

Figure 1. NCP623 Block Diagram

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{in}	12	V
Power Dissipation and Thermal Resistance Maximum Power Dissipation Case 488AE (DFN6, 3x3) MN Suffix Thermal Resistance, Junction-to-Air Thermal Resistance, Junction-to-Case Case 846A (Micro8) DM Suffix Thermal Resistance, Junction-to-Air Thermal Resistance, Junction-to-Case	P _D R _{θJA} **psi–JC* or Ψ _{JC} R _{θJA} R _{θJC}	Internally Limited 161 13 240 105	W °C/W
Operating Ambient Temperature Range	T _A	-40 to +85	°C
Maximum Junction Temperature	T _{Jmax}	150	°C
Storage Temperature Range	T _{stg}	-60 to +150	°C
ESD Protection – Human Body Model – Machine Model	V _{ESD}	2000 200	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
**C" ("case") is defined as the solder-attach interface between the center of the exposed pad on the bottom of the package, and the board to

which it is attached.

^{**} Refer to the JEDEC Specs (51-2, 51-6).

Input Voltage Range	ELECTRICAL CHARACTERISTICS (For typical values T _A = 25°C, for min/max values	$T_A = -40^{\circ}C$	c to +85°	C, Max	$T_{J} = 150^{\circ}$	°C)
Input Voltage Range	Characteristics	Symbol	Min	Тур	Max	Unit
ON/OFF Input Current (All versions)	CONTROL ELECTRICAL CHARACTERISTICS					
VoNOFF = 2.4 V	Input Voltage Range	V _{ON/OFF}	2.5	1	V _{in}	>
Logic *10**, i.e. OFF State Q.2	ON/OFF Input Current (All versions) V _{ON/OFF} = 2.4 V	I _{ON/OFF}	-	2.5	_	μΑ
Logic "1", i.e. ON State 2,2 - -	ON/OFF Input Voltages (All versions)	V _{ON/OFF}			0.0	٧
Current Consumption in OFF State (All versions) IQOFF OFF Mode Current: Vin = Vout + 1.0 V. lout = 0 mA IQOFF - 0.1 2.0 μA OFF Mode Current: Vin = Vout + 1.0 V. lout = 0 mA IQON - 170 200 μA Current Consumption in ON State (All versions) IQON - 170 - 170 200 μA Current Consumption in Saturation ON State (All versions) ON Mode Sat Current: Vin = 2.5 V or Vin = Vout - 0.4 V (Whichever is Higher), lout = 0 mA IQSAT - 900 1400 μA Current Limit Vin = Vout + 1.0 V. (All versions) (Note 1) Vout + 1.0 V, CAI Versions) (Note 1) IMAX 175 210 - mA MAX Vout + 2.8 2.55 2.55 2.55 2.55 V 2.45 2.5 2.55			2.2		-	
OFF Mode Current: V _{IN} = V _{out} + 1.0 V, I _{out} = 0 mA	CURRENTS PARAMETERS					
Current Consumption in ON State (All versions) ON Mode Sat Current: V _{In} = V _{out} + 1.0 V, I _{out} = 0 mA IQ _{ON} - 170 200 μA ON Mode Sat Current: V _{In} = V _{out} + 1.0 V, I _{out} = 0 mA IQ _{SAT} - 900 1400 μA IA _{SAT} - 900 1400 IA _{SAT} - 900 IA _{SAT} - 900 1400 IA _{SAT} - 900 IA _{SAT}	Current Consumption in OFF State (All versions)	IQ _{OFF}				μΑ
ON Mode Sat Current: V _{In} = V _{out} + 1.0 V, I _{out} = 0 mA - 170 200	OFF Mode Current: V _{IN} = V _{out} +1.0 V, I _{out} = 0 mA		-	0.1	2.0	
ON Mode Sat Current: Vity = 2.5 V or Vin = Vout - 0.4 V (Whichever is Higher), I _{out} = 0 mA	Current Consumption in ON State (All versions) ON Mode Sat Current: $V_{in} = V_{out} + 1.0 \text{ V}$, $I_{out} = 0 \text{ mA}$	IQ _{ON}	-	170	200	μΑ
V _{In} = V _{out} + 1.0 V, T _A = 25°C, 1.0 mA < I _{out} < 150 mA V _{out} 2.45 2.5 2.55 2.55 V 2.8 Suffix 2.94 3.0 3.06 3.23 3.3 3.06 3.23 3.3 3.07 3.05 3.23 3.3 3.37 3.02 4.0 4.08 4.0 4.08 4.05 4.08 4.0 4.08 4.0 4.08 4.41 4.5 4.59 4.0 4.08 4.41 4.5 4.59 4.0 4.08 4.41 4.5 4.59 4.0 4.08 4.41 4.5 4.59 4.0 4.08 4.41 4.5 4.59 4.0 4.08 4.41 4.5 4.59 4.0 5.0 5.1 V 2.89 Suffix 2.0 5.0 5.1 V 2.41 2.5 2.59 2.70 2.8 2.90 2.0 3.0 3.0 Suffix 3.18 3.3 3.42 3.18 3.3 3.42 3.18 3.3 3.42 3.5 5.17 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Current Consumption in Saturation ON State (All versions) ON Mode Sat Current: $V_{IN} = 2.5 \text{ V}$ or $V_{in} = V_{out} - 0.4 \text{ V}$ (Whichever is Higher), $I_{out} = 0 \text{ mA}$	IQ _{SAT}	_	900	1400	μΑ
V _{In} = V _{out} + 1.0 V, T _A = 25°C, 1.0 mA < I _{out} < 150 mA V _{out} 2.45 2.5 2.55 2.55 V 2.8 Suffix 2.94 3.0 3.06 3.23 3.3 3.06 3.23 3.3 3.37 3.05 3.23 3.3 3.37 3.92 4.0 4.08 4.0 4.08 4.41 4.5 4.59 4.0 4.08 4.41 4.5 4.59 4.50 5.0 5.1 V 2.80 Suffix 2.90 3.0 3.11 3.3 3.42 2.89 Suffix 2.70 2.8 2.90 3.0 3.11 3.3 3.42 4.8 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.1 4.5 4.5 2.59 2.70 2.8 2.90 3.0 3.11 3.3 3.42 4.3 4.0 4.1 4.3 4.0 4.1 4.3 4.5 4.66 4.83 5.0 5.17 7 2.0 10 Image Image <	Current Limit V _{in} = V _{out} + 1.0 V, (All versions) (Note 1)	I _{MAX}	175	210	_	mA
2.8 Suffix 3.0 Suffix 3.0 Suffix 4.0 Suffix 4.0 Suffix 4.5 Suffix 5.0 Suffix 4.5 Suffix 5.0 Suffix 4.5 Suffix 5.0 Suffix 4.6 Suffix 5.0 Suffix 4.7 Suffix 5.0 Suffix 4.7 Suffix 5.0 Suffix 4.8 Suffix 5.0 Suffix 4.9 Suffix 4.0 Suffix 4.0 Suffix 4.0 Suffix 4.0 Suffix 4.0 Suffix 4.5 Suffix 4.5 Suffix 4.5 Suffix 4.5 Suffix 4.5 Suffix 4.5 Suffix 4.6 Suffix 4.7 Suffix 4.8 Suffix 4.8 Suffix 4.9 Suffix	$V_{in} = V_{out} + 1.0 \text{ V}, T_A = 25^{\circ}\text{C}, 1.0 \text{ mA} < I_{out} < 150 \text{ mA}$					V
3.0 Suffix 3.3 Suffix 4.0 Suffix 4.5 Suffix 5.0 Suffix 4.5 Suffix 5.0 Suffix 4.5 Suffix 5.0 Suffix 4.5 Upon Suffix 4.6 Suffix 4.7 Upon Suffix 4.7 Upon Suffix 4.7 Upon Suffix 4.8 Upon Suffix 4.8 Upon Suffix 4.8 Upon Suffix 4.8 Upon Suffix 4.9 Upon Suffix 4.0 Suffix 4						
3.3 Suffix 4.0 Suffix 4.0 Suffix 3.23 3.3 3.37 4.0 Suffix 4.0 Suffix 5.0 Suffix 5.0 Suffix 5.0 Suffix V _{In} = V _{out} + 1.0 V, -40°C < T _A < 85°C, 1.0 mA < I _{out} < 150 mA Vout 2.5 Suffix 2.89 Suffix 3.30 Units 3.30 Un						
4.0 Suffix 5.0 Suffix V _{In} = V _{Out} + 1.0 V, -40°C < T _A < 85°C, 1.0 mA < I _{out} < 150 mA V _{In} = V _{Out} + 1.0 V, -40°C < T _A < 85°C, 1.0 mA < I _{out} < 150 mA Vout V _{In} = V _{Out} + 1.0 V, -40°C < T _A < 85°C, 1.0 mA < I _{out} < 150 mA Vout 2.41						
#.5 SURIFIX 4.41						
Vout Vout 1.0 V, -40°C < TA < 85°C, 1.0 mA < lout < 150 mA						
Vout 1.0 V, -40°C < T _A < 85°C, 1.0 mA < lout < 150 mA	5.0 Suffix					
2.5 Suffix 2.8 Suffix 3.0 Suffix 3.3 Suffix 4.0 Suffix 4.5 Suffix 4.5 Suffix 5.0 Suffix 4.5 Suffix	V ₁ = V ₁ + 1.0 V ₂ 40°C × T ₂ × 85°C 1.0 mΔ × L ₁ × 150 mΔ	٧.			0	V
2.8 Suffix 3.0 Suffix 3.3 Suffix 4.0 Suffix 4.5 Suffix 5.0 Suffix Eline Regulation (All versions) Vout + 1.0 V < Vin < 12 V, lout = 60 mA Load Regulation (All versions) Vout = 1.0 to 60 mA Dropout Voltage (All versions) Vout = 1.0 to 150 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions) Vin = Vout = 10 mA Dropout Voltage (All versions)		v out	2 41	25	2 50	V
3.0 Suffix 3.3 Suffix 4.0 Suffix 4.5 Suffix 5.0 Suffix 4.5 Suffix 5.0 Suffix LINE AND LOAD REGULATION, DROPOUT VOLTAGES Line Regulation (All versions) Vout + 1.0 V < Vin < 12 V, lout = 60 mA Load Regulation (All versions) Vin = Vout + 1.0 V Regline - 2.0 10 MV - 8.0 25 - 15 35 - 20 45 lout = 1.0 to 150 mA Dropout Voltage (All versions) Vin - Vout Vin - 30 90 Vin - Vout Vin -						
3.3 Suffix 3.8 3.3 3.42 4.0 Suffix 4.5 Suffix 5.0 Suffix 4.5 Suffix 4.5 Suffix 4.34 4.5 4.66 4.83 5.0 5.17 LINE AND LOAD REGULATION, DROPOUT VOLTAGES	3.0 Suffix					
4.5 Suffix 5.0 Suffix 4.5 Suffix 5.0 Suffix LINE AND LOAD REGULATION, DROPOUT VOLTAGES Line Regulation (All versions) Vout + 1.0 V < V _{in} < 12 V, I _{out} = 60 mA Load Regulation (All versions) I _{out} = 1.0 to 60 mA V _{in} = V _{out} + 1.0 V I _{out} = 1.0 to 150 mA Dropout Voltage (All versions) V _{in} - V _{out} - 30 90 10 mV V _{in} - 10 mA V _{in} - 10 mA V _{in} - 10 mA Dropout Voltage (All versions)						
4.34 4.5 4.66 4.83 5.0 5.17						
A.83 5.0 5.17						
Line Regulation (All versions) Vout + 1.0 V < Vin < 12 V, I _{out} = 60 mA Load Regulation (All versions) I _{out} = 1.0 to 60 mA Vin = Vout + 1.0 V Vin = 1.0 to 150 mA Dropout Voltage (All versions) Vin = Vout + 1.0 V Vin = Vout + 1.0 V Regline - 2.0 10 mV Regline - 8.0 25 - 15 35 - 20 45 Win = Vout + 1.0 V Vin = Vout + 1.0 V Regline - 8.0 25 - 15 35 - 20 45 Win - 20 45 Win - 20 45 Win - 20 45 Vin - 30 90 Vi	5.0 Suffix					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LINE AND LOAD REGULATION DROPOUT VOLTAGES		1.00	0.0	0.17	
Vout + 1.0 V < Vin < 12 V, I _{out} = 60 mA - 2.0 10 Load Regulation (All versions) Vin = V _{out} + 1.0 V Reg _{load} - 8.0 25 I _{out} = 1.0 to 60 mA - 15 35 I _{out} = 1.0 to 100 mA - 20 45 Dropout Voltage (All versions) Vin − Vout - 30 90 I _{out} = 10 mA 137 230 10 mV 120 120	Line Regulation (All versions)	Reg _{line}				mV
I	$V_{out} + 1.0 \text{ V} < V_{in} < 12 \text{ V}, I_{out} = 60 \text{ mA}$	Ss	-	2.0	10	
I _{out} = 1.0 to 60 mA - 15 35 I _{out} = 1.0 to 100 mA - 20 45 I _{out} = 1.0 to 150 mA V _{in} - - 30 90 I _{out} = 10 mA - 137 230 100 mA - 100 mA 100 mA	Load Regulation (All versions) $V_{in} = V_{out} + 1.0 \text{ V}$	Reg _{load}				mV
I _{out} = 1.0 to 100 mA			_	8.0	25	
I _{out} = 1.0 to 100 mA I _{out} = 1.0 to 150 mA Dropout Voltage (All versions) I _{out} = 10 mA Vin - Vout - 30 90 137 230 1490 360	$I_{out} = 1.0 \text{ to } 60 \text{ mA}$		-	15		
I _{out} = 1.0 to 150 mA Dropout Voltage (All versions) I _{out} = 10 mA Vin - Vout - 30 90 - 137 230			_	20	45	
Dropout Voltage (All versions) V _{in} - V _{out} - 30 90 - 137 230	$I_{out} = 1.0 \text{ to } 100 \text{ mA}$					
l _{out} = 10 mA	I _{out} = 1.0 to 150 mA					
l _{out} = 10 mA	Dropout Voltage (All versions)	V _{in} –				mV
I _{out} = 100 mA	I _{out} = 10 mA		_ _			
	I _{out} = 100 mA		-	180	260	
I _{out} = 150 mA	l _{out} = 150 mA					

 $\textbf{ELECTRICAL CHARACTERISTICS} \text{ (For typical values } T_A = 25^{\circ}\text{C, for min/max values } T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C, Max } T_J = 150^{\circ}\text{C)}$

Characteristics	Symbol	Min	Тур	Max	Unit
DYNAMIC PARAMETERS	•				
Ripple Rejection (All versions) $V_{in} = V_{out} + 1.0 \text{ V}, V_{pp} = 1.0 \text{ V}, f = 1.0 \text{ kHz}, I_{out} = 60 \text{ mA}$		60	70	-	dB
Line Transient Response $V_{in} = V_{out} + 1.0 \text{ V}$ to $V_{out} + 4.0 \text{ V}$, $I_{out} = 60 \text{ mA}$, $d(V_{in})/dt = 15 \text{ mV}/\mu\text{s}$		_	1.0	_	mV
Output Noise Voltage (All versions) $C_{out} = 1.0~\mu\text{F, l}_{out} = 60~\text{mA, f} = 100~\text{Hz to }100~\text{kHz}$	V _{RMS}				μVrms
C _{bypass} = 10 nF		-	25 40	-	
C _{bypass} = 1.0 nF		_	65	-	
C _{bypass} = 0 nF					
Output Noise Density C_{out} = 1.0 μ F, I_{out} = 60 mA, f = 1.0 kHz	V _N	_	230	-	nV/ √Hz
Output Rise Time (All versions) $C_{out} = 1.0~\mu\text{F, l}_{out} = 30~\text{mA, V}_{ON/OFF} = 0~\text{to } 2.4~\text{V} \\ 1\%~\text{of ON/OFF Signal to } 99\%~\text{of Nominal Output Voltage}$	t _r				
Without Bypass Capacitor		-	40 1.1	-	μs ms
With C _{bypass} = 10 nF					
THERMAL SHUTDOWN	_				
Thermal Shutdown (All versions)		_	150	_	°C

Thermal Shutdown (All versions)

- 150 - °C

1. I_{MAX} (Output Current Limit) is the current measured when the output voltage drops below 0.3 V with respect to V_{out} at I_{out} = 30 mA.

DEFINITIONS

Load Regulation – The change in output voltage for a change in load current at constant chip temperature.

Dropout Voltage – The input/output differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 100 mV below its nominal value (which is measured at 1.0 V differential), dropout voltage is affected by junction temperature, load current and minimum input supply requirements.

Output Noise Voltage – The RMS AC voltage at the output with a constant load and no input ripple, measured over a specified frequency range.

Maximum Power Dissipation – The maximum total dissipation for which the regulator will operate within specifications.

Quiescent Current – Current which is used to operate the regulator chip and is not delivered to the load.

Line Regulation – The change in input voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Line Transient Response – Typical over– and undershoot response when input voltage is excited with a given slope.

Thermal Protection – Internal thermal shutdown circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. When activated, typically 150°C, the regulator turns off. This feature is provided to prevent catastrophic failures from accidental overheating.

Maximum Package Power Dissipation – The maximum package power dissipation is the power dissipation level at which the junction temperature reaches its maximum value i.e. 125° C. The junction temperature is rising while the difference between the input power ($V_{CC} \times I_{CC}$) and the output power ($V_{out} \times I_{out}$) is increasing.

Depending on ambient temperature, it is possible to calculate the maximum power dissipation, maximum load current or maximum input voltage (see Application Hints: Protection).

The maximum power dissipation supported by the device is a lot increased when using appropriate application design. Mounting pad configuration on the PCB, the board material and also the ambient temperature are affected the rate of temperature rise. It means that when the $I_{\rm C}$ has good thermal conductivity through PCB, the junction temperature will be "low" even if the power dissipation is great.

The thermal resistance of the whole circuit can be evaluated by deliberately activating the thermal shutdown of the circuit (by increasing the output current or raising the input voltage for example).

Then you can calculate the power dissipation by subtracting the output power from the input power. All variables are then well known: power dissipation, thermal shutdown temperature (150°C for NCP623) and ambient temperature.

APPLICATION HINTS

Input Decoupling – As with any regulator, it is necessary to reduce the dynamic impedance of the supply rail that feeds the component. A 1.0 μF capacitor either ceramic or tantalum is recommended and should be connected close to the NCP623 package. Higher values will correspondingly improve the overall line transient response.

Output Decoupling – Output capacitors exhibiting ESRs ranging from a few $m\Omega$ up to 3.0 Ω can safely be used. The minimum decoupling value is 1.0 μF and can be augmented to fulfill stringent load transient requirements. The regulator works with ceramic chip capacitors as well as tantalum devices.

Noise Performances – Unlike other LDOs, the NCP623 is a true low–noise regulator. With a 10 nF bypass capacitor, it typically reaches 25 $\mu VRMS$ overall noise between 100 Hz and 100 kHz. Spectral density graphics as well as noise dependency versus bypass capacitor information is included in this datasheet.

The bypass capacitor impacts the startup phase of the NCP623 as depicted by the data–sheet curves. A typical 1.0 ms settling time is achieved with a 10 nF bypass capacitor. However, due to its low–noise architecture, the NCP623 can operate without bypass and thus offers a typical 20 μ s startup phase. In that case, the typical output noise stays lower than 65 μ VRMS between 100 Hz – 100 kHz.

Protections – The NCP623 includes several protections functions. The output current is internally limited to a minimum of 175 mA while temperature shutdown occurs if the die heats up beyond 150°C. These value lets you assess the maximum differential voltage the device can sustain at a given output current before its protections come into play.

The maximum dissipation the package can handle is given by:

$$P_{max} = \frac{T_{Jmax} - T_{A}}{R_{\theta JA}}$$

If T_{Jmax} is internally limited to 150°C, then the NCP623 can dissipate up to 595 mW @ 25°C.

The power dissipated by the NCP623 can be calculated from the following formula:

$$Ptot = \langle V_{in} \, \cdot I_{gnd}(I_{out}) \rangle + \langle V_{in} \, - \, V_{out} \, \rangle \, \cdot \, I_{out}$$

or

$$Vin_{max} = \frac{Ptot + V_{out} \cdot I_{out}}{I_{gnd} + I_{out}}$$

If a 150 mA output current is needed, the ground current is extracted from the data-sheet curves: 6.5 mA @ 150 mA. For a NCP623NW28R2 (2.8 V), the maximum input voltage will then be 6.48 V, a rather comfortable margin.

Typical Application – The following figure portraits the typical application for the NCP623 where both input/output decoupling capacitors appear.

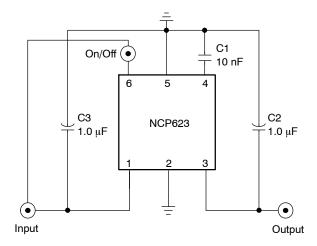


Figure 2. A Typical NCP623 Application with Recommended Capacitor Values (DFN6)

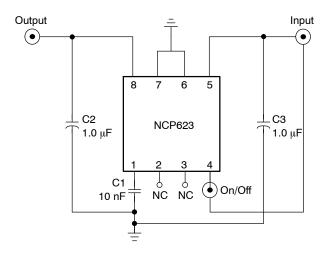


Figure 3. A Typical NCP623 Application with Recommended Capacitor Values (Micro8)

NCP623 Wake-up Improvement – In portable applications, an immediate response to an enable signal is vital. If noise is not a concern, the NCP623 without a bypass capacitor settles in nearly 20 μ s and typically delivers 65 μ VRMS between 100 Hz and 100 kHz.

In ultra low-noise systems, the designer needs a 10 nF bypass capacitor to decrease the noise down to 25 μ VRMS between 100 Hz and 100 kHz. With the addition of the 10 nF capacitor, the wake-up time expands up to 1.0 ms as shown on the data-sheet curves. If an immediate response is wanted, Figure 5 provides a solution to charge the bypass

capacitor with the enable signal without degrading the noise response of the NCP623.

At power-on, C4 is discharged. When the control logic sends its wake-up signal by going high, the PNP base is momentarily tied to ground. The PNP switch closes and immediately charges the bypass capacitor C1 toward its operating value. After a few µs, the PNP opens and becomes totally transparent to the regulator.

This circuit improves the response time of the regulator which drops from 1.0 ms down to 30 µs. The value of C4 needs to be tweaked in order to avoid any bypass capacitor overload during the wake-up transient.

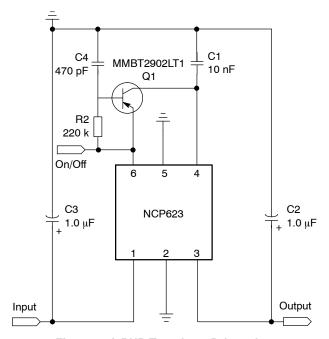


Figure 4. A PNP Transistor Drives the Bypass Pin when Enable Goes High (DFN6)

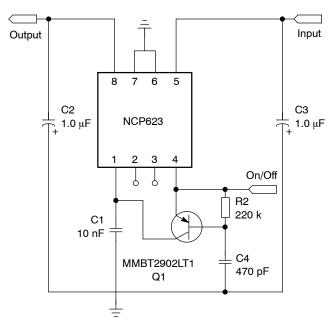


Figure 5. A PNP Transistor Drives the Bypass Pin when Enable Goes High (Micro8)

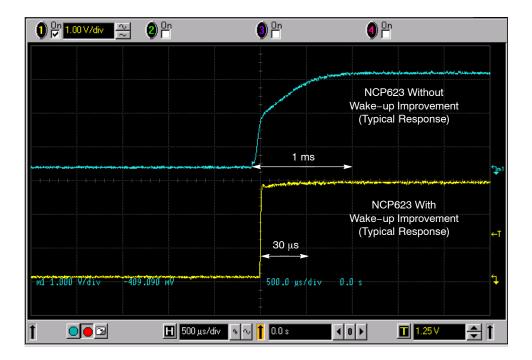


Figure 6. NCP623 Wake-up Improvement with Small PNP Transistor

The PNP connected to the bypass pin does not degrade the noise response of the NCP623. Figure 7 displays the noise

density using the setup in Figure 5. The typical noise level is $26 \, \mu V_{RM}$ (100 Hz to 25 kHz) at I_{OUT} = 60 mA.

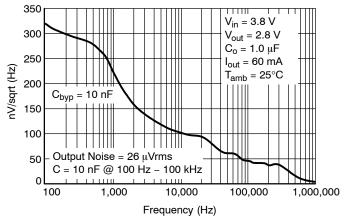
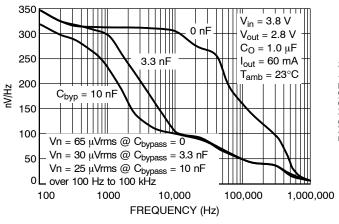



Figure 7. Noise Density of the NCP623 with a 10 nF Bypass Capacitor and a Wake-up Improvement Network

TYPICAL PERFORMANCE CHARACTERISTICS

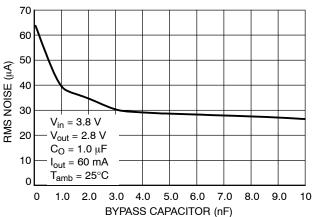
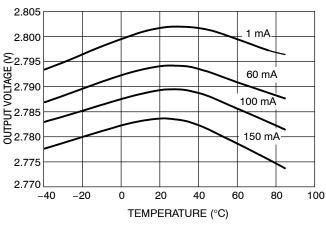



Figure 8. Noise Density versus Bypass Capacitor

Figure 9. RMS Noise versus Bypass Capacitor (100 Hz - 100 kHz)

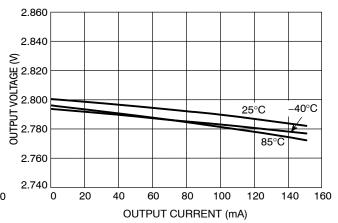
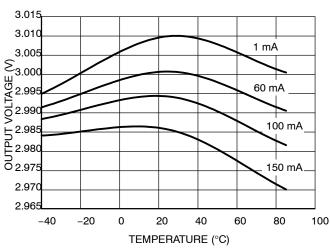
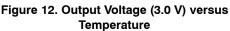




Figure 10. Output Voltage (2.8 V) versus Temperature

Figure 11. Output Voltage (2.8 V) versus Iout

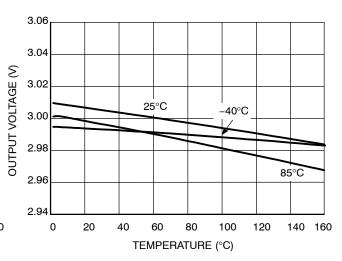


Figure 13. Output Voltage (3.0 V) versus I_{out}

TYPICAL PERFORMANCE CHARACTERISTICS

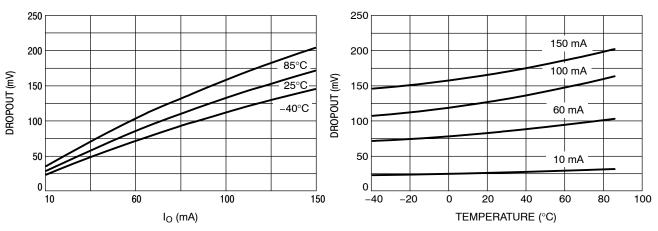


Figure 14. Dropout Voltage versus Iout

Figure 15. Dropout Voltage versus Temperature

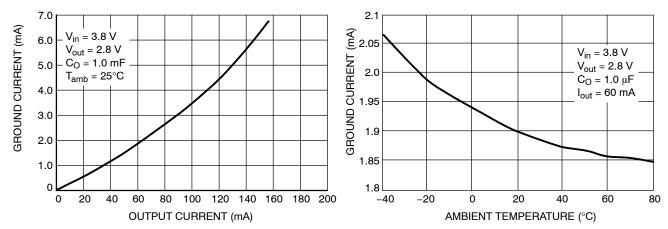


Figure 16. Ground Current versus Output Current

Figure 17. Ground Current versus Ambient Temperature

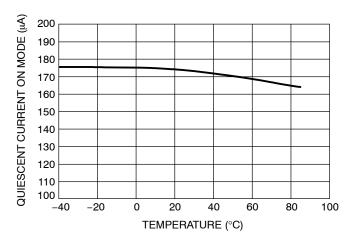
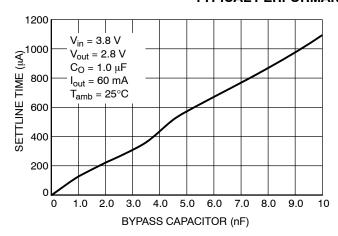



Figure 18. Quiescent Current versus Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

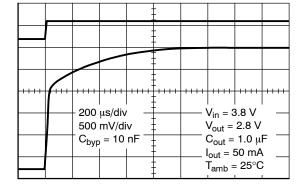
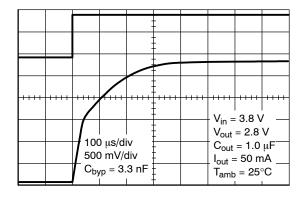



Figure 19. Output Voltage Settling Time versus Bypass Capacitor

Figure 20. Output Voltage Settling Shape $C_{bypass} = 10 \text{ nF}$

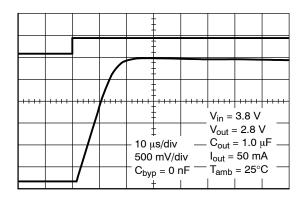


Figure 21. Output Voltage Settling Shape $C_{bypass} = 3.3 \text{ nF}$

Figure 22. Output Voltage Settling Shape without Bypass Capacitor

TYPICAL PERFORMANCE CHARACTERISTICS

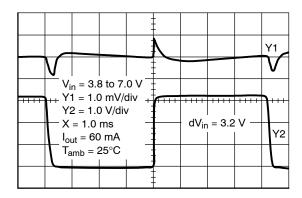
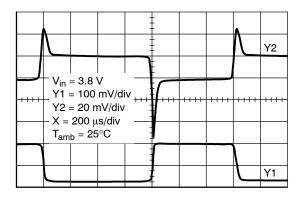
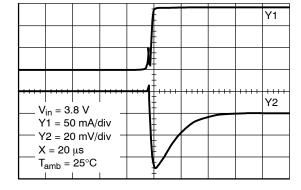




Figure 23. Line Transient Response

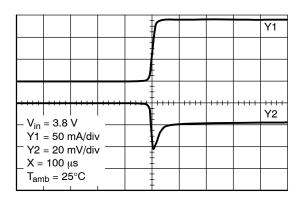

Y1: OUTPUT CURRENT, Y2: OUTPUT VOLTAGE

Figure 24. I_{out} = 3.0 mA to 150 mA

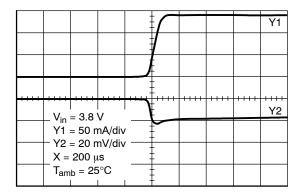

Y1: OUTPUT CURRENT, Y2: OUTPUT VOLTAGE

Figure 25. I_{Slope} = 100 mA/ μ s (Large Scale) I_{out} = 3.0 mA to 150 mA

Y1: OUTPUT CURRENT, Y2: OUTPUT VOLTAGE

Figure 26. I_{Slope} = 6.0 mA/ μ s (Large Scale) I_{out} = 3.0 mA to 150 mA

Y1: OUTPUT CURRENT, Y2: OUTPUT VOLTAGE

Figure 27. I_{Slope} = 2.0 mA/ μ s (Large Scale) I_{out} = 3.0 mA to 150 mA

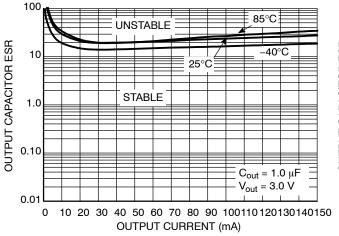


Figure 28. Output Stability versus Output Current Over Temperature (1.0 μ F, 3.0 V)

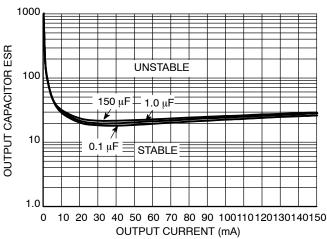


Figure 29. Output Stability with Output Capacitor Change

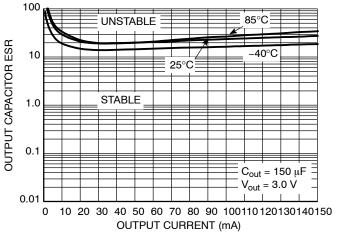


Figure 30. Output Stability versus Output Current Over Temperature (150 µF, 3.0 V)

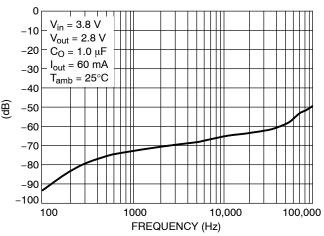


Figure 31. Ripple Rejection versus Frequency with 10 nF Bypass Capacitor

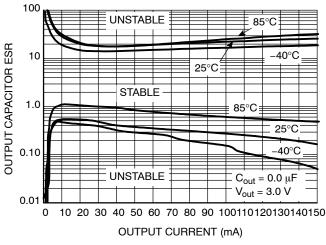


Figure 33. Output Stability versus Output Current Over Temperature (0.1 μ F, 3.0 V)

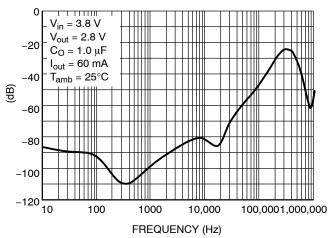
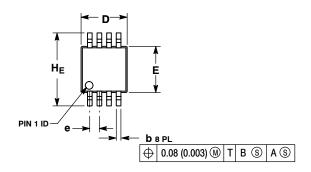
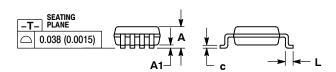


Figure 32. Ripple Rejection versus Frequency without Bypass Capacitor


ORDERING INFORMATION


Device	Version	Marking	Package	Shipping [†]
NCP623DM-28R2G	2.8 V	LJA	Micro8 (Pb-Free)	
NCP623DM-30R2G	3.0 V	LBJ	Micro8 (Pb-Free)	
NCP623DM-33R2G	3.3 V	LFW	Micro8 (Pb-Free)	4000 Tape & Reel
NCP623DM-40R2	4.0 V	LGN	Micro8	,
NCP623DM-40R2G	4.0 V	LGN	Micro8 (Pb-Free)	
NCP623DM-50R2G	5.0 V	LFX	Micro8 (Pb-Free)	
NCP623MN-25R2G	2.5 V	25	DFN6, 3x3 (Pb-Free)	
NCP623MN-28R2G	2.8 V	28	DFN6, 3x3 (Pb-Free)	
NCP623MN-30R2G	3.0 V	30	DFN6, 3x3 (Pb-Free)	
NCP623MN-33R2	3.3 V	33	DFN6, 3x3	0000 Tana (Daal
NCP623MN-33R2G	3.3 V	33	DFN6, 3x3 (Pb-Free)	3000 Tape & Reel
NCP623MN-40R2	4.0 V	40	DFN6, 3x3	
NCP623MN-40R2G	4.0 V	40	DFN6, 3x3 (Pb-Free)	
NCP623MN-50R2G	5.0 V	50	DFN6, 3x3 (Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

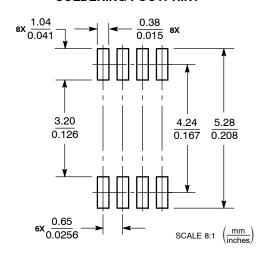
PACKAGE DIMENSIONS

Micro8™ CASE 846A-02 **ISSUE H**

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

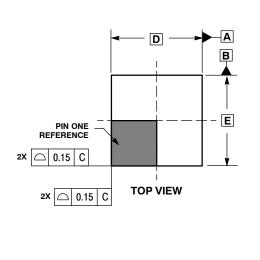
 2. CONTROLLING DIMENSION: MILLIMETER.


 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.05	0.08	0.15	0.002	0.003	0.006
b	0.25	0.33	0.40	0.010	0.013	0.016
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	2.90	3.00	3.10	0.114	0.118	0.122
е	0.65 BSC				0.026 BSC)
L	0.40	0.55	0.70	0.016	0.021	0.028
HE	4.75	4.90	5.05	0.187	0.193	0.199


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

6 PIN DFN, 3x3x0.9 CASE 488AE-01 **ISSUE B**

DETAIL B

SIDE VIEW

D2

BOTTOM VIEW

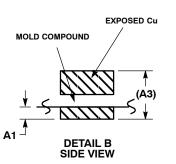
(A3)

е

E₂

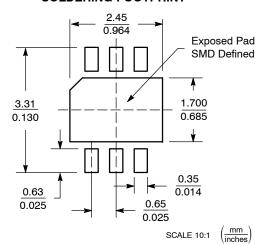
6X b NOTE 3

0.10


0.05 С

С A B

DETAIL A


DETAIL A BOTTOM VIEW

- NOTES:
 1. DIMENSIONS AND TOLERANCING PER
- DIMENSIONS AND TOLERANCING PER
 ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN
 0.25 AND 0.30 MM FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED
 PAD AS WELL AS THE TERMINALS.
 TERMINAL BANY HAVE MOUNT COMPOUND.
- TERMINAL b MAY HAVE MOLD COMPOUND MATERIAL ALONG SIDE EDGE. MOLD FLASHING MAY NOT EXCEED 30 MICRONS ONTO BOTTOM SURFACE OF TERMINAL b.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.80	1.00	
A 1	0.00	0.05	
АЗ	0.20	0.25	
b	0.18	0.30	
D	3.00 BSC		
D2	2.25	2.55	
Е	3.00 BSC		
E2	1.55	1.85	
е	0.65 BSC		
K	0.20		
L	0.30	0.50	
L1	0.00	0.021	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Micro8 is a trademark of International Rectifier.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partner rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

0.10 C

Α1

△ 0.08 С

SEATING PLANE

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative