

MCP2561/2

Block Diagram

1.0 DEVICE OVERVIEW

The MCP2561/2 is a high-speed CAN, fault-tolerant device that serves as the interface between a CAN protocol controller and the physical bus. The MCP2561/2 device provides differential transmit and receive capability for the CAN protocol controller, and is fully compatible with the ISO-11898-2 and ISO-11898-5 standards. It will operate at speeds of up to 1 Mb/s.

Typically, each node in a CAN system must have a device to convert the digital signals generated by a CAN controller to signals suitable for transmission over the bus cabling (differential output). It also provides a buffer between the CAN controller and the high-voltage spikes that can be generated on the CAN bus by outside sources.

1.1 Mode Control Block

The MCP2561/2 supports two modes of operation:

- Normal
- Standby

These modes are summarized in [Table 1-1](#).

TABLE 1-1: MODES OF OPERATION

Mode	STBY Pin	RxD Pin	
		LOW	HIGH
Normal	LOW	Bus is dominant	Bus is recessive
Standby	HIGH	Wake-up request is detected	No wake-up request detected

1.2 Transmitter Function

The CAN bus has two states: Dominant and Recessive. A Dominant state occurs when the differential voltage between CANH and CANL is greater than $V_{DIFF}(D)(I)$. A Recessive state occurs when the differential voltage is less than $V_{DIFF}(R)(I)$. The Dominant and Recessive states correspond to the Low and High state of the TXD input pin, respectively. However, a Dominant state initiated by another CAN node will override a Recessive state on the CAN bus.

1.3 Receiver Function

In Normal mode, the RxD output pin reflects the differential bus voltage between CANH and CANL. The Low and High states of the RxD output pin correspond to the Dominant and Recessive states of the CAN bus, respectively.

1.1.1 NORMAL MODE

Normal mode is selected by applying a low-level to the STBY pin. The driver block is operational and can drive the bus pins. The slopes of the output signals on CANH and CANL are optimized to produce minimal electromagnetic emissions (EME).

The high-speed differential receiver is active.

1.1.2 STANDBY MODE

The device may be placed in Standby mode by applying a high-level to the STBY pin. In Standby mode, the transmitter and the high-speed part of the receiver are switched off to minimize power consumption. The low-power receiver and the wake-up filter blocks are enabled in order to monitor the bus for activity. The receive pin (RxD) will show a delayed representation of the CAN bus, due to the wake-up filter.

The CAN controller gets interrupted by a negative edge on the RxD pin (dominant state on the CAN bus). The CAN controller must put the MCP2561/2 back into Normal mode using the STBY pin, in order to enable high-speed data communication.

The CAN bus wake-up function requires both supply voltages, VDD and VIO, to be in valid range.

1.4 Internal Protection

CANH and CANL are protected against battery short-circuits and electrical transients that can occur on the CAN bus. This feature prevents destruction of the transmitter output stage during such a Fault condition.

The device is further protected from excessive current loading by thermal shutdown circuitry that disables the output drivers when the junction temperature exceeds a nominal limit of $+175^{\circ}\text{C}$. All other parts of the chip remain operational, and the chip temperature is lowered due to the decreased power dissipation in the transmitter outputs. This protection is essential to protect against bus line short-circuit-induced damage.

MCP2561/2

1.5 Permanent Dominant Detection

The MCP2561/2 device prevents two conditions:

- Permanent dominant condition on TxD
- Permanent dominant condition on the bus

In Normal mode, if the MCP2561/2 detects an extended Low state on the TxD input, it will disable the CANH and CANL output drivers in order to prevent the corruption of data on the CAN bus. The drivers will remain disabled until TxD goes High.

In Standby mode, if the MCP2561/2 detects an extended dominant condition on the bus, it will set the RXD pin to Recessive state. This allows the attached controller to go to Low-Power mode until the dominant issue is corrected. RXD is latched High until a Recessive state is detected on the bus, and the wake-up function is enabled again.

Both conditions have a time-out of 1.25 ms (typical). This implies a maximum bit time of 69.44 μ s (14.4 kHz), allowing up to 18 consecutive dominant bits on the bus.

1.6 Power-On Reset (POR) and Undervoltage Detection

The MCP2561/2 has undervoltage detection on both supply pins: VDD and VIO. Typical undervoltage thresholds are 1.2V for VIO and 4V for VDD.

When the device is powered on, CANH and CANL remain in a high-impedance state until both VDD and VIO exceed their undervoltage levels. Once powered on, CANH and CANL will enter a high-impedance state if the voltage level at VDD drops below the undervoltage level, providing voltage brown-out protection during normal operation.

In Normal mode, the receiver output is forced to Recessive state during an undervoltage condition on VDD. In Standby mode, the low-power receiver is only enabled when both VDD and VIO supply voltages rise above their respective undervoltage thresholds. Once these threshold voltages are reached, the low-power receiver is no longer controlled by the POR comparator and remains operational down to about 2.5V on the VDD supply (MCP2561/2). The MCP2562 transfers data to the RXD pin down to 1.8V on the VIO supply.

1.7 Pin Descriptions

Table 1-2 describes the pinout.

TABLE 1-2: MCP2561/2 PINOUT

MCP2561 3x3 DFN	MCP2561 PDIP, SOIC	MCP2562 3x3 DFN	MCP2562 PDIP, SOIC	Symbol	Pin Function
1	1	1	1	TxD	Transmit Data Input
2	2	2	2	VSS	Ground
3	3	3	3	VDD	Supply Voltage
4	4	4	4	RXD	Receive Data Output
5	5	—	—	SPLIT	Common Mode Stabilization – MCP2561 only
—	—	5	5	VIO	Digital I/O Supply Pin – MCP2562 only
6	6	6	6	CANL	CAN Low-Level Voltage I/O
7	7	7	7	CANH	CAN High-Level Voltage I/O
8	8	8	8	STBY	Standby Mode Input
9	—	9	—	EP	Exposed Thermal Pad

1.7.1 TRANSMITTER DATA INPUT PIN (TxD)

The CAN transceiver drives the differential output pins CANH and CANL according to TxD. It is usually connected to the transmitter data output of the CAN controller device. When TxD is Low, CANH and CANL are in the Dominant state. When TxD is High, CANH and CANL are in the Recessive state, provided that another CAN node is not driving the CAN bus with a Dominant state. TxD is connected to an internal pull-up resistor (nominal 33 kΩ) to VDD or VIO, in the MCP2561 or MCP2562, respectively.

1.7.2 GROUND SUPPLY PIN (Vss)

Ground supply pin.

1.7.3 SUPPLY VOLTAGE PIN (VDD)

Positive supply voltage pin. Supplies transmitter and receiver, including the wake-up receiver.

1.7.4 RECEIVER DATA OUTPUT PIN (RxD)

RxD is a CMOS-compatible output that drives High or Low depending on the differential signals on the CANH and CANL pins, and is usually connected to the receiver data input of the CAN controller device. RxD is High when the CAN bus is Recessive, and Low in the Dominant state. RxD is supplied by VDD or VIO, in the MCP2561 or MCP2562, respectively.

1.7.5 SPLIT PIN (MCP2561 ONLY)

Reference Voltage Output (defined as VDD/2). The pin is only active in Normal mode. In Standby mode, or when VDD is off, SPLIT floats.

1.7.6 VIO PIN (MCP2562 ONLY)

Supply for digital I/O pins. In the MCP2561, the supply for the digital I/O (TxD, RxD and STBY) is internally connected to VDD.

1.7.7 CAN LOW PIN (CANL)

The CANL output drives the Low side of the CAN differential bus. This pin is also tied internally to the receive input comparator. CANL disconnects from the bus when MCP2561/2 is not powered.

1.7.8 CAN HIGH PIN (CANH)

The CANH output drives the high-side of the CAN differential bus. This pin is also tied internally to the receive input comparator. CANH disconnects from the bus when MCP2561/2 is not powered.

1.7.9 STANDBY MODE INPUT PIN (STBY)

This pin selects between Normal or Standby mode. In Standby mode, the transmitter, high speed receiver and SPLIT are turned off, only the low power receiver and wake-up filter are active. STBY is connected to an internal MOS pull-up resistor to VDD or VIO, in the MCP2561 or MCP2562, respectively. The value of the MOS pull-up resistor depends on the supply voltage. Typical values are 660 kΩ for 5V, 1.1 MΩ for 3.3V and 4.4 MΩ for 1.8V

1.7.10 EXPOSED THERMAL PAD (EP)

It is recommended to connect this pad to Vss to enhance electromagnetic immunity and thermal resistance.

MCP2561/2

1.8 Typical Applications

FIGURE 1-1: MCP2561 WITH SPLIT PIN

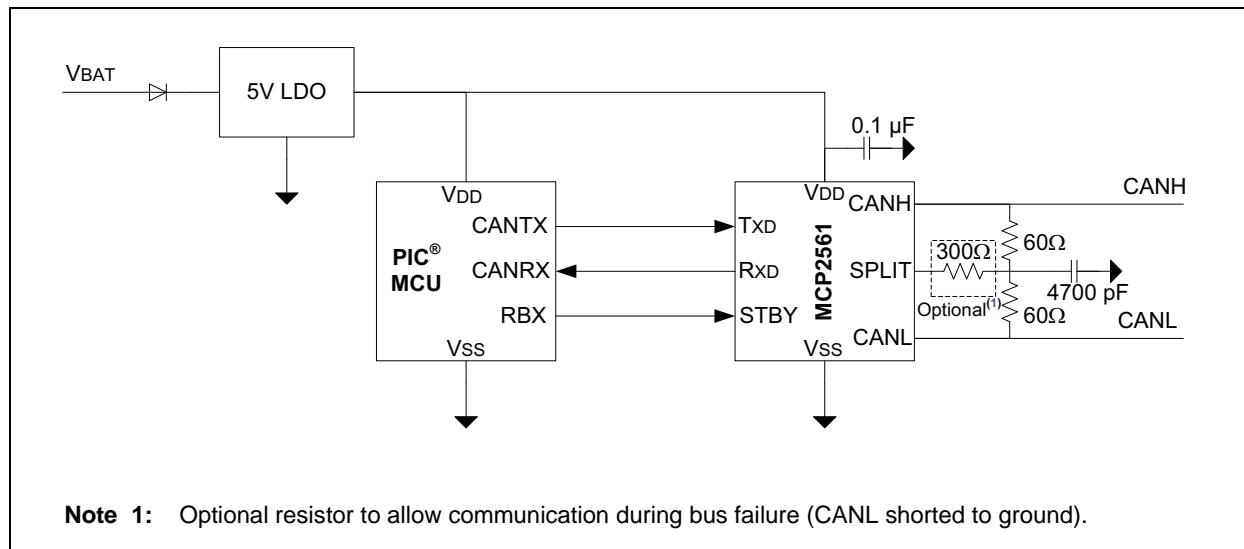
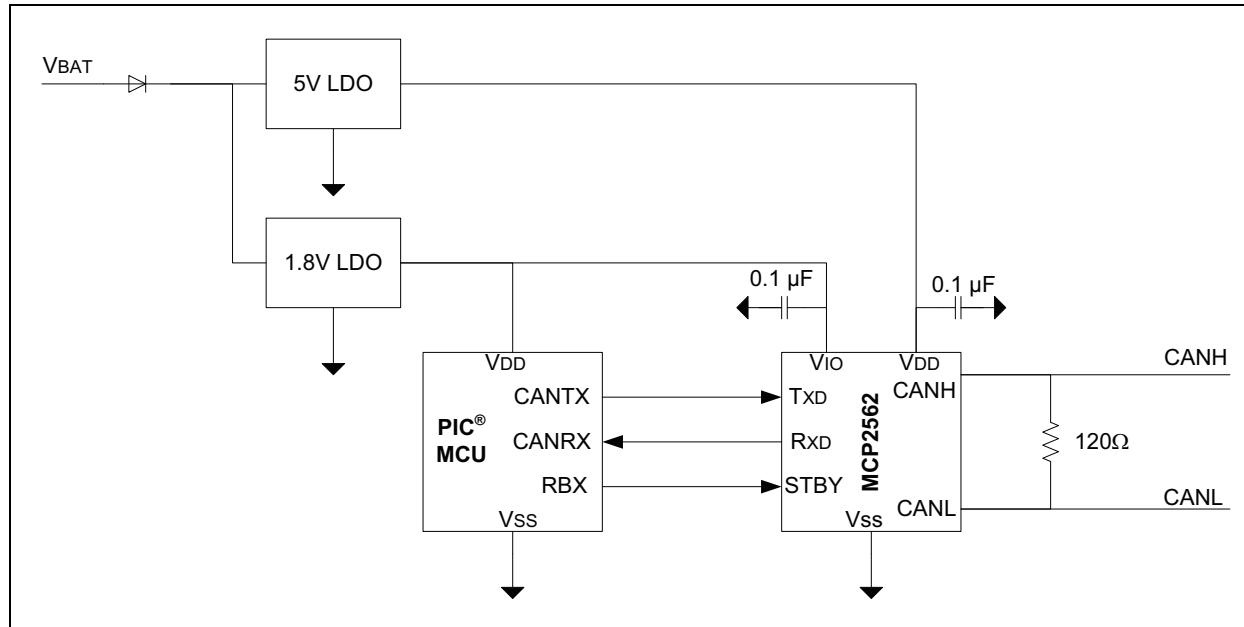



FIGURE 1-2: MCP2562 WITH VIO PIN

2.0 ELECTRICAL CHARACTERISTICS

2.1 Terms and Definitions

A number of terms are defined in ISO-11898 that are used to describe the electrical characteristics of a CAN transceiver device. These terms and definitions are summarized in this section.

2.1.1 BUS VOLTAGE

VCANL and VCANH denote the voltages of the bus line wires CANL and CANH relative to ground of each individual CAN node.

2.1.2 COMMON MODE BUS VOLTAGE RANGE

Boundary voltage levels of VCANL and VCANH with respect to ground, for which proper operation will occur, if up to the maximum number of CAN nodes are connected to the bus.

2.1.3 DIFFERENTIAL INTERNAL CAPACITANCE, CDIFF (OF A CAN NODE)

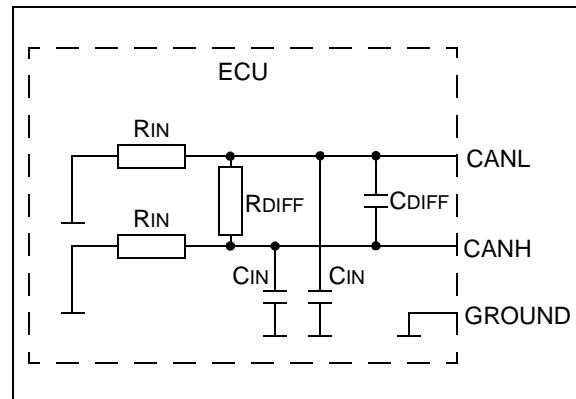
Capacitance seen between CANL and CANH during the Recessive state, when the CAN node is disconnected from the bus (see [Figure 2-1](#)).

2.1.4 DIFFERENTIAL INTERNAL RESISTANCE, RDIFF (OF A CAN NODE)

Resistance seen between CANL and CANH during the Recessive state when the CAN node is disconnected from the bus (see [Figure 2-1](#)).

2.1.5 DIFFERENTIAL VOLTAGE, VDIFF (OF CAN BUS)

Differential voltage of the two-wire CAN bus, value $V_{DIFF} = V_{CANH} - V_{CANL}$.


2.1.6 INTERNAL CAPACITANCE, CIN (OF A CAN NODE)

Capacitance seen between CANL (or CANH) and ground during the Recessive state, when the CAN node is disconnected from the bus (see [Figure 2-1](#)).

2.1.7 INTERNAL RESISTANCE, RIN (OF A CAN NODE)

Resistance seen between CANL (or CANH) and ground during the Recessive state, when the CAN node is disconnected from the bus (see [Figure 2-1](#)).

FIGURE 2-1: PHYSICAL LAYER DEFINITIONS

MCP2561/2

Absolute Maximum Ratings†

VDD.....	7.0V
VIO.....	7.0V
DC Voltage at TxD, RxD, STBY and Vss.....	-0.3V to VIO + 0.3V
DC Voltage at CANH, CANL and SPLIT	-58V to +58V
Transient Voltage on CANH, CANL (ISO-7637) (Figure 2-5)	-150V to +100V
Storage temperature	-55°C to +150°C
Operating ambient temperature	-40°C to +150°C
Virtual Junction Temperature, TVJ (IEC60747-1)	-40°C to +190°C
Soldering temperature of leads (10 seconds)	+300°C
ESD protection on CANH and CANL pins for MCP2561 (IEC 61000-4-2).....	±14 kV
ESD protection on CANH and CANL pins for MCP2562 (IEC 61000-4-2).....	±8 kV
ESD protection on CANH and CANL pins (IEC 801; Human Body Model).....	±8 kV
ESD protection on all other pins (IEC 801; Human Body Model).....	±4 kV
ESD protection on all pins (IEC 801; Machine Model)	±300V
ESD protection on all pins (IEC 801; Charge Device Model)	±750V

† NOTICE: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2.2 DC Characteristics

Electrical Characteristics: Extended (E): TAMB = -40°C to +125°C and High (H): TAMB = -40°C to +150°C; VDD = 4.5V to 5.5V, VIO = 1.8V to 5.5V ([Note 2](#)), RL = 60Ω; unless otherwise specified.

Characteristic	Sym.	Min.	Typ.	Max.	Units	Conditions
SUPPLY						
VDD Pin						
Voltage Range	VDD	4.5	—	5.5		
Supply Current	IDD	—	5	10	mA	Recessive; VTXD = VDD
		—	45	70		Dominant; VTXD = 0V
Standby Current	IDDS	—	5	15	μA	MCP2561
		—	5	15		MCP2562 ; Includes IIO
High Level of the POR Comparator	VPORH	3.8	—	4.3	V	
Low Level of the POR Comparator	VPORL	3.4	—	4.0	V	
Hysteresis of POR Comparator	VPORD	0.3	—	0.8	V	
VIO Pin						
Digital Supply Voltage Range	VIO	1.8	—	5.5	V	
Supply Current on VIO	IIO	—	4	30	μA	Recessive; VTXD = VIO
		—	85	500		Dominant; VTXD = 0V
Standby Current	IDDS	—	0.3	1	μA	(Note 1)
Undervoltage detection on VIO	VUVD(IIO)	—	1.2	—	V	(Note 1)
BUS LINE (CANH; CANL) TRANSMITTER						
CANH; CANL: Recessive Bus Output Voltage	VO(R)	2.0	0.5VDD	3.0	V	VTXD = VDD; No load
CANH; CANL: Bus Output Voltage in Standby	VO(S)	-0.1	0.0	+0.1	V	STBY = VTXD = VDD; No load
Recessive Output Current	IO(R)	-5	—	+5	mA	-24V < VCAN < +24V
CANH: Dominant Output Voltage	VO(D)	2.75	3.50	4.50	V	TXD = 0; RL = 50 to 65Ω
CANL: Dominant Output Voltage		0.50	1.50	2.25		RL = 50 to 65Ω
Symmetry of Dominant Output Voltage (VDD – VCANH – VCANL)	VO(D)(M)	-400	0	+400	mV	VTXD = VSS (Note 1)
Dominant: Differential Output Voltage	VO(DIFF)	1.5	2.0	3.0	V	VTXD = VSS; RL = 50 to 65Ω Figure 2-2, Figure 2-4
Recessive: Differential Output Voltage		-120	0	12	mV	VTXD = VDD Figure 2-2, Figure 2-4
		-500	0	50	mV	VTXD = VDD no load. Figure 2-2, Figure 2-4

Note 1: Characterized; not 100% tested.

2: Only MCP2562 has VIO pin. For the MCP2561, VIO is internally connected to VDD.

3: -12V to 12V is ensured by characterization, tested from -2V to 7V.

MCP2561/2

2.2 DC Characteristics (Continued)

Electrical Characteristics: Extended (E): TAMB = -40°C to +125°C and High (H): TAMB = -40°C to +150°C; VDD = 4.5V to 5.5V, VIO = 1.8V to 5.5V (Note 2), RL = 60Ω; unless otherwise specified.						
Characteristic	Sym.	Min.	Typ.	Max.	Units	Conditions
CANH: Short Circuit Output Current	IO(sc)	-120	-85	—	mA	V _{TXD} = V _{SS} ; V _{CANH} = 0V; CANL: floating
		-100	—	—	mA	same as above, but V _{DD} =5V, T _{TAMB} = +25°C (Note 1)
	—	—	75	+120	mA	V _{TXD} = V _{SS} ; V _{CANL} = 18V; CANH: floating
		—	—	+100	mA	same as above, but V _{DD} =5V, T _{TAMB} = +25°C (Note 1)
BUS LINE (CANH; CANL) RECEIVER						
Recessive Differential Input Voltage	V _{DIFF(R)(I)}	-1.0	—	+0.5	V	Normal Mode; -12V < V(CANH, CANL) < +12V; See Figure 2-6 (Note 3)
		-1.0	—	+0.4	V	Standby Mode; -12V < V(CANH, CANL) < +12V; See Figure 2-6 (Note 3)
Dominant Differential Input Voltage	V _{DIFF(D)(I)}	0.9	—	V _{DD}	V	Normal Mode; -12V < V(CANH, CANL) < +12V; See Figure 2-6 (Note 3)
		1.0	—	V _{DD}	V	Standby Mode; -12V < V(CANH, CANL) < +12V; See Figure 2-6 (Note 3)
Differential Receiver Threshold	V _{TH(DIFF)}	0.5	0.7	0.9	V	Normal Mode; -12V < V(CANH, CANL) < +12V; See Figure 2-6 (Note 3)
		0.4	—	1.15	V	Standby Mode; -12V < V(CANH, CANL) < +12V; See Figure 2-6 (Note 3)
Differential Input Hysteresis	V _{HYS(DIFF)}	50	—	200	mV	Normal mode, see Figure 2-6, (Note 1)
Common Mode Input Resistance	R _{IN}	10	—	30	kΩ	(Note 1)
Common Mode Resistance Matching	R _{IN(M)}	-1	0	+1	%	V _{CANH} = V _{CANL} , (Note 1)
Differential Input Resistance	R _{IN(DIFF)}	10	—	100	kΩ	(Note 1)
Common Mode Input Capacitance	C _{IN(CM)}	—	—	20	pF	V _{TXD} = V _{DD} ; (Note 1)
Differential Input Capacitance	C _{IN(DIFF)}	—	—	10	pF	V _{TXD} = V _{DD} ; (Note 1)
CANH, CANL: Input Leakage	I _{LI}	-5	—	+5	μA	V _{DD} = V _{TXD} = V _{STBY} = 0V. For MCP2562, V _{IO} = 0V. V _{CANH} = V _{CANL} = 5 V.

Note 1: Characterized; not 100% tested.

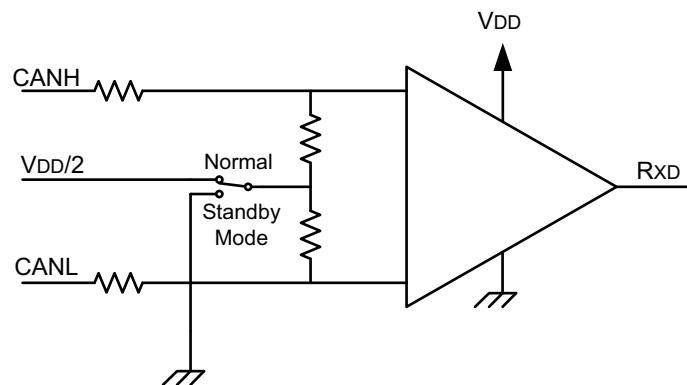
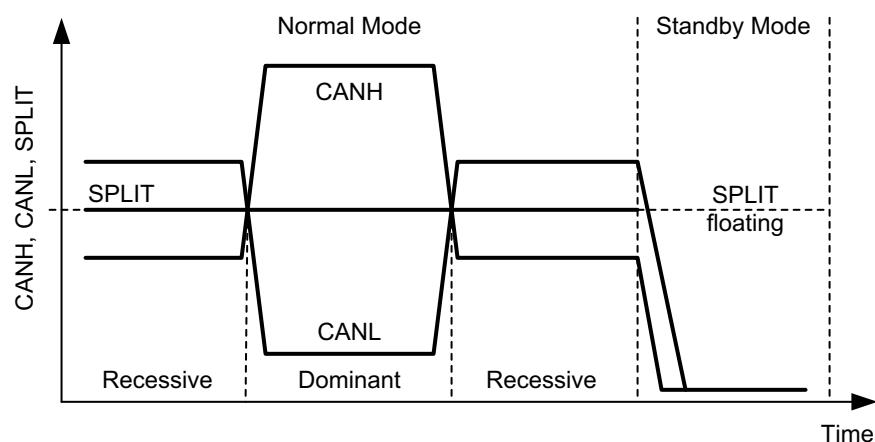
2: Only MCP2562 has V_{IO} pin. For the MCP2561, V_{IO} is internally connected to V_{DD}.

3: -12V to 12V is ensured by characterization, tested from -2V to 7V.

2.2 DC Characteristics (Continued)

Electrical Characteristics: Extended (E): $T_{AMB} = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$ and High (H): $T_{AMB} = -40^{\circ}\text{C}$ to $+150^{\circ}\text{C}$; $V_{DD} = 4.5\text{V}$ to 5.5V , $V_{IO} = 1.8\text{V}$ to 5.5V ([Note 2](#)), $R_L = 60\Omega$; unless otherwise specified.

Characteristic	Sym.	Min.	Typ.	Max.	Units	Conditions
COMMON MODE STABILIZATION OUTPUT (SPLIT)						
Output Voltage	V_O	0.3 V_{DD}	0.5 V_{DD}	0.7 V_{DD}	V	Normal mode; $I_{SPLIT} = -500\ \mu\text{A}$ to $+500\ \mu\text{A}$
		0.45 V_{DD}	0.5 V_{DD}	0.55 V_{DD}	V	Normal mode; $R_L \geq 1\ \text{M}\Omega$
Leakage Current	I_L	-5	—	+5	μA	Standby mode; $V_{SPLIT} = -24\text{V}$ to $+24\text{V}$ (ISO 11898: $-12\text{V} \sim +12\text{V}$)
DIGITAL INPUT PINS (Tx_D, STBY)						
High-Level Input Voltage	V_{IH}	0.7 V_{IO}	—	$V_{IO} + 0.3$	V	
Low-Level Input Voltage	V_{IL}	-0.3	—	0.3 V_{IO}	V	
High-Level Input Current	I_{IH}	-1	—	+1	μA	
TxD: Low-Level Input Current	$I_{IL(TxD)}$	-270	-150	-30	μA	
STBY: Low-Level Input Current	$I_{IL(STBY)}$	-30	—	-1	μA	
RECEIVE DATA (Rx_D) OUTPUT						
High-Level Output Voltage	V_{OH}	$V_{DD} - 0.4$	—	—	V	$I_{OH} = -2\ \text{mA}$ (MCP2561); typical -4 mA
		$V_{IO} - 0.4$	—	—		$I_{OH} = -1\ \text{mA}$ (MCP2562); typical -2 mA
Low-Level Output Voltage	V_{OL}	—	—	0.4	V	$I_{OL} = 4\ \text{mA}$; typical 8 mA
THERMAL SHUTDOWN						
Shutdown Junction Temperature	$T_{J(SD)}$	165	175	185	°C	$-12\text{V} < V(\text{CANH}, \text{CANL}) < +12\text{V}$, (Note 1)
Shutdown Temperature Hysteresis	$T_{J(HYST)}$	20	—	30	°C	$-12\text{V} < V(\text{CANH}, \text{CANL}) < +12\text{V}$, (Note 1)



Note 1: Characterized; not 100% tested.

2: Only MCP2562 has V_{IO} pin. For the MCP2561, V_{IO} is internally connected to V_{DD} .

3: -12V to 12V is ensured by characterization, tested from -2V to 7V.

MCP2561/2

FIGURE 2-2: PHYSICAL BIT REPRESENTATION AND SIMPLIFIED BIAS IMPLEMENTATION

2.3 AC Characteristics

Electrical Characteristics: Extended (E): TAMB = -40°C to +125°C and High (H): TAMB = -40°C to +150°C; VDD = 4.5V to 5.5V, VIO = 1.8V to 5.5V (Note 2), RL = 60Ω; unless otherwise specified.

Param. No.	Sym.	Characteristic	Min.	Typ.	Max.	Units	Conditions
1	tBIT	Bit Time	1	—	69.44	μs	
2	fBIT	Bit Frequency	14.4	—	1000	kHz	
3	tTXD-BUSON	Delay TXD Low to Bus Dominant	—	—	70	ns	
4	tTXD-BUSOFF	Delay TXD High to Bus Recessive	—	—	125	ns	
5	tBUSON-RXD	Delay Bus Dominant to RXD	—	—	70	ns	
6	tBUSOFF-RXD	Delay Bus Recessive to RXD	—	—	110	ns	
7	tTXD - RXD	Propagation Delay TXD to RXD	—	—	125	ns	Negative edge on TXD
8			—	—	235		Positive edge on TXD
9	tFLTR(WAKE)	Delay Bus Dominant to RXD (Standby mode)	0.5	1	4	μs	Standby mode
10	tWAKE	Delay Standby to Normal Mode	5	25	40	μs	Negative edge on STBY
11	tPDPT	Permanent Dominant Detect Time	—	1.25	—	ms	TXD = 0V
12	tPDTR	Permanent Dominant Timer Reset	—	100	—	ns	The shortest recessive pulse on TXD or CAN bus to reset Permanent Dominant Timer

FIGURE 2-3: TEST LOAD CONDITIONS

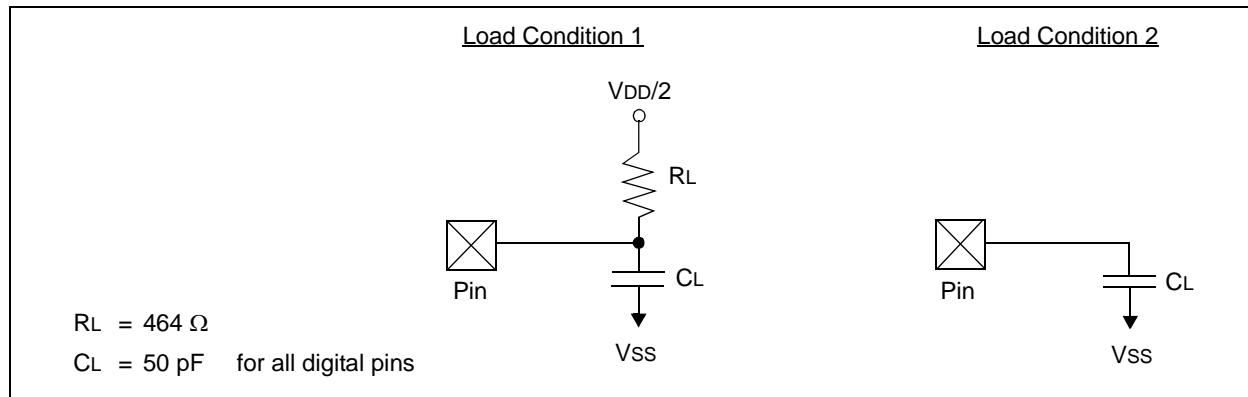
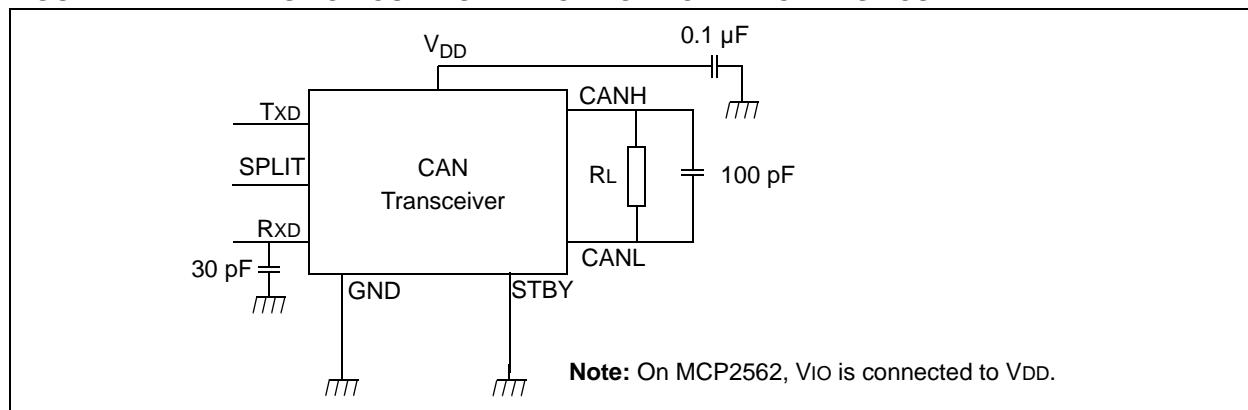
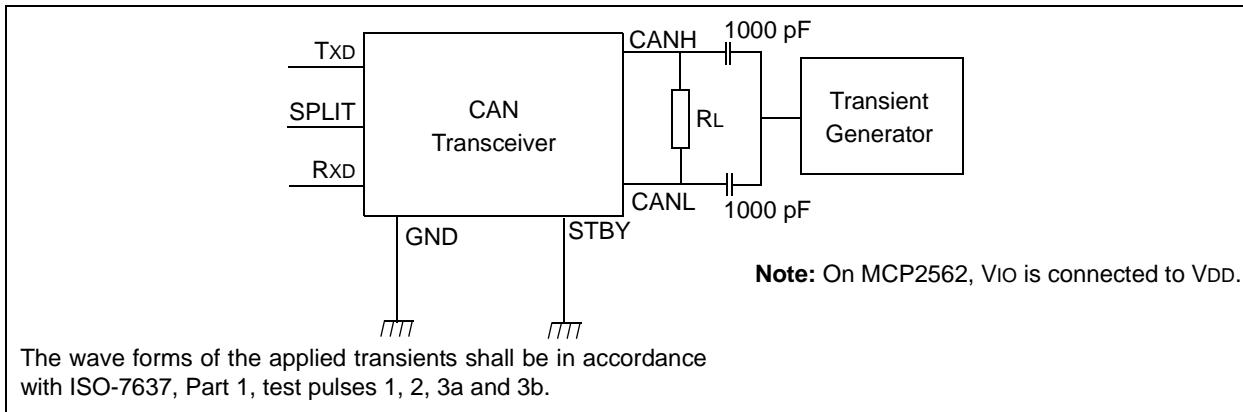
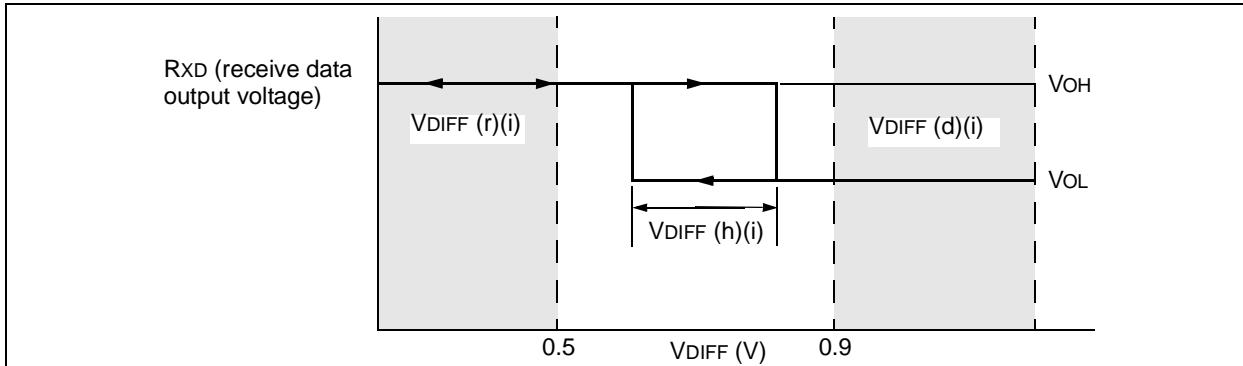




FIGURE 2-4: TEST CIRCUIT FOR ELECTRICAL CHARACTERISTICS



MCP2561/2

FIGURE 2-5: TEST CIRCUIT FOR AUTOMOTIVE TRANSIENTS

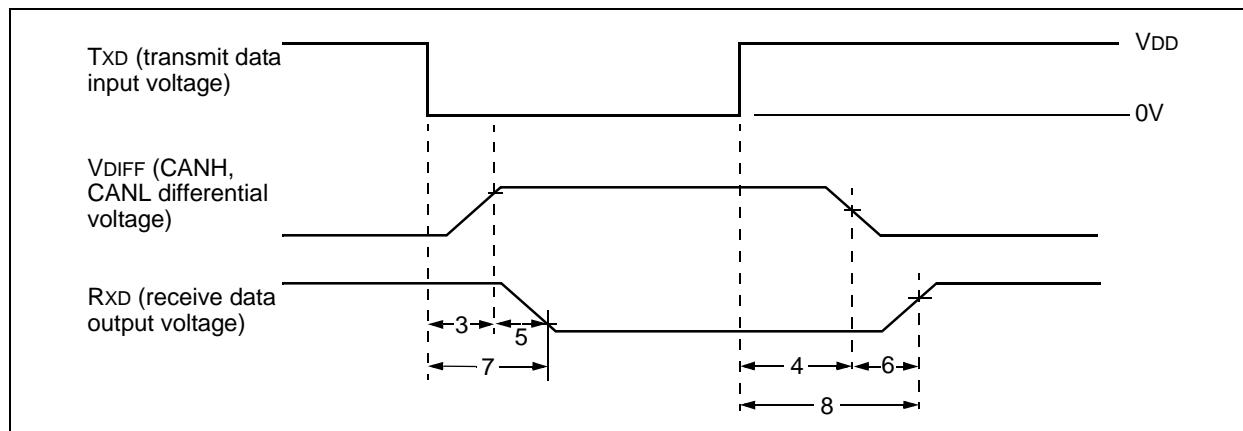
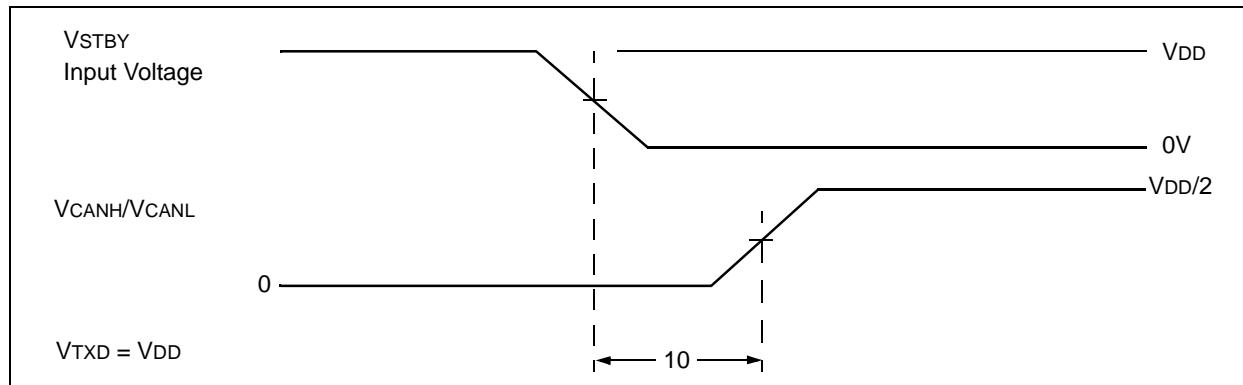


FIGURE 2-6: HYSTERESIS OF THE RECEIVER



2.4 Timing Diagrams and Specifications

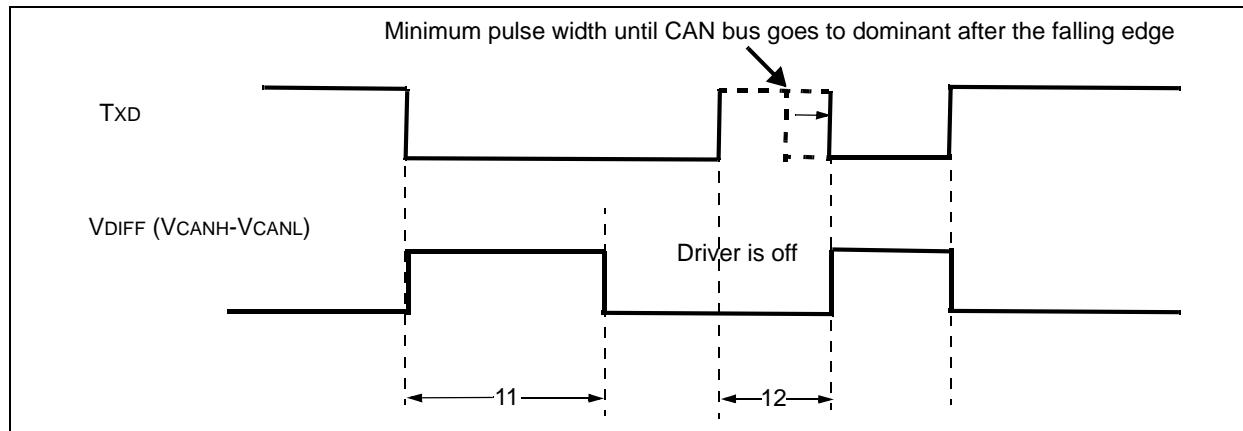
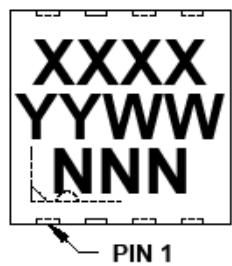

FIGURE 2-7: TIMING DIAGRAM FOR AC CHARACTERISTICS

FIGURE 2-8: TIMING DIAGRAM FOR WAKE-UP FROM STANDBY

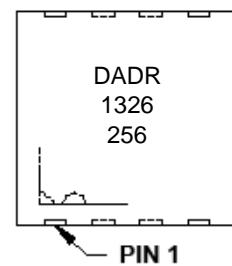
FIGURE 2-9: PERMANENT DOMINANT TIMER RESET DETECT

MCP2561/2

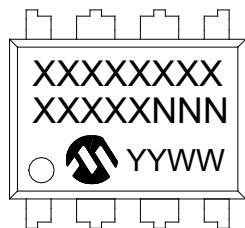

2.5 Thermal Specifications

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Temperature Ranges						
Specified Temperature Range	TA	-40	—	+125	°C	
		-40	—	+150		
Operating Temperature Range	TA	-40	—	+150	°C	
Storage Temperature Range	TA	-65	—	+155	°C	
Thermal Package Resistances						
Thermal Resistance, 8L-DFN 3x3	θ _{JA}	—	56.7	—	°C/W	
Thermal Resistance, 8L-PDIP	θ _{JA}	—	89.3	—	°C/W	
Thermal Resistance, 8L-SOIC	θ _{JA}	—	149.5	—	°C/W	

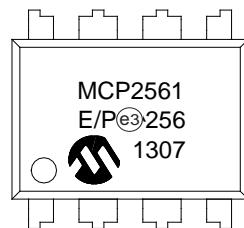
3.0 PACKAGING INFORMATION

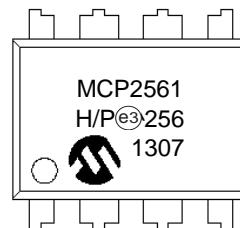

3.1 Package Marking Information

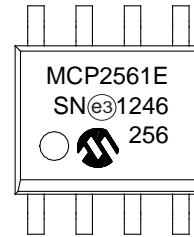
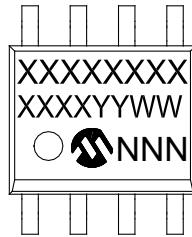
8-Lead DFN (3x3 mm)

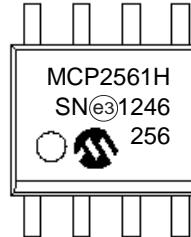


Part Number	Code
MCP2561-E/MF	DADR
MCP2561T-E/MF	DADR
MCP2561-H/MF	DADS
MCP2561T-H/MF	DADS
MCP2562-E/MF	DADU
MCP2562T-E/MF	DADU
MCP2562-H/MF	DADT
MCP2562T-H/MF	DADT


Example:


8-Lead PDIP (300 mil)

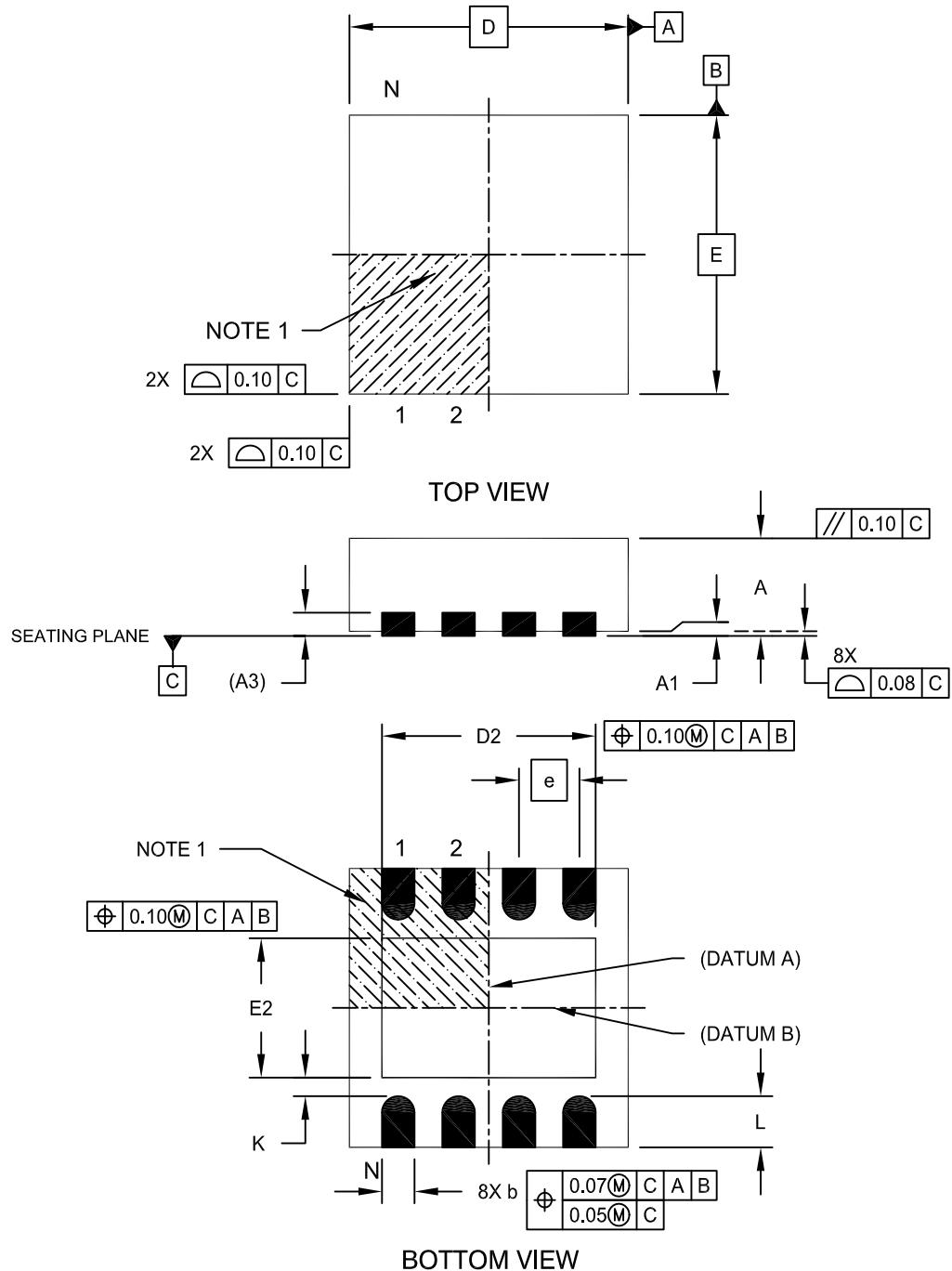


Example:


OR

8-Lead SOIC (150 mil)

Example:

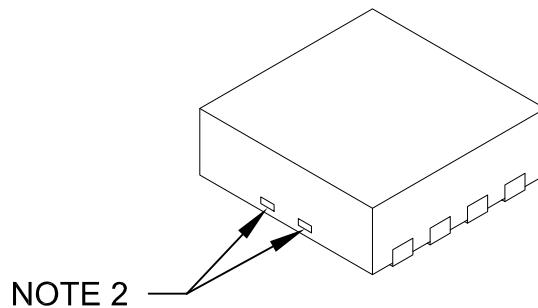
OR


Legend:	XX...X Customer-specific information
Y	Year code (last digit of calendar year)
YY	Year code (last 2 digits of calendar year)
WW	Week code (week of January 1 is week '01')
NNN	Alphanumeric traceability code
(e3)	Pb-free JEDEC® designator for Matte Tin (Sn)
*	This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

MCP2561/2

8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Microchip Technology Drawing No. C04-062C Sheet 1 of 2

8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		8	
Pitch	e		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Length	D		3.00 BSC	
Exposed Pad Width	E2	1.34	-	1.60
Overall Width	E		3.00 BSC	
Exposed Pad Length	D2	1.60	-	2.40
Contact Width	b	0.25	0.30	0.35
Contact Length	L	0.20	0.30	0.55
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

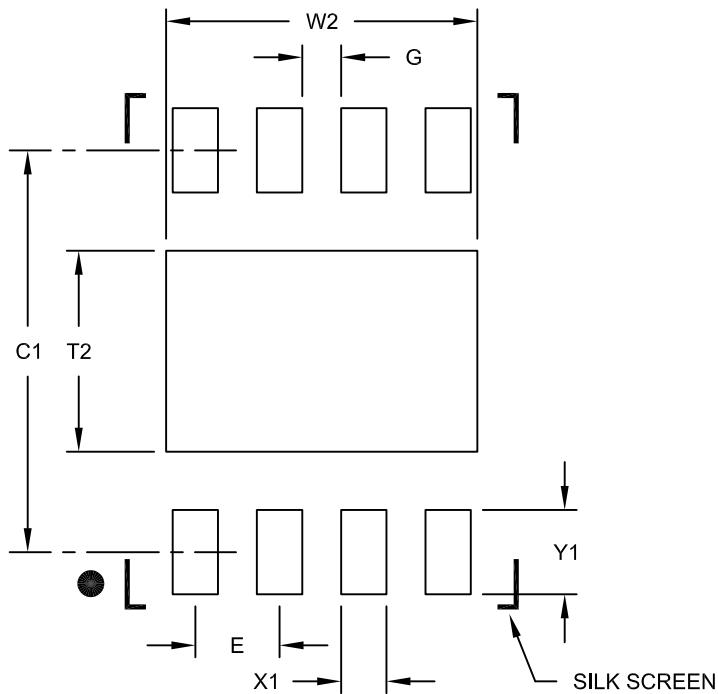
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package may have one or more exposed tie bars at ends.

3. Package is saw singulated

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-062C Sheet 2 of 2

MCP2561/2

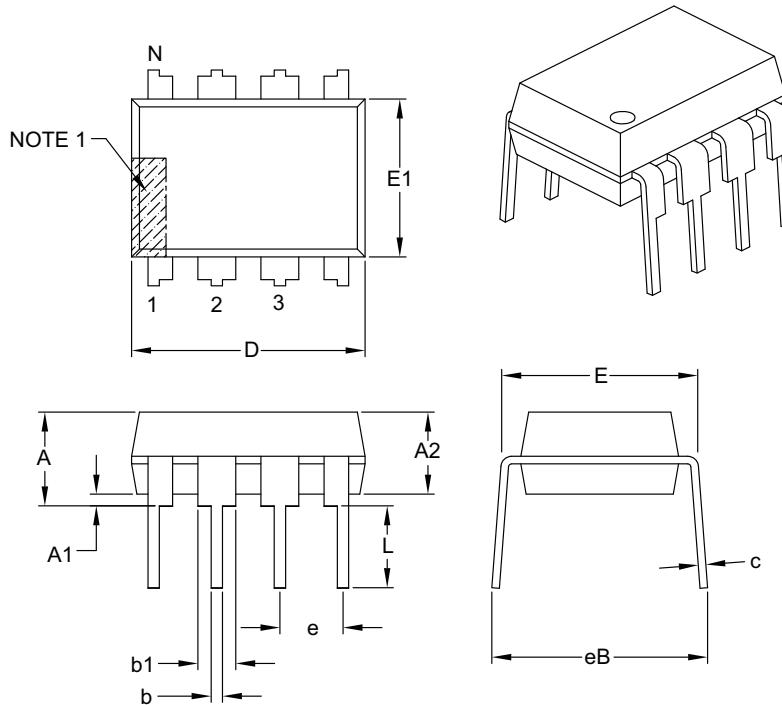
8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch		0.65 BSC		
Optional Center Pad Width	W2			2.40
Optional Center Pad Length	T2			1.55
Contact Pad Spacing	C1	3.10		
Contact Pad Width (X8)	X1		0.35	
Contact Pad Length (X8)	Y1			0.65
Distance Between Pads	G	0.30		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2062B

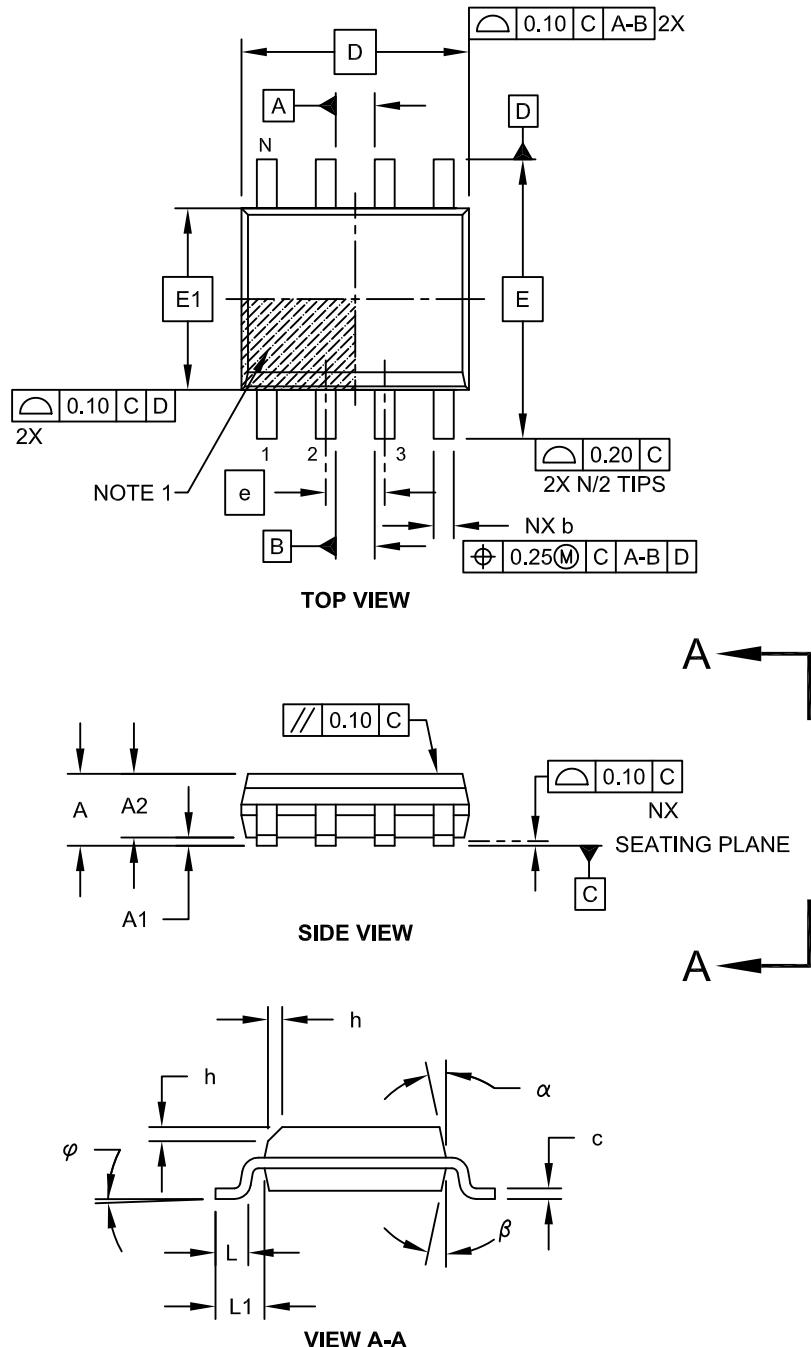
8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		8	
Pitch	e		.100 BSC	
Top to Seating Plane	A	—	—	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	—	—
Shoulder to Shoulder Width	E	.290	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.348	.365	.400
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	c	.008	.010	.015
Upper Lead Width	b1	.040	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	—	—	.430

Notes:

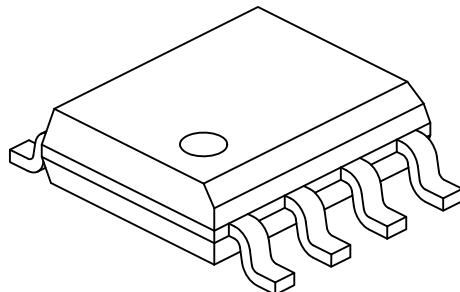
1. Pin 1 visual index feature may vary, but must be located with the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

MCP2561/2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Microchip Technology Drawing No. C04-057C Sheet 1 of 2

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

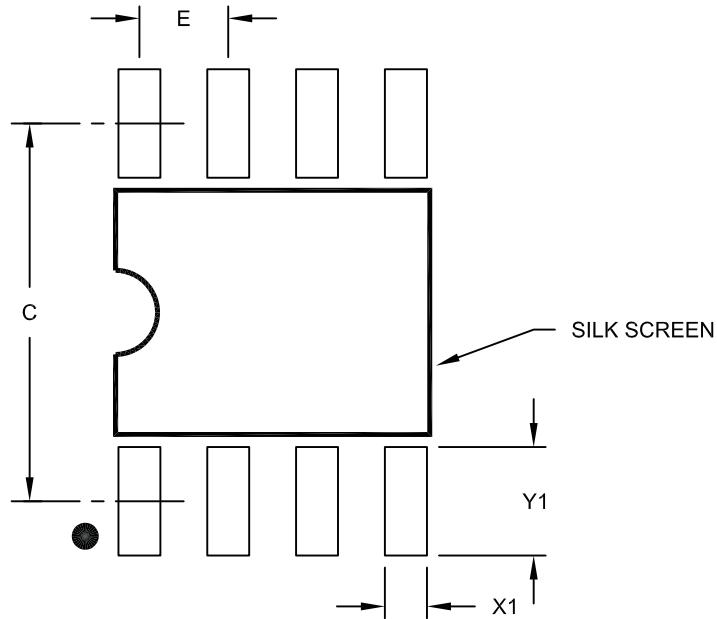
Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		8	
Pitch	e		1.27 BSC	
Overall Height	A	-	-	1.75
Molded Package Thickness	A2	1.25	-	-
Standoff	§	A1	0.10	-
Overall Width	E		6.00 BSC	
Molded Package Width	E1		3.90 BSC	
Overall Length	D		4.90 BSC	
Chamfer (Optional)	h	0.25	-	0.50
Foot Length	L	0.40	-	1.27
Footprint	L1		1.04 REF	
Foot Angle	φ	0°	-	8°
Lead Thickness	c	0.17	-	0.25
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2

MCP2561/2

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at <http://www.microchip.com/packaging>

RECOMMENDED LAND PATTERN

Dimension Limits		MILLIMETERS		
		MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	C		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

APPENDIX A: REVISION HISTORY

Revision C (July 2014)

The following is the list of modifications:

1. Added references to ISO-11898-2 throughout the document.
2. Updated **Section 1.1.2 “Standby Mode”**. Described transition from Standby to Normal mode. Emphasized that wake-up on CAN bus requires both VDD and VIO.
3. Explained that POR and Brown-out are limited to VDD pin in **Section 1.6 “Power-On Reset (POR) and Undervoltage Detection”**.
4. Updated **Section 2.2 “DC Characteristics”**. Clarified RL, added CANH/CANL Short Circuit specification for 5V and room temperature.
5. Minor typographical corrections.

Revision B (March 2013)

- Updated the **MCP2561/2 Family Members** table on page 1.

Revision A (March 2013)

- Original Release of this Document.

MCP2561/2

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<u>PART NO.</u>		
Device	<u>-X</u> Temperature Range	<u>/XX</u> Package
Device:	MCP2561: High-Speed CAN Transceiver with SPLIT MCP2561T: High-Speed CAN Transceiver with SPLIT (Tape and Reel) (DFN and SOIC only)	
	MCP2562: High-Speed CAN Transceiver with Vio MCP2562T: High-Speed CAN Transceiver with Vio (Tape and Reel) (DFN and SOIC only)	
Temperature Range:	E = -40°C to +125°C (Extended) H = -40°C to +150°C (High)	
Package:	MF = Plastic Dual Flat, No Lead Package - 3x3x0.9 mm Body, 8-lead P = Plastic Dual In-Line - 300 mil Body, 8-lead SN = Plastic Small Outline - Narrow, 3.90 mm Body, 8-lead	

Examples:

- a) MCP2561-E/MF: Extended Temperature, 8LD 3x3 DFN package
- b) MCP2561T-E/MF: Tape and Reel, Extended Temperature, 8LD 3x3 DFN package
- c) MCP2561-E/P: Extended Temperature, 8LD PDIP package
- d) MCP2561-E/SN: Extended Temperature, 8LD SOIC package
- e) MCP2561T-E/SN: Tape and Reel, Extended Temperature, 8LD SOIC package

- a) MCP2561-H/MF: High Temperature, 8LD 3x3 DFN package
- b) MCP2561T-H/MF: Tape and Reel, High Temperature, 8LD 3x3 DFN package
- c) MCP2561-H/P: High Temperature, 8LD PDIP package
- d) MCP2561-H/SN: High Temperature, 8LD SOIC package
- e) MCP2561T-H/SN: Tape and Reel, High Temperature, 8LD SOIC package

MCP2561/2

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. **MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.** Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQL, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-378-5

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMS, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949 =

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
<http://www.microchip.com/support>
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland

Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles

Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110

Canada - Toronto

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR

Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631

Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160

Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880-3770

Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301

Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200

Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870

Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065

Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366

Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 886-2-2508-8600

Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351

Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Pforzheim
Tel: 49-7231-424750

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820