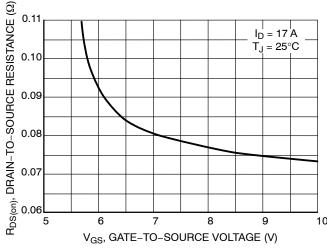
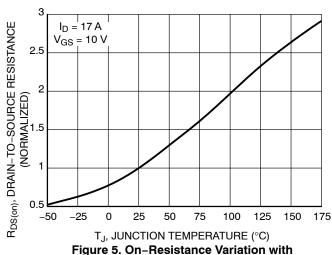



Figure 3. On-Region versus Gate Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

Temperature

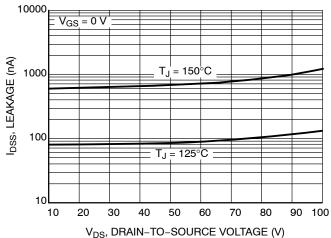
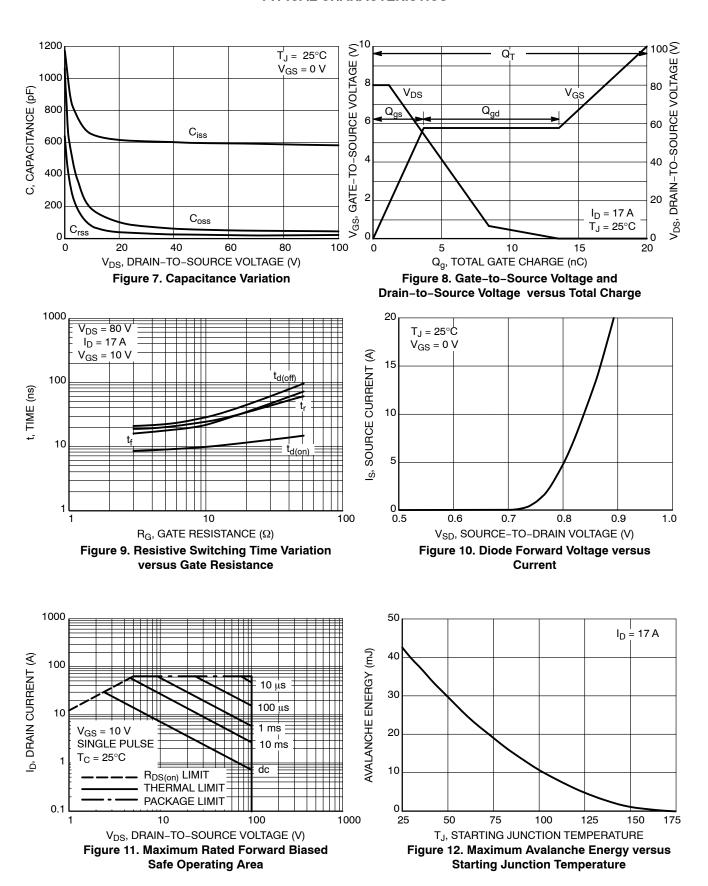



Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

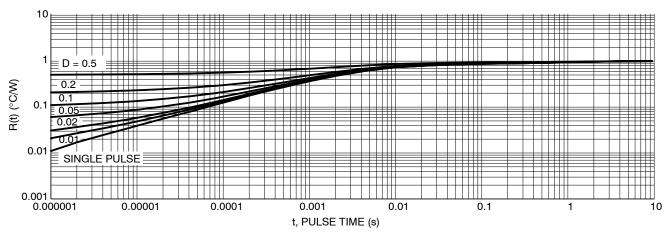


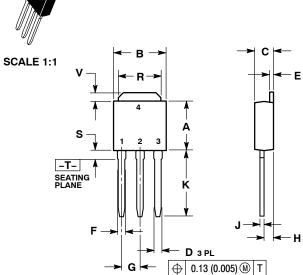
Figure 13. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping†
NTD6416ANT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD6416AN-1G	IPAK (Pb-Free)	75 Units / Rail
NVD6416ANT4G*	DPAK (Pb-Free)	2500 / Tape & Reel
NVD6416ANT4G-VF01*	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

^{*}NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.


MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

DATE 15 DEC 2010

STYLE 2:

PIN 1. GATE

3

STYLE 6: PIN 1. MT1 2. MT2 3. GATE

2. DRAIN

4. DRAIN

MT2

SOURCE

STYLE 3: PIN 1. ANODE

2. CATHODE

4. CATHODE

3 ANODE

STYLE 7: PIN 1. GATE 2. COLLECTOR

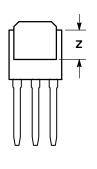
3. EMITTER

COLLECTOR

STYLE 1: PIN 1. BASE

3

STYLE 5: PIN 1. GATE


2. ANODE 3. CATHODE

ANODE

2. COLLECTOR

EMITTER

COLLECTOR

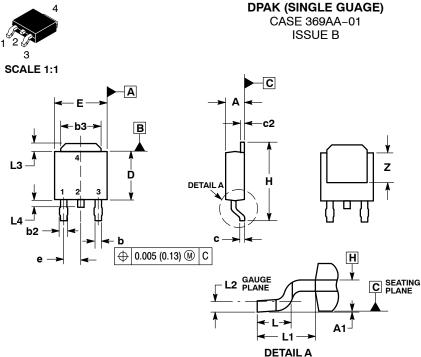
NOTES:

- DIMENSIONING AND TOLERANCING PER
 ANSI V14 5M 1992
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

MARKING DIAGRAMS

STYLE 4:
PIN 1. CATHODE
2. ANODE
3. GATE
4. ANODE
Discrete


XXXXX
ALYWW
X

Nonneconnic Devices Code

xxxxxxxx = Device Code
A = Assembly Location
IL = Wafer Lot
Y = Year
WW = Work Week

DOCUME	NT NUMBER:	98AON10528D Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED or "CONTROLL" or "CONTROLLED or "CONTROLLED or "CONTROLL" or "CONTROLLED or "CONTROLLED or "CONTROLL" or "CONTROLL" or "CONTROLL" or "CONTROL			
D	ESCRIPTION:	IPAK (DPAK INSERTION MOUNT)		PAGE 1 OF 1	

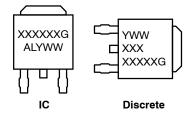
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 03 JUN 2010

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108 REF		2.74 REF	
L2	0.020 BSC		0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

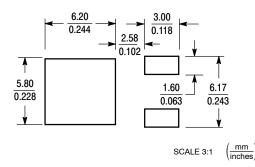

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE STYLE 1: PIN 1. BASE STYLE 2: PIN 1. GATE PIN 1. ANODE 2. COLLECTOR 3. EMITTER 2. CATHODE 3. ANODE 2. DRAIN 3. SOURCE 4. COLLECTOR 4. DRAIN CATHODE STYLE 5: STYLE 6: STYLE 7: PIN 1. GATE 2. ANODE 3. CATHODE PIN 1. GATE 2. COLLECTOR PIN 1. MT1 2. MT2

STYLE 3:

3. EMITTER

COLLECTOR

GENERIC MARKING DIAGRAM*



XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

SOLDERING FOOTPRINT*

3. GATE

4. ANODE

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Reportant Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

ROTATED 90° CW

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

^{*}This information is generic. Please refer to device data sheet for actual part marking.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnoized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative