

MM74HC4040 12-Stage Binary Counter

Features

Typical propagation delay: 16nsWide operating voltage range: 2–6V

■ Low input current: 1µA Max.

■ Low quiescent current: 80µA Max. (74HC Series)

■ Output drive capability: 10 LS-TTL loads

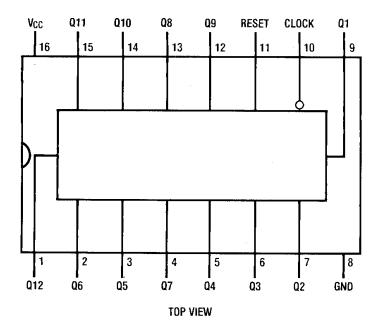
General Description

The MM74HC4040 is a high speed binary ripple carry counter. This counter is implemented utilizing advanced silicon-gate CMOS technology to achieve speed performance similar to LS-TTL logic while retaining the low power and high noise immunity of CMOS.

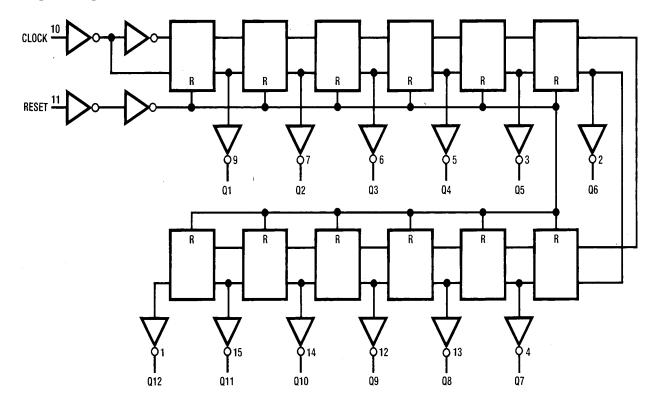
The MM74HC4040 is a 12-stage counter. This device is incremented on the falling edge (negative transition) of the input clock, and all their outputs are reset to a low level by applying a logical high on their reset input.

This device is pin equivalent to the CD4040. All inputs are protected from damage due to static discharge by protection diodes to $V_{\rm CC}$ and ground.

Ordering Information


Order Number	Package Number	Package Description
MM74HC4040M ⁽¹⁾	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC4040SJ ⁽¹⁾	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC4040MTC ⁽¹⁾	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC4040N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Note


1. Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.

©1984 Fairchild Semiconductor Corporation MM74HC4040 Rev. 1.4

Connection Diagram

Logic Diagram

Absolute Maximum Ratings⁽²⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5 to +7.0V
V _{IN}	DC Input Voltage	–1.5 to V _{CC} +1.5V
V _{OUT}	DC Output Voltage	-0.5 to V_{CC} +0.5V
I _{CD}	Clamp Diode Current	±20mA
I _{OUT}	DC Output Current, per pin	±25mA
I _{CC}	DC V _{CC} or GND Current, per pin	±50mA
T _{STG}	Storage Temperature Range	−65°C to +150°C
P _D	Power Dissipation	
	Note 3	600mW
	S.O. Package only	500mW
T _L	Lead Temperature (Soldering 10 seconds)	260°C

Note:

- 2. Unless otherwise specified all voltages are referenced to ground.
- 3. Power Dissipation temperature derating plastic "N" package: -12mW/°C from 65°C to 85°C.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Supply Voltage		6	V
V _{IN} , V _{OUT}	DC Input or Output Voltage		V _{CC}	V
T _A	T _A Operating Temperature Range		+85	°C
t _r , t _f	Input Rise and Fall Times			
	$V_{CC} = 2.0V$		1000	ns
	V _{CC} = 4.5V		500	
	V _{CC} = 6.0V		400	

DC Electrical Characteristics⁽⁴⁾

				T _A =	25°C	T _A = -40 to 85°C	T _A = -55 to 125°C	
Symbol	Parameter	Conditions	V _{CC}	Тур.	G	Guaranteed	Limits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	
			6.0V		4.2	4.2	4.2	
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	
			6.0V		1.8	1.8	1.8	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL} :						V
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	2.0	1.9	1.9	1.9	
			4.5V	4.5	4.4	4.4	4.4	1
			6.0V	6.0	5.9	5.9	5.9	1
		$V_{IN} = V_{IH}$ or V_{IL} :						1
		$ I_{OUT} \le 4.0 \text{mA}$	4.5V	4.2	3.98	3.84	3.7	
		$ I_{OUT} \le 5.2 \text{mA}$	6.0V	5.7	5.48	5.34	5.2	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL} :						V
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	0	0.1	0.1	0.1	
			4.5V	0	0.1	0.1	0.1	
			6.0V	0	0.1	0.1	0.1	
		$V_{IN} = V_{IH}$ or V_{IL} :						
		I _{OUT} ≤ 4.0 mA	4.5V	0.2	.26	0.33	0.4	
		I _{OUT} ≤ 5.2 mA	6.0V	0.2	.26	0.33	0.4	
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0\mu A$	6.0V		8.0	80	160	μA

Note:

4. For a power supply of 5V $\pm 10\%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

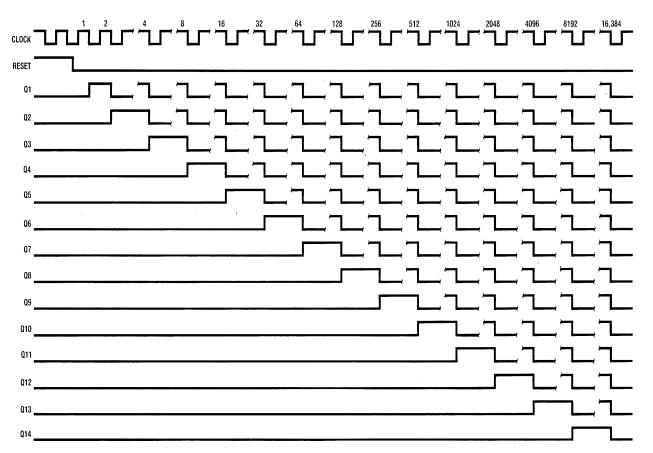
 $V_{CC} = 5V, T_A = 25^{\circ}C, C_L = 15pF, t_r = t_f = 6ns$

Symbol	Parameter	Conditions	Тур.	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clock to Q	(5)	17	35	ns
t _{PHL}	Maximum Propagation Delay Reset to any Q		16	40	ns
t _{REM}	Minimum Reset Removal Time		10	20	ns
t _W	Minimum Pulse Width		10	16	ns

Note:

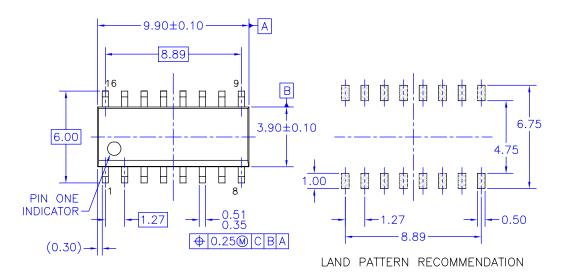
5. Typical Propagation delay time to any output can be calculated using: $t_P = 17 + 12(N-1)$ ns; where N is the number of the output, Q_W , at $V_{CC} = 5V$.

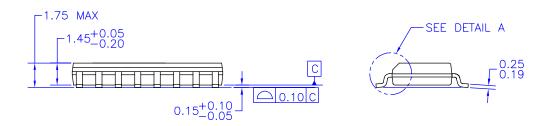
AC Electrical Characteristics

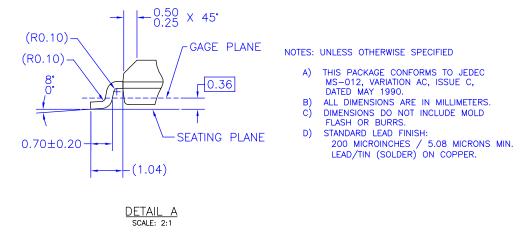

 $\rm V_{CC}$ = 2.0V to 6.0V, $\rm C_L$ = 50pF, $\rm t_r$ = $\rm t_f$ = 6ns (unless otherwise specified).

				T _A =	25°C	T _A = -40 to 85°C	T _A = -55 to 125°C	
Symbol	Parameter	Conditions	V _{CC}	Тур	G	uaranteed	Limits	Units
f _{MAX}	Maximum Operating		2.0V	10	6	5	4	MHz
	Frequency		4.5V	40	30	24	20	
			6.0V	50	35	28	24	
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	80	210	265	313	ns
	Delay Clock to Q ₁		4.5V	21	42	53	63	
			6.0V	18	36	45	53	
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	80	125	156	188	ns
	Delay Between Stages from Q_n to Q_{n+1}		4.5V	18	25	31	38	
	α _n ιο α _{n+1}		6.0V	15	21	26	31	
t _{PHL}	Maximum Propagation		2.0V	72	240	302	358	ns
	Delay Reset to any Q (4020 and 4040)		4.5V	24	48	60	72	
	(4020 and 4040)		6.0V	20	41	51	61	
t _{REM}	t _{REM} Minimum Reset Removal Time		2.0V		100	126	149	ns
			4.5V		20	25	50	
			6.0V		16	21	25	
t _W	Minimum Pulse Width		2.0V		90	100	120	ns
			4.5V		16	20	24	
			6.0V		14	18	20	
t _{TLH} , t _{THL}	Maximum Output Rise and		2.0V	30	75	95	110	ns
	Fall Time		4.5V	10	15	19	22	
			6.0V	9	13	16	19	
t _r , t _f Maximum Input Rise and Fall Time	Maximum Input Rise and				1000	1000	1000	ns
	Fall Time				500	500	500	
					400	400	400	
C _{PD}	Power Dissipation Capacitance ⁽⁶⁾	(per package)		55				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note:

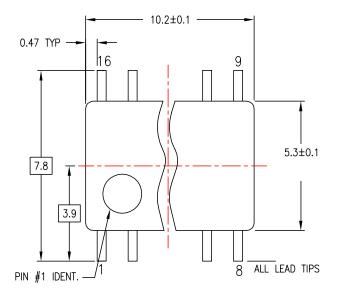

6. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.


Timing Diagram



Physical Dimensions

Dimensions are in millimeters unless otherwise noted.



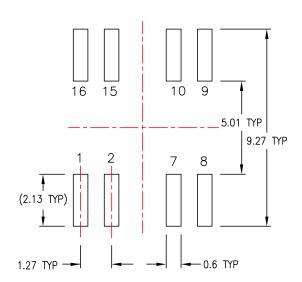
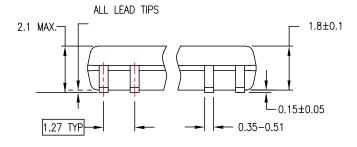
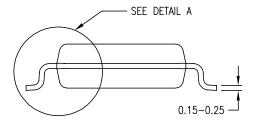
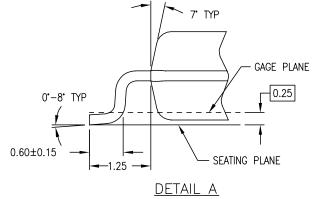

M16AREVK

Figure 1. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A


Physical Dimensions (Continued)


Dimensions are in millimeters unless otherwise noted.

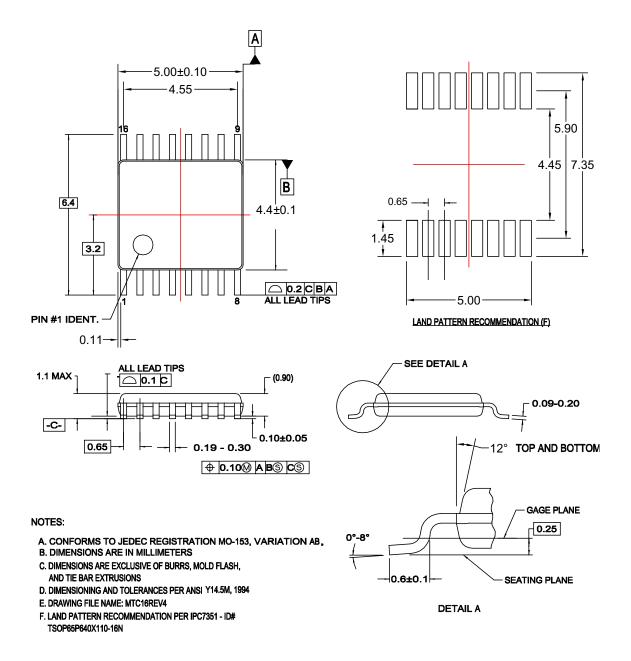
LAND PATTERN RECOMMENDATION



DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
 B. DIMENSIONS ARE IN MILLIMETERS.
 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.



M16DREVC

Figure 2. 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

MTC16rev4

Figure 3. 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Physical Dimensions (Continued)

Dimensions are in inches (millimeters) unless otherwise noted.

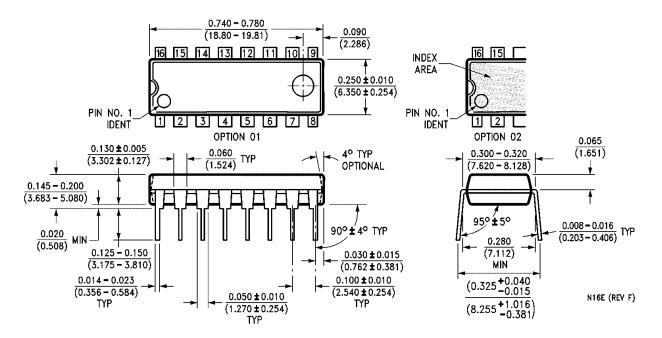


Figure 4. 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks

ACEx [®]	Green FPS™ e-Series™	Power-SPM™	SyncFET™
Build it Now™	GTO™	PowerTrench [®]	The Power Franchise®
CorePLUS™	i-Lo™	Programmable Active Droop™	тм
CROSSVOLT TM	IntelliMAX™	QFET [®]	TinyBoost™
CTL™	ISOPLANAR™	QS™	TinyBuck™
Current Transfer Logic™	MegaBuck™	QT Optoelectronics™	TinyLogic [®]
EcoSPARK [®]	MICROCOUPLER™	Quiet Series™	TINYOPTO™
FACT Quiet Series™	MicroPak™	RapidConfigure™	TinyPower™
FACT [®]	Motion-SPM™	SMART START™	TinyPWM™
FAST [®]	OPTOLOGIC [®]	SPM [®]	TinyWire™
FastvCore™	OPTOPLANAR [®]	STEALTH™	uSerDes™
FPS™	PDP-SPM™	SuperFET™	μ3erDes "" UHC [®]
FRFET®	Power220 [®]	SuperSOT™-3	UniFET™
Global Power Resource SM	Power247 [®]	SuperSOT™-6	VCX™
Green FPS™	POWEREDGE®	SuperSOT™-8	VOX

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I28

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com