# 16-bit Proprietary Microcontroller

CMOS

# F<sup>2</sup>MC-16LX MB90540G/545G Series

MB90F543G(S)/F546G(S)/F548G(S)/F549G(S)/549G(S)/V540G MB90543G(S)/547G(S)/548G(S)/F548GL(S)

### DESCRIPTION

The MB90540G/545G series with FULL-CAN and Flash ROM is specially designed for automotive and industrial applications. Its main features are on-board CAN Interfaces (MB90540G series: 2 channels, MB90545G series: 1 channel), which conform to CAN V2.0A and V2.0B specifications, supporting very flexible message buffer scheme and so offering more functions than a normal full CAN approach. The instruction set by  $F^2MC-16LX$  CPU core inherits an AT architecture of the  $F^2MC^*$  family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The micro controller has a 32-bit accumulator for processing long word data. The MB90540G/545G series has peripheral resources of 8/10-bit A/D converters, UART (SCI), extended I/O serial interfaces, 8/16-bit timer, I/O timer (input capture (ICU), output compare (OCU)).

\* : F<sup>2</sup>MC is the abbreviation of FUJITSU Flexible Microcontroller.

### ■ FEATURES

- Clock Embedded PLL clock multiplication circuit Operating clock (PLL clock) can be selected from : divided-by-2 of oscillation or one to four times the oscillation Minimum instruction execution time : 62.5 ns (operation at oscillation of 4 MHz, PLL four times multiplied : machine clock 16 MHz and at operating Vcc = 5.0 V)
- Subsystem Clock : 32 kHz
- Instruction set to optimize controller applications
   Rich data types (bit, byte, word, long word)
   Rich addressing mode (23 types)
   Enhanced signed multiplication/division instruction and RETI instruction functions
   Enhanced precision calculation realized by the 32-bit accumulator

(Continued)

For the information for microcontroller supports, see the following web site.

http://edevice.fujitsu.com/micom/en-support/

Copyright©2002-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved 2008.11

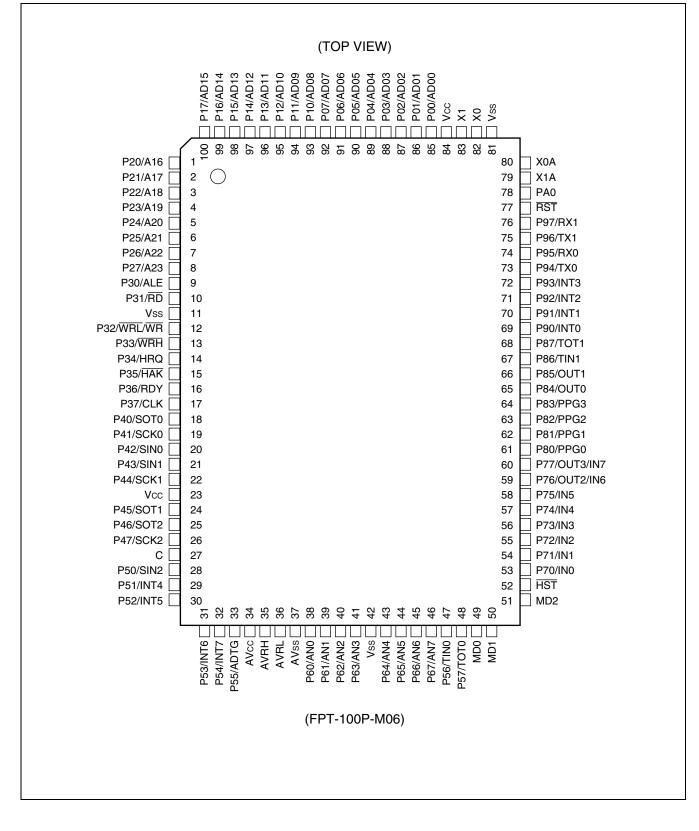
- Instruction set designed for high level language (C language) and multi-task operations Adoption of system stack pointer Enhanced pointer indirect instructions Barrel shift instructions
- Program patch function (for two address pointers)
- Enhanced execution speed : 4-byte Instruction queue
- Enhanced interrupt function : 8 levels, 34 factors
- Automatic data transmission function independent of CPU operation Extended intelligent I/O service function (EI<sup>2</sup>OS)
- Embedded ROM size and types MASK ROM : 256 Kbytes / 64 Kbytes / 128 Kbytes
   Flash ROM : 128 Kbytes/256 Kbytes
   Embedded RAM size : 2 Kbytes/4 Kbytes/6 Kbytes/8 Kbytes (evaluation chip)
- Flash ROM Supports automatic programming, Embedded Algorithm Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Erase can be performed on each block Block protection with external programming voltage
- Low-power consumption (stand-by) mode
   Sleep mode (mode in which CPU operating clock is stopped)
   Stop mode (mode in which oscillation is stopped)
   CPU intermittent operation mode
   Watch mode
   Hardware stand-by mode
- Process
- $0.5 \ \mu m \ CMOS \ technology$
- I/O port General-purpose I/O ports : 81 ports
  Timer Watchdog timer : 1 channel
  - 8/16-bit PPG timer : 8/16-bit × 4 channels 16-bit reload timer : 2 channels
- 16-bit I/O timer
   16-bit free-run timer : 1 channel
   Input capture : 8 channels
   Output compare : 4 channels
- Extended I/O serial interface : 1 channel
- UART0

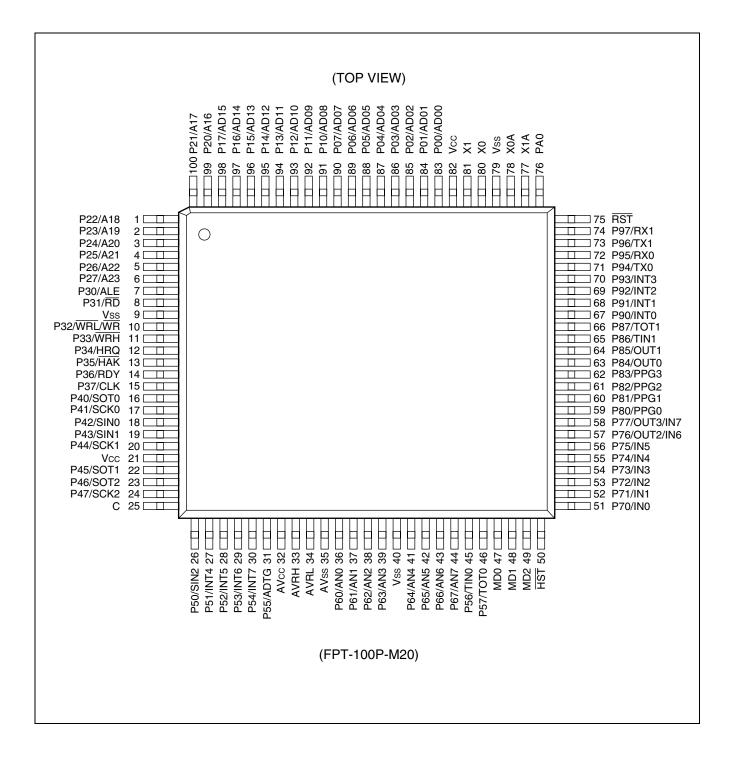
With full-duplex double buffer (8-bit length) Clock asynchronized or clock synchronized (with start/stop bit) transmission can be selectively used.



- UART 1 (SCI)
   With full-duplex double buffer (8-bit length)
   Clock asynchronized or clock synchronized serial (extended I/O serial) can be used.
- External interrupt circuit (8 channels)
   A module for starting an extended intelligent I/O service (EI<sup>2</sup>OS) and generating an external interrupt which is triggered by an external input.
- Delayed interrupt generation module Generates an interrupt request for switching tasks.
- 8/10-bit A/D converter (8 channels) 8/10-bit resolution can be selectively used. Starting by an external trigger input. Conversion time : 26.3 μs
- FULL-CAN interfaces MB90540G series : 2 channels MB90545G series : 1 channel Conforming to Version 2.0 Part A and Part B Flexible message buffering (mailbox and FIFO buffering can be mixed)
- External bus interface : Maximum address space 16 Mbytes
- Package: QFP-100, LQFP-100

### ■ PRODUCT LINEUP


| Features                                       | MB90F543G (S) /F548G (S)<br>MB90F549G (S) /F546G (S)<br>MB90F548GL(S)                                                                                                                                                                                                         | MB90543G (S)<br>MB90547G (S)<br>MB90548G (S)<br>MB90549G (S)                                                                                                              | MB90V540G                 |  |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| CPU                                            |                                                                                                                                                                                                                                                                               | F <sup>2</sup> MC-16LX CPU                                                                                                                                                |                           |  |  |
| System clock                                   | On-chip PLL clock<br>Minimum instruction exection tir                                                                                                                                                                                                                         | multiplier (×1, ×2, ×3, ×4, 1/2 v<br>ne : 62.5 ns (machine clock 16<br>multiplied by PLL                                                                                  | MHz, 4MHz osc. four times |  |  |
| ROM                                            | Flash memory<br>MB90F543G(S)/F548G(S) /<br>F548GL(S) : 128 Kbytes<br>MB90F549G(S)/F546G(S) :<br>256 Kbytes                                                                                                                                                                    | MB90F543G(S)/F548G(S) /         MB90547G(S): 64 Kbytes           F548GL(S) : 128 Kbytes         MB90543G(S)/548G(S):           MB90F549G(S)/F546G(S) :         128 Kbytes |                           |  |  |
| RAM                                            | MB90F548G(S)/F548GL(S):<br>4 Kbytes<br>MB90F543G (S) /F549G(S) :<br>6 Kbytes<br>MB90F546G(S) : 8 Kbytes                                                                                                                                                                       | MB90547G(S): 2 Kbytes<br>MB90548G(S): 4 Kbytes<br>MB90543G(S)/549G(S):<br>6 Kbytes                                                                                        | 8 Kbytes                  |  |  |
| Clocks                                         | MB90F543G/F548G/F549G/<br>F546G/F548GL :<br>Two clocks system<br>MB90F543GS/F548GS/<br>F549GS/F546GS/F548GLS :<br>One clock system                                                                                                                                            | MB90543G/547G/548G/<br>549G : Two clocks system<br>MB90543GS/547GS/<br>548GS/549GS :<br>One clock system                                                                  | Two clocks system*1       |  |  |
| Operating voltage range                        |                                                                                                                                                                                                                                                                               | *3                                                                                                                                                                        |                           |  |  |
| Temperature range                              |                                                                                                                                                                                                                                                                               | –40 °C to 105 °C                                                                                                                                                          |                           |  |  |
| Package                                        | QFP100, L                                                                                                                                                                                                                                                                     | _QFP100                                                                                                                                                                   | PGA-256                   |  |  |
| Emulator-specify<br>power supply <sup>*2</sup> | _                                                                                                                                                                                                                                                                             | -                                                                                                                                                                         | None                      |  |  |
| UART0                                          | Full duplex double buffer<br>Support asynchronous/synchro<br>Baud rate : 4808/5208/9615/10<br>500 K/1 M/2 Mbps (s                                                                                                                                                             |                                                                                                                                                                           | 00 bps (asynchronous)     |  |  |
| UART1<br>(SCI)                                 | Full duplex double buffer<br>Asynchronous (start-stop synchronized) and CLK-synchronous communication<br>Baud rate : 1202/2404/4808/9615/19230/31250/38460/62500 bps (asynchronous)<br>62.5 K/125 K/250 K/500 K/1 M/2 Mbps (synchronous) at 6, 8, 10, 12, 16 MHz              |                                                                                                                                                                           |                           |  |  |
| Serial I/O                                     | Transfer can be started from MSB or LSB<br>Supports internal clock synchronized transfer and external clock synchronized transfer<br>Supports positive-edge and nagative-edge clock synchronization<br>Baud rate : 31.25 K/62.5 K/125 K/500 K/1 Mbps at System clock = 16 MHz |                                                                                                                                                                           |                           |  |  |
| A/D Converter                                  | 10-bit or 8-bit resolution<br>8 input channels<br>Conversion time : 26.3 µs (per c                                                                                                                                                                                            | one channel)                                                                                                                                                              |                           |  |  |


| Features                                                                           | MB90F543G (S)/F548G (S)<br>MB90F549G (S)/F546G (S)<br>MB90F548GL(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MB90543G (S)<br>MB90547G (S)<br>MB90548G (S)<br>MB90549G (S)                                                                                                                                                | MB90V540G |  |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
| 16-bit Reload Timer<br>(2 channels)                                                | Supports External Event Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Operation clock frequency : fsys/2 <sup>1</sup> , fsys/2 <sup>3</sup> , fsys/2 <sup>5</sup> (fsys = System clock frequency)<br>Supports External Event Count function<br>Signals an interrupt when overflow |           |  |  |  |  |
| 16-bit Free-run Timer                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a match with Output Compare<br>², fsys/2⁴, fsys/2⁶, fsys/2⁶ (fsys                                                                                                                                           |           |  |  |  |  |
| 16-bit Output Compare<br>(4 channels)                                              | Four 16-bit compare register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | match with 16-bit Free-run Tir<br>s<br>can be used to generate an oເ                                                                                                                                        |           |  |  |  |  |
| 16-bit Input Capture<br>(8 channels)                                               | Rising edge, falling edge or i<br>Four 16-bit Capture registers<br>Signals an interrupt upon ext                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                             |           |  |  |  |  |
| 8/16-bit<br>Programmable<br>Pulse Generator<br>(4 channels)                        | Supports 8-bit and 16-bit operation modes<br>Eight 8-bit reload counters<br>Eight 8-bit reload registers for L pulse width<br>Eight 8-bit reload registers for H pulse width<br>A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit<br>prescaler plus 8-bit reload counter<br>4 output pins<br>Operation clock freq. : fsys, fsys/2 <sup>1</sup> , fsys/2 <sup>2</sup> , fsys/2 <sup>3</sup> , fsys/2 <sup>4</sup> or 128 µs@fosc = 4 MHz<br>(fsys = System clock frequency, fosc = Oscillation clock frequency) |                                                                                                                                                                                                             |           |  |  |  |  |
| CAN Interface<br>MB90540G series<br>: 2 channels<br>MB90545G series<br>: 1 channel | Conforms to CAN Specification Version 2.0 Part A and B<br>Automatic re-transmission in case of error<br>Automatic transmission responding to Remote Frame<br>Prioritized 16 massage buffers for data and ID's supports multipe massages<br>Flexible configuration of acceptance filtering :<br>Full bit compare/Full bit mask/Two partial bit masks<br>Supports up to 1 Mbps                                                                                                                                                                            |                                                                                                                                                                                                             |           |  |  |  |  |
| 32 kHz Sub-clock                                                                   | Sub-clock for low power ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ration                                                                                                                                                                                                      |           |  |  |  |  |
| External Interrupt<br>(8 channels)                                                 | Can be programmed edge se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ensitive or level sensitive                                                                                                                                                                                 |           |  |  |  |  |
| External bus<br>interface                                                          | External access using the se (external bus mode.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lectable 8-bit or 16-bit bus is                                                                                                                                                                             | enabled   |  |  |  |  |
| I/O Ports                                                                          | Virtually all external pins can be used as general purpose I/O<br>All push-pull outputs and schmitt trigger inputs<br>Bit-wise programmable as input/output or peripheral signal<br>Sub-clock for 32 kHz Sub clock low power operation                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |           |  |  |  |  |
| Flash Memory                                                                       | Supports automatic programming, Embeded Algorithm<br>Write/Erase/Erase-Suspend/Erase-Resume commands<br>A flag indicating completion of the algorithm<br>Number of erase cycles : 10,000 times<br>Data retention time : 10 years<br>Boot block configuration<br>Erase can be performed on each block<br>Block protection by externally programmed voltage<br>(Continued                                                                                                                                                                                 |                                                                                                                                                                                                             |           |  |  |  |  |

- \*1 : If the one clock system is used, equip X0A and X1A with clocks from the tool side.
- \*2 : It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.
- \*3 : OPERATING VOLTAGE RANGE

| Products                                                           | Operation guarantee range |
|--------------------------------------------------------------------|---------------------------|
| MB90F543G(S)/F546G(S)/F548G(S)/<br>MB90549G(S)/F549G(S)/V540/V540G | 4.5 V to 5.5 V            |
| MB90F548GL(S)/543G(S)/547G(S)/548G(S)                              | 3.5 V to 5.5 V            |

#### ■ PIN ASSIGNMENT



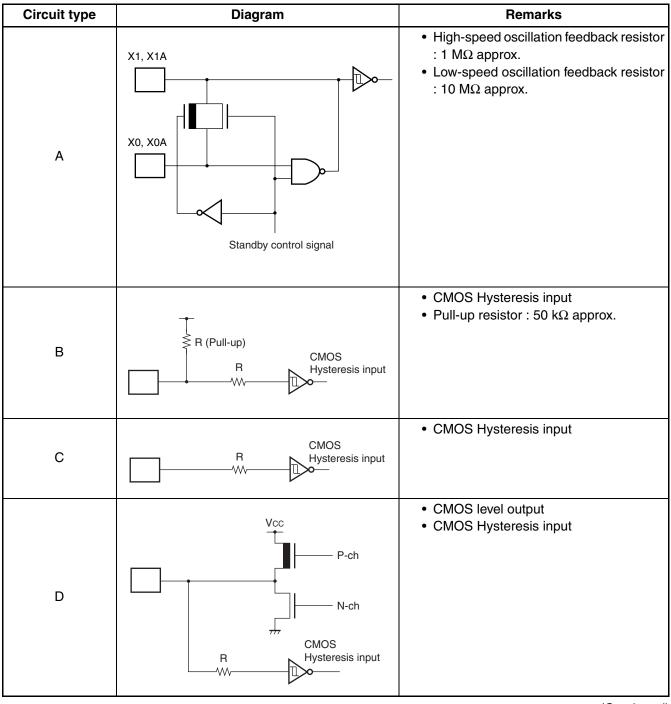


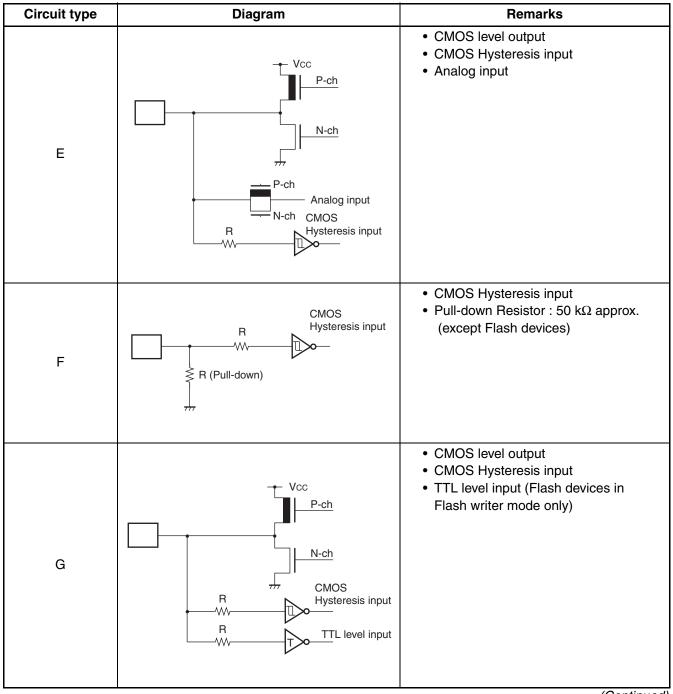
### ■ PIN DESCRIPTION

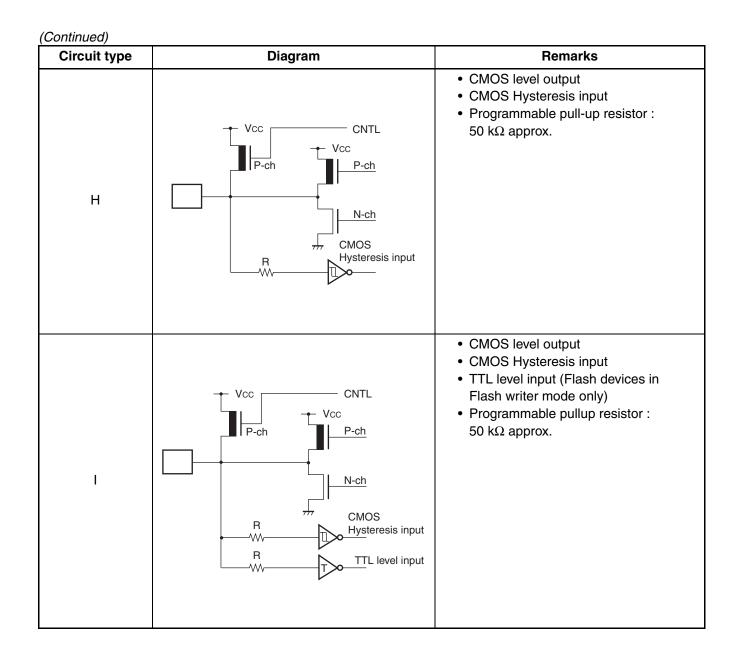
| Pin      | No.               | Din nome     |                    | Frinchier                                                                                                                                                                                                                                                                                                                                       |  |  |
|----------|-------------------|--------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| LQFP*2   | QFP <sup>*1</sup> | Pin name     | Circuit type       | Function                                                                                                                                                                                                                                                                                                                                        |  |  |
| 80<br>81 | 82<br>83          | X0<br>X1     | A<br>(Oscillation) | High speed crystal oscillator input pins                                                                                                                                                                                                                                                                                                        |  |  |
| 78       | 80                | X0A          | A                  | Low speed crystal oscillator input pins. For the one clock system parts, perfom external pull-down processing.                                                                                                                                                                                                                                  |  |  |
| 77       | 79                | X1A          | (Oscillation)      | Low speed crystal oscillator input pins. For the one clock system parts, leave it open.                                                                                                                                                                                                                                                         |  |  |
| 75       | 77                | RST          | В                  | External reset request input pin                                                                                                                                                                                                                                                                                                                |  |  |
| 50       | 52                | HST          | С                  | Hardware standby input pin                                                                                                                                                                                                                                                                                                                      |  |  |
| 83 to 90 | 85 to 92          | P00 to P07   | I                  | General I/O port with programmable pullup. This function is enabled in the single-chip mode.                                                                                                                                                                                                                                                    |  |  |
| 03 10 90 | 00 10 92          | AD00 to AD07 | I                  | I/O pins for 8 lower bits of the external address/data bus. This function is enabled when the external bus is enabled.                                                                                                                                                                                                                          |  |  |
| 01 to 09 | 02 to 100         | P10 to P17   | I                  | General I/O port with programmable pullup. This function is enabled in the single-chip mode.                                                                                                                                                                                                                                                    |  |  |
| 91 to 98 | 93 to 100         | AD08 to AD15 | I                  | I/O pins for 8 higher bits of the external address/data bus. This function is enabled when the external bus is enabled.                                                                                                                                                                                                                         |  |  |
|          |                   | P20 to P27   | I                  | General I/O port with programmable pullup. In external bus mode, this function is valid when the corresponding bits in the external address output control resister (HACR) are set to "1".                                                                                                                                                      |  |  |
| 99 to 6  | 1 to 8            | A16 to A23   |                    | 8-bit I/O pins for A16 to A23 at the external address/data bus.<br>In external bus mode, this function is valid when the corre-<br>sponding bits in the external address output control resister<br>(HACR) are set to "0".                                                                                                                      |  |  |
| 7        | 0                 | P30          |                    | General I/O port with programmable pullup. This function is enabled in the single-chip mode.                                                                                                                                                                                                                                                    |  |  |
| 1        | 9                 | ALE          | I                  | Address latch enable output pin. This function is enabled when the external bus is enabled.                                                                                                                                                                                                                                                     |  |  |
| 0        | 10                | P31          |                    | General I/O port with programmable pullup. This function is enabled in the single-chip mode.                                                                                                                                                                                                                                                    |  |  |
| 8        | 10                | RD           | I                  | Read strobe output pin for the data bus. This function is en-<br>abled when the external bus is enabled.                                                                                                                                                                                                                                        |  |  |
|          |                   | P32          |                    | General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the $\overline{\text{WR}}/\overline{\text{WRL}}$ pin output is disabled.                                                                                                                                                                    |  |  |
| 10       | 12                | WRL          | Ι                  | Write strobe output pin for the data bus. This function is enabled when both the external bus and the $\overline{WR}/WRL$ pin output are enabled. $\overline{WRL}$ is write-strobe output pin for the lower 8 bits of the data bus in 16-bit access. $\overline{WR}$ is write-strobe output pin for the 8 bits of the data bus in 8-bit access. |  |  |

| Pin                | No.               | Dia       | Circuit                                                                                                           | E un atten                                                                                                                                                                                                                           |  |  |
|--------------------|-------------------|-----------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| LQFP <sup>*2</sup> | QFP <sup>*1</sup> | Pin name  | type                                                                                                              | Function                                                                                                                                                                                                                             |  |  |
|                    |                   | P33       |                                                                                                                   | General I/O port with programmable pullup. This function is enabled in the single-chip mode, external bus 8-bit mode or when WRH pin output is disabled.                                                                             |  |  |
| 11                 | 13                | WRH       | I                                                                                                                 | Write strobe output pin for the 8 higher bits of the data bus. This function is enabled when the external bus is enabled, when the external bus 16-bit mode is selected, and when the $\overline{\text{WRH}}$ output pin is enabled. |  |  |
| 12                 | 14                | P34       | I                                                                                                                 | General I/O port with programmable pullup. This function is<br>enabled in the single-chip mode or when the hold function is<br>disabled.                                                                                             |  |  |
|                    |                   | HRQ       |                                                                                                                   | Hold request input pin. This function is enabled when both the external bus and the hold functions are enabled.                                                                                                                      |  |  |
| 13                 | 15                | P35       | I                                                                                                                 | General I/O port with programmable pullup. This function is enabled in the single-chip mode or when the hold function is disabled.                                                                                                   |  |  |
|                    |                   | HAK       |                                                                                                                   | Hold acknowledge output pin. This function is enabled when both the external bus and the hold functions are enabled.                                                                                                                 |  |  |
| 14                 | 16                | P36       | I                                                                                                                 | General I/O port with programmable pullup. This function is<br>enabled in the single-chip mode or when the external ready<br>function is disabled.                                                                                   |  |  |
|                    |                   | RDY       |                                                                                                                   | Ready input pin. This function is enabled when both the external bus and the external ready functions are enabled.                                                                                                                   |  |  |
| 15                 | 17                | P37       | Н                                                                                                                 | General I/O port with programmable pullup. This function is<br>enabled in the single-chip mode or when the CLK output is dis-<br>abled.                                                                                              |  |  |
|                    |                   | CLK       |                                                                                                                   | CLK output pin. This function is enabled when both the external bus and CLK outputs are enabled.                                                                                                                                     |  |  |
| 16                 | 18                | P40       | G                                                                                                                 | General I/O port. This function is enabled when UART0 disables the serial data output.                                                                                                                                               |  |  |
| 10                 | 10                | SOT0      | G                                                                                                                 | Serial data output pin for UART0. This function is enabled when UART0 enables the serial data output.                                                                                                                                |  |  |
| 17                 | 19                | P41       | G                                                                                                                 | General I/O port. This function is enabled when UART0 disables serial clock output.                                                                                                                                                  |  |  |
| 17                 | 19                | SCK0      | u                                                                                                                 | Serial clock I/O pin for UART0. This function is enabled when UART0 enables the serial clock output.                                                                                                                                 |  |  |
|                    |                   | P42       |                                                                                                                   | General I/O port. This function is always enabled.                                                                                                                                                                                   |  |  |
| 18                 | 20                | SIN0      | G                                                                                                                 | Serial data input pin for UART0. Set the corresponding Port Direction Register to input if this function is used.                                                                                                                    |  |  |
|                    |                   | P43       |                                                                                                                   | General I/O port. This function is always enabled.                                                                                                                                                                                   |  |  |
| 19                 | 21                | G<br>SIN1 | Serial data input pin for UART1. Set the corresponding Port Direction Register to input if this function is used. |                                                                                                                                                                                                                                      |  |  |

| Pin                | No.               | <b>D</b> .   | Circuit |                                                                                                                                                                           |
|--------------------|-------------------|--------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LQFP <sup>*2</sup> | QFP <sup>*1</sup> | Pin name     | type    | Function                                                                                                                                                                  |
| 00                 |                   | P44          | 0       | General I/O port. This function is enabled when UART1 disables the clock output.                                                                                          |
| 20                 | 22                | SCK1         | G       | Serial clock pulse I/O pin for UART1. This function is enabled when UART1 enables the serial clock output.                                                                |
| 22                 | 24                | P45          | G       | General I/O port. This function is enabled when UART1 disables the serial data output.                                                                                    |
| 22                 | 24                | SOT1         | 9       | Serial data output pin for UART1. This function is enabled when UART1 enables the serial data output.                                                                     |
|                    |                   | P46          |         | General I/O port. This function is enabled when the Extended I/O serial interface disables the serial data output.                                                        |
| 23                 | 25                | SOT2         | G       | Serial data output pin for the Extended I/O serial interface. This function is enabled when the Extended I/O serial interface enables the serial data output.             |
|                    |                   | P47          |         | General I/O port. This function is enabled when the Extended I/O serial interface disables the clock output.                                                              |
| 24                 | 26                | SCK2         | G       | Serial clock pulse I/O pin for the Extended I/O serial interface .<br>This function is enabled when the Extended I/O serial interface<br>enables the Serial clock output. |
|                    |                   | P50          | D       | General I/O port. This function is always enabled.                                                                                                                        |
| 26                 | 28                | SIN2         |         | Serial data input pin for the Extended I/O serial interface . Set the corresponding Port Direction Register to input if this function is used.                            |
|                    |                   | P51 to P54   |         | General I/O port. This function is always enabled.                                                                                                                        |
| 27 to 30           | 29 to 32          | INT4 to INT7 | D       | External interrupt request input pins for INT4 to INT7. Set the corresponding Port Direction Register to input if this function is used.                                  |
|                    |                   | P55          |         | General I/O port. This function is always enabled.                                                                                                                        |
| 31                 | 33                | ADTG         | D       | Trigger input pin for the A/D converter. Set the corresponding<br>Port Direction Register to input if this function is used.                                              |
| 00.1.00            | 38 to 41          | P60 to P63   | E       | General I/O port. This function is enabled when the analog input enable register specifies a port.                                                                        |
| 36 to 39           | 50 10 41          | AN0 to AN3   |         | Analog input pins for the 8/10-bit A/D converter. This function is enabled when the analog input enable register specifies A/D.                                           |
| 41 to 44           | 43 to 46          | P64 to P67   | E       | General I/O port. The function is enabled when the analog input enable register specifies a port.                                                                         |
| 41 10 44           | +5 10 40          | AN4 to AN7   |         | Analog input pins for the 8/10-bit A/D converter. This function is enabled when the analog input enable register specifies A/D.                                           |
|                    |                   | P56          |         | General I/O port. This function is always enabled.                                                                                                                        |
| 45 47              |                   | TINO         | D       | Event input pin for the 16-bit reload timers 0. Set the corresponding Port Direction Register to input if this function is used.                                          |


| Pin                | No.               | <b>D</b> .      | Circuit |                                                                                                                                                                           |
|--------------------|-------------------|-----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LQFP <sup>*2</sup> | QFP <sup>*1</sup> | Pin name        | type    | Function                                                                                                                                                                  |
| 40                 | 40                | P57             | D       | General I/O port. This function is enabled when the 16-bit reload timers 0 disables the output.                                                                           |
| 46                 | 48                | ТОТ0            | D       | Output pin for the 16-bit reload timers 0. This function is enabled when the 16-bit reload timers 0 enables the output.                                                   |
|                    |                   | P70 to P75      |         | General I/O ports. This function is always enabled.                                                                                                                       |
| 51 to 56           | 53 to 58          | IN0 to IN5      | D       | Trigger input pins for input captures ICU0 to ICU5. Set the cor-<br>responding Port Direction Register to input if this<br>function is used.                              |
|                    |                   | P76 , P77       |         | General I/O ports. This function is enabled when the OCU disables the waveform output.                                                                                    |
| 57 , 58            | 59 , 60           | OUT2 , OUT3     | D       | Event output pins for output compares OCU2 and OCU3. This function is enabled when the OCU enables the waveform output.                                                   |
|                    |                   | IN6 , IN7       |         | Trigger input pins for input captures ICU6 and ICU7. Set the corresponding Port Direction Register to input and disable the OCU waveform output if this function is used. |
| 50 to 60           | C1 to C1          | P80 to P83      | D       | General I/O ports. This function is enabled when 8/16-bit PPG disables the waveform output.                                                                               |
| 59 to 62           | 61 to 64          | PPG0 to<br>PPG3 | D       | Output pins for 8/16-bit PPGs. This function is enabled when 8/16-bit PPG enables the waveform output.                                                                    |
|                    |                   | P84 , P85       |         | General I/O ports. This function is enabled when the OCU disables the waveform output.                                                                                    |
| 63 , 64            | 65 , 66           | OUT0 , OUT1     | D       | Waveform output pins for output compares OCU0 and OCU1.<br>This function is enabled when the OCU enables the waveform<br>output.                                          |
|                    |                   | P86             |         | General I/O port. This function is always enabled.                                                                                                                        |
| 65                 | 67                | TIN1            | D       | Input pin for the 16-bit reload timers 1. Set the corresponding Port Direction Register to input if this function is used.                                                |
|                    | 69                | P87             | D       | General I/O port. This function is enabled when the 16-bit reload timers 1 disables the output.                                                                           |
| 66                 | 68                | TOT1            | D       | Output pin for the 16-bit reload timers 1. This function is enabled when the 16-bit reload timers 1 enables the output.                                                   |
|                    |                   | P90 to P93      |         | General I/O port. This function is always enabled.                                                                                                                        |
| 67 to 70 69 to 72  |                   | INT0 to INT3    | D       | External interrupt request input pins for INT0 to INT3. Set the corresponding Port Direction Register to input if this function is used.                                  |
| 71                 | 73                | P94             | D       | General I/O port. This function is enabled when CAN0 disables the output.                                                                                                 |
| / 1                | 13                | ТХО             | U       | TX output pin for CAN0. This function is enabled when CAN0 enables the output.                                                                                            |


| Pin                | No.                      |          | Circuit         | Function                                                                                                                                                                      |  |  |
|--------------------|--------------------------|----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| LQFP <sup>*2</sup> | <b>QFP</b> <sup>∗1</sup> | Pin name | type            | Function                                                                                                                                                                      |  |  |
|                    |                          | P95      |                 | General I/O port. This function is always enabled.                                                                                                                            |  |  |
| 72 74              |                          | RX0      | D               | RX input pin for CAN0 Interface. When the CAN function is used, output from the other functions must be stopped.                                                              |  |  |
| 73                 | 75                       | P96      | D               | General I/O port. This function is enabled when CAN1 disables the output.                                                                                                     |  |  |
| 73                 | 75                       | TX1      |                 | TX output pin for CAN1. This function is enabled when CAN1 enables the output (only MB90540G series) .                                                                        |  |  |
|                    |                          | P97      |                 | General I/O port. This function is always enabled.                                                                                                                            |  |  |
| 74                 | 76                       | RX1      | D               | RX input pin for CAN1 Interface. When the CAN function is used, output from the other functions must be stopped (only MB90540G series).                                       |  |  |
| 76                 | 78                       | PA0      | D               | General I/O port. This function is always enabled.                                                                                                                            |  |  |
| 32                 | 34                       | AVcc     | Power<br>supply | Power supply pin for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AVcc is applied to Vcc.                            |  |  |
| 35                 | 37                       | AVss     | Power<br>supply | Power supply pin for the A/D Converter.                                                                                                                                       |  |  |
| 33                 | 35                       | AVRH     | Power<br>supply | External reference voltage input pin for the A/D Converter.<br>This power supply must be turned on or off while a voltage<br>higher than or equal to AVRH is applied to AVcc. |  |  |
| 34                 | 36                       | AVRL     | Power<br>supply | External reference voltage input pin for the A/D Converter.                                                                                                                   |  |  |
| 47, 48             | 49, 50                   | MD0, MD1 | С               | Input pins for specifying the operating mode. The pins must be directly connected to $V_{CC}$ or $V_{SS}$ .                                                                   |  |  |
| 49                 | 51                       | MD2      | F               | Input pin for specifying the operating mode. The pin must be directly connected to $V_{CC}$ or $V_{SS}$ .                                                                     |  |  |
| 25                 | 27                       | С        |                 | Power supply stabilization capacitor pin. It should be connected externally to an 0.1 $\mu$ F ceramic capacitor.                                                              |  |  |
| 21, 82             | 23, 84                   | Vcc      | Power<br>supply | Input pin for power supply (5.0 V) .                                                                                                                                          |  |  |
| 9, 40, 79          | 11, 42,<br>81            | Vss      | Power<br>supply | Input pin for power supply (0.0 V).                                                                                                                                           |  |  |


\*1 : FPT-100P-M06

\*2 : FPT-100P-M20

### ■ I/O CIRCUIT TYPE







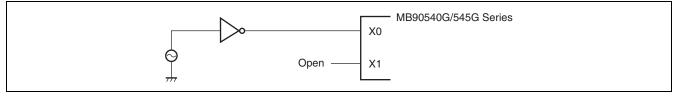
#### ■ HANDLING DEVICES

#### (1) Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions :

- A voltage higher than  $V_{\mbox{\scriptsize CC}}$  or lower than  $V_{\mbox{\scriptsize SS}}$  is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- The AVcc power supply is applied before the  $V_{\mbox{\scriptsize CC}}$  voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device. For the same reason, care must also be taken in not allowing the analog power-supply voltage (AVcc, AVRH) to exceed the digital power-supply voltage.


#### (2) Handling unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefor they must be pulled up or pulled down through resistors. In this case those resistors should be more than 2 k $\Omega$ .

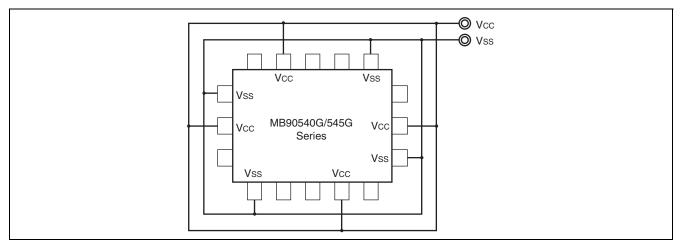
Unused bi-directional pins should be set to the output state and can be left open, or the input state with the above described connection.

#### (3) Using external clock

To use external clock, drive X0 pin only and leave X1 pin unconnected. Below is a diagram of how to use external clock.



#### (4) Use of the sub-clock


Use one clock system parts when the sub-clock is not used. In that case, pull-down the pin X0A and leave the pin X1A open. When using two clock system parts, a 32 kHz oscillator has to be connected to the X0A and X1A pins.

#### (5) Power supply pins (Vcc/Vss)

In products with multiple  $V_{CC}$  or  $V_{SS}$  pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via the lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 µF between Vcc and Vss pins near the device.



#### (6) Pull-up/down resistors

The MB90540G/545G Series does not support internal pull-up/down resistors (except Port0 – Port3 : pull-up resistors) . Use external components where needed.

#### (7) Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via the shortest distances from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuits do not cross the lines of other circuits. It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation.

#### (8) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

#### (9) Connection of Unused Pins of A/D Converter

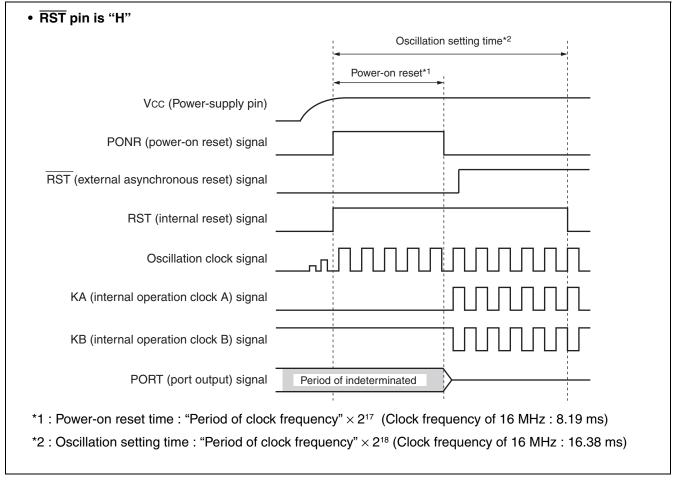
Connect unused pins of A/D converter to  $AV_{CC} = V_{CC}$ ,  $AV_{SS} = AVRH = V_{SS}$ .

#### (10) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

#### (11) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50  $\mu$ s or more (0.2 V to 2.7 V).


Downloaded from Arrow.com.

#### (12) Indeterminate outputs from ports 0 and 1 (MB90V540G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

- If RST pin is "H", the outputs become indeterminate.
- If RST pin is "L", the outputs become high-impedance.

Pay attention to the port output timing shown as follow.



| • RST pin is "L"                                      |                                                                        |
|-------------------------------------------------------|------------------------------------------------------------------------|
|                                                       | Oscillation setting time*2                                             |
|                                                       | Power-on reset*1                                                       |
| Vcc (Power-supply pin)                                |                                                                        |
| PONR (power-on reset) signal                          |                                                                        |
| RST (external asynchronous reset) signal              |                                                                        |
| RST (internal reset) signal                           |                                                                        |
| Oscillation clock signal                              |                                                                        |
| KA (internal operation clock A) signal                |                                                                        |
| KB (internal operation clock B) signal                |                                                                        |
| PORT (port output) signal                             | High-impedance                                                         |
| *1 : Power-on reset time : "Period of clock freque    | ency" $\times 2^{17}$ (Clock frequency of 16 MHz : 8.19 ms)            |
| *2 : Oscillation setting time : "Period of clock free | quency" $	imes$ 2 <sup>18</sup> (Clock frequency of 16 MHz : 16.38 ms) |

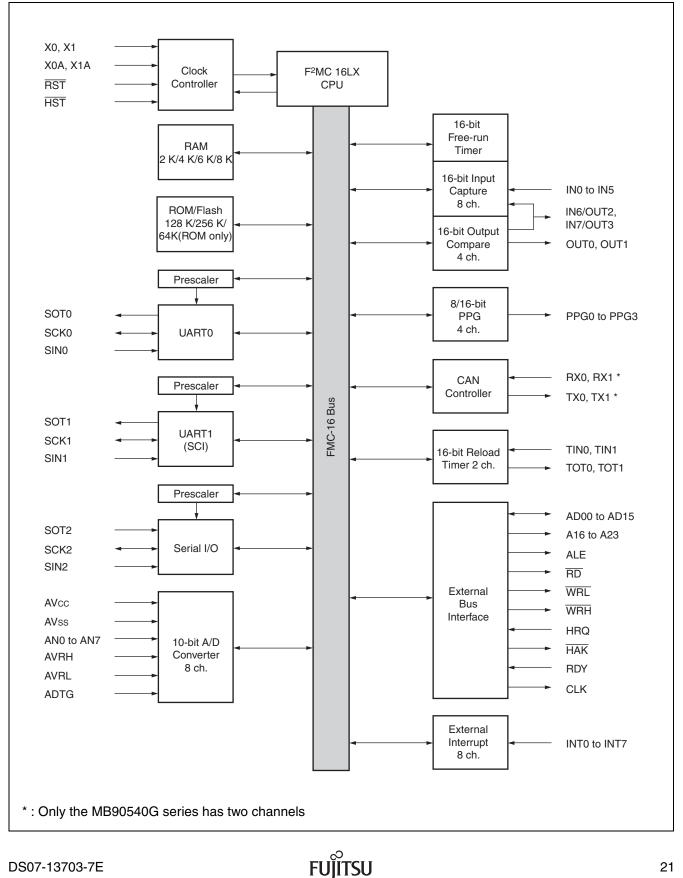
#### (13) Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

#### (14) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

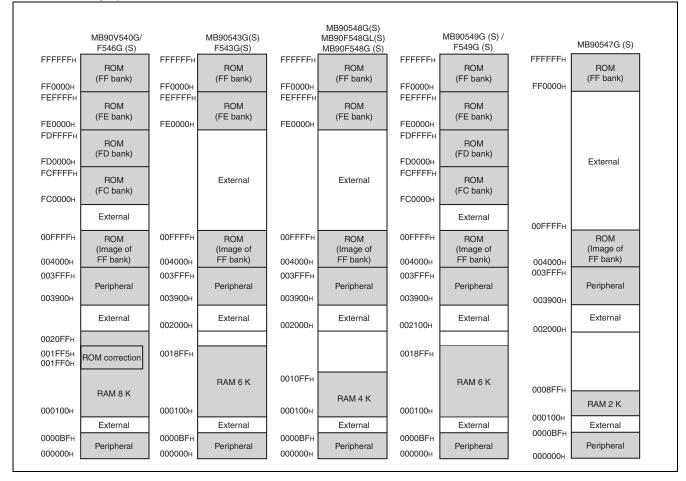
In the Signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank registers (DTB, ADB, USB, SSB) are set to other than "00H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.


#### (15) Using REALOS

The use of El<sup>2</sup>OS is not possible with the REALOS real time operating system.

#### (16) Caution on Operations during PLL Clock Mode


If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

#### BLOCK DIAGRAM



### MEMORY MAP

The memory space of the MB90540G/545G Series is shown below.



Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits address are the same, the table in ROM can be referenced without using the "far" specification in the pointer declaration.

For example, an attempt to access 00C000<sub>H</sub> accesses the value at FFC000<sub>H</sub> in ROM.The ROM area in bank FF exceeds 48 Kbytes, and its entire image cannot be shown in bank 00.The image between FF4000<sub>H</sub> and FFFFF<sub>H</sub> is visible in bank 00, while the image between FF0000<sub>H</sub> and FF3FFF<sub>H</sub> is visible only in bank FF.

### ■ I/O MAP

| Address     | Register                                                       | Abbreviation    | Access | Resource name | Initial value                  |
|-------------|----------------------------------------------------------------|-----------------|--------|---------------|--------------------------------|
| 00н         | Port 0 data register                                           | PDR0            | R/W    | Port 0        | XXXXXXXXB                      |
| 01н         | Port 1 data register                                           | PDR1            | R/W    | Port 1        | XXXXXXXXB                      |
| 02н         | Port 2 data register                                           | PDR2            | R/W    | Port 2        | XXXXXXXXB                      |
| 03н         | Port 3 data register                                           | PDR3            | R/W    | Port 3        | XXXXXXXXB                      |
| 04н         | Port 4 data register                                           | PDR4            | R/W    | Port 4        | XXXXXXXXB                      |
| 05н         | Port 5 data register                                           | PDR5            | R/W    | Port 5        | XXXXXXXXB                      |
| 06н         | Port 6 data register                                           | PDR6            | R/W    | Port 6        | XXXXXXXXB                      |
| 07н         | Port 7 data register                                           | PDR7            | R/W    | Port 7        | XXXXXXXXB                      |
| 08н         | Port 8 data register                                           | PDR8            | R/W    | Port 8        | XXXXXXXXB                      |
| 09н         | Port 9 data register                                           | PDR9            | R/W    | Port 9        | XXXXXXXXB                      |
| 0Ан         | Port A data register                                           | PDRA            | R/W    | Port A        | Хв                             |
| 0Bн to 0Fн  |                                                                | Reserved        | b      |               |                                |
| <b>10</b> н | Port 0 direction register                                      | DDR0            | R/W    | Port 0        | 00000000 <sub>B</sub>          |
| <b>11</b> н | Port 1 direction register                                      | DDR1            | R/W    | Port 1        | 00000000 <sub>B</sub>          |
| <b>12</b> н | Port 2 direction register                                      | DDR2            | R/W    | Port 2        | 00000000 <sub>B</sub>          |
| <b>1</b> 3н | Port 3 direction register                                      | DDR3            | R/W    | Port 3        | 00000000 <sub>B</sub>          |
| <b>14</b> н | Port 4 direction register                                      | DDR4            | R/W    | Port 4        | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| <b>1</b> 5н | Port 5 direction register                                      | DDR5            | R/W    | Port 5        | 00000000 <sub>B</sub>          |
| <b>16</b> н | Port 6 direction register                                      | DDR6            | R/W    | Port 6        | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| <b>17</b> н | Port 7 direction register                                      | DDR7            | R/W    | Port 7        | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| <b>18</b> ⊦ | Port 8 direction register                                      | DDR8            | R/W    | Port 8        | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| <b>19</b> ⊦ | Port 9 direction register                                      | DDR9            | R/W    | Port 9        | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| <b>1А</b> н | Port A direction register                                      | DDRA            | R/W    | Port A        | 0в                             |
| <b>1</b> Вн | Analog Input Enable register                                   | ADER            | R/W    | Port 6, A/D   | 11111111 <sub>B</sub>          |
| 1Cн         | Port 0 Pullup control register                                 | PUCR0           | R/W    | Port 0        | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| 1Dн         | Port 1 Pullup control register                                 | PUCR1           | R/W    | Port 1        | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| 1Eн         | Port 2 Pullup control register                                 | PUCR2           | R/W    | Port 2        | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| 1Fн         | Port 3 Pullup control register                                 | PUCR3           | R/W    | Port 3        | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| 20н         | Serial Mode Control Register 0                                 | UMC0            | R/W    |               | 00000100в                      |
| 21н         | Serial Status Register 0                                       | USR0            | R/W    |               | 0001000 <sub>B</sub>           |
| 22н         | Serial input data register 0/<br>Serial output data register 0 | UIDR0/<br>UODR0 | R/W    | UART0         | XXXXXXXXB                      |
| 23н         | Rate and data register 0                                       | URD0            | R/W    |               | 0 0 0 0 0 0 0 0X <sub>B</sub>  |

| Address      | Register                                                       | Abbreviation    | Access | Resource name                    | Initial value                  |
|--------------|----------------------------------------------------------------|-----------------|--------|----------------------------------|--------------------------------|
| 24н          | Serial mode register 1                                         | SMR1            | R/W    |                                  | 000000000B                     |
| 25н          | Serial control register 1                                      | SCR1            | R/W    |                                  | 00000100 <sub>B</sub>          |
| 26н          | Serial input data register 1/<br>Serial output data register 1 | SIDR1/<br>SODR1 | R/W    | UART1                            | XXXXXXXX                       |
| 27н          | Serial status register 1                                       | SSR1            | R/W    |                                  | 00001_00в                      |
| <b>28</b> н  | UART1 prescaler control register                               | CDCR            | R/W    |                                  | 01 1 1 1в                      |
| 29н          | Serial Edge select register                                    | SES1            | R/W    |                                  | 0в                             |
| 2Ан          |                                                                | Prohibite       | d      | ·                                |                                |
| 2Вн          | Serial I/O prescaler                                           | SCDCR           | R/W    |                                  | 01 1 1 1в                      |
| 2Сн          | Serial mode control register                                   | SMCS            | R/W    |                                  | 0000в                          |
| 2Dн          | Serial mode control register                                   | SMCS            | R/W    | Extended I/O<br>Serial Interface | $0\ 0\ 0\ 0\ 0\ 0\ 1\ 0_B$     |
| 2Eн          | Serial data register                                           | SDR             | R/W    |                                  | XXXXXXXXB                      |
| 2 <b>F</b> н | Serial Edge select register                                    | SES2            | R/W    |                                  | 0в                             |
| 30н          | External interrupt enable register                             | ENIR            | R/W    |                                  | 00000000                       |
| 31н          | External interrupt request register                            | EIRR            | R/W    | – External Interrupt             | XXXXXXXXB                      |
| 32н          | External interrupt level register                              | ELVR            | R/W    |                                  | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| 33н          | External interrupt level register                              | ELVR            | R/W    |                                  | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| 34н          | A/D control status register 0                                  | ADCS0           | R/W    |                                  | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| 35н          | A/D control status register 1                                  | ADCS1           | R/W    | A/D Converter                    | 0 0 0 0 0 0 0 0 0 <sub>B</sub> |
| 36н          | A/D data register 0                                            | ADCR0           | R      | A/D Conventer                    | XXXXXXXXB                      |
| 37н          | A/D data register 1                                            | ADCR1           | R/W    |                                  | 00001_XXв                      |
| 38н          | PPG0 operation mode control register                           | PPGC0           | R/W    | 16-bit Programmable              | 0_000_1в                       |
| 39н          | PPG1 operation mode control register                           | PPGC1           | R/W    | Pulse                            | 0_00001в                       |
| 3Ан          | PPG0/1 clock selection register                                | PPG01           | R/W    | Generator 0/1                    | 000000B                        |
| 3Вн          |                                                                | Prohibite       | d      |                                  |                                |
| 3Сн          | PPG2 operation mode control register                           | PPGC2           | R/W    | 16-bit Programmable              | 0_000_1в                       |
| 3Dн          | PPG3 operation mode control register                           | PPGC3           | R/W    | Pulse                            | 0_00001в                       |
| 3Ен          | PPG2/3 Clock Selection Register                                | PPG23           | R/W    | Generator 2/3                    | 000000B                        |
| 3Fн          |                                                                | Prohibite       | d      |                                  |                                |
| 40н          | PPG4 operation mode control register                           | PPGC4           | R/W    | 16-bit Programmable              | 0_000_1в                       |
| <b>41</b> н  | PPG5 operation mode control register                           | PPGC5           | R/W    | Pulse                            | 0_00001в                       |
| 42н          | PPG4/5 clock selection register                                | PPG45           | R/W    | Generator 4/5                    | 000000B                        |
| 43н          |                                                                | Prohibite       | d      |                                  |                                |
| 44н          | PPG6 operation mode control register                           | PPGC6           | R/W    | 16-bit Programmable              | 0_000_1в                       |
| <b>45</b> н  | PPG7 operation mode control register                           | PPGC7           | R/W    | Pulse                            | 0_00001в                       |
| <b>46</b> н  | PPG6/7 clock selection register                                | PPG67           | R/W    | Generator 6/7                    | 000000B                        |

(Continued)



| Address      | Register                                             | Abbreviation     | Access      | Resource name                          | Initial value                       |
|--------------|------------------------------------------------------|------------------|-------------|----------------------------------------|-------------------------------------|
| 47н to 4Вн   |                                                      | Prohibited       | d           |                                        |                                     |
| 4Сн          | Input capture control status register 0/1            | ICS01            | R/W         | Input Capture 0/1                      | 0 0 0 0 0 0 0 0 0 <sub>B</sub>      |
| 4Dн          | Input capture control status register 2/3            | ICS23            | R/W         | Input Capture 2/3                      | 0 0 0 0 0 0 0 0 0 <sub>B</sub>      |
| <b>4</b> Ен  | Input capture control status register 4/5            | ICS45            | R/W         | Input Capture 4/5                      | 0 0 0 0 0 0 0 0 0 <sub>B</sub>      |
| <b>4F</b> н  | Input capture control status register 6/7            | ICS67            | R/W         | Input Capture 6/7                      | 0 0 0 0 0 0 0 0 0 <sub>B</sub>      |
| 50н          | Timer control status register 0                      | TMCSR0           | R/W         |                                        | $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{B}$ |
| 51н          | Timer control status register 0                      | TMCSR0           | R/W         | 16-bit Reload<br>Timer 0               | 0000b                               |
| 52н          | Timer register 0/reload register 0                   | TMR0/<br>TMRLR0  | R/W         |                                        | XXXXXXXX                            |
| 53н          | Timer register 0/reload register 0                   | TMR0/<br>TMRLR0  | R/W         |                                        | XXXXXXXXB                           |
| <b>54</b> н  | Timer control status register 1                      | TMCSR1           | R/W         |                                        | $0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{B}$ |
| 55н          | Timer control status register 1                      | TMCSR1           | R/W         |                                        | 0 0 0 0 <sub>B</sub>                |
| 56н          | Timer register 1/reload register 1                   | TMR1/<br>TMRLR1  | R/W         | 16-bit Reload<br>Timer 1               | XXXXXXXXB                           |
| 57н          | Timer register 1/reload register 1                   | TMR1/<br>TMRLR1  | R/W         |                                        | XXXXXXXXB                           |
| <b>58</b> н  | Output compare control status register 0             | OCS0             | R/W         | Output Compare                         | 0 0 0 0 0 0 <sub>B</sub>            |
| 59н          | Output compare control status register 1             | OCS1             | R/W         | 0/1                                    | 00000 <sub>B</sub>                  |
| 5Ан          | Output compare control status register 2             | OCS2             | R/W         | Output Compare                         | 0 0 0 0 0 0 <sub>B</sub>            |
| 5Вн          | Output compare control status register 3             | OCS3             | R/W         | 2/3                                    | 00000 <sub>B</sub>                  |
| 5Cн to 6Bн   |                                                      | Prohibited       | d           |                                        |                                     |
| 6Сн          | Timer Data register                                  | TCDT             | R/W         |                                        | 0 0 0 0 0 0 0 0 0 <sub>B</sub>      |
| 6Dн          | Timer Data register                                  | TCDT             | R/W         | I/O Timer                              | 0 0 0 0 0 0 0 0 0 <sub>B</sub>      |
| 6Eн          | Timer Control register                               | TCCS             | R/W         |                                        | 0 0 0 0 0 0 0 0 0 <sub>B</sub>      |
| 6Fн          | ROM mirror function<br>selection register            | ROMM             | R/W         | ROM Mirror                             | 1в                                  |
| 70н to 7Fн   | Res                                                  | served for CAN ( | 0 Interface | ).                                     |                                     |
| 80н to 8Fн   | Res                                                  | served for CAN   | 1 Interface | ).                                     |                                     |
| 90н to 9Dн   |                                                      | Prohibited       | d           |                                        |                                     |
| 9Eн          | Program address detection<br>control status register | PACSR            | R/W         | Address Match<br>Detection<br>Function | 0 0 0 0 0 0 0 0 0 <sub>B</sub>      |
| 9 <b>F</b> н | Delayed interrupt/release register                   | DIRR             | R/W         | Delayed Interrupt                      | 0в                                  |
| А0н          | Low-power mode control register                      | LPMCR            | R/W         | Low Power<br>Controller                | 00011000в                           |
| А1н          | Clock selection register                             | CKSCR            | R/W         | Low Power<br>Controller                | 1111100в                            |



| Address                            | Register                                                              | Abbreviation | Access | Resource name             | Initial value                |  |  |  |
|------------------------------------|-----------------------------------------------------------------------|--------------|--------|---------------------------|------------------------------|--|--|--|
| A2H to A4H                         |                                                                       | Prohibite    | d      |                           |                              |  |  |  |
| А5н                                | Automatic ready function select register                              | ARSR         | W      |                           | 0011_00B                     |  |  |  |
| А6н                                | External address output control register                              | HACR         | W      | External Memory<br>Access | 00000000                     |  |  |  |
| А7н                                | Bus control signal selection register                                 | ECSR         | W      | 100000                    | 000000_в                     |  |  |  |
| А8н                                | Watchdog Timer control register                                       | WDTC         | R/W    | Watchdog Timer            | XXXXX 1 1 1в                 |  |  |  |
| А9н                                | Time Base Timer Control register                                      | TBTC         | R/W    | Time Base Timer           | 1 0 0 1 0 Ов                 |  |  |  |
| AАн                                | Watch timer control register                                          | WTC          | R/W    | Watch Timer               | 1 X 0 0 0 0 0 0 <sub>B</sub> |  |  |  |
| AB <sub>H</sub> to AD <sub>H</sub> |                                                                       | Prohibited   |        |                           |                              |  |  |  |
| AEн                                | Flash memory control status register (Flash only, otherwise reserved) | FMCS         | R/W    | Flash Memory              | 0 0 0 X 0 0 0 <sub>B</sub>   |  |  |  |
| AFн                                |                                                                       | Prohibite    | d      | <u> </u>                  |                              |  |  |  |
| В0н                                | Interrupt control register 00                                         | ICR00        | R/W    |                           | 00000111в                    |  |  |  |
| В1н                                | Interrupt control register 01                                         | ICR01        | R/W    |                           | 00000111в                    |  |  |  |
| В2н                                | Interrupt control register 02                                         | ICR02        | R/W    |                           | 00000111в                    |  |  |  |
| ВЗн                                | Interrupt control register 03                                         | ICR03        | R/W    |                           | 00000111в                    |  |  |  |
| В4н                                | Interrupt control register 04                                         | ICR04        | R/W    |                           | 00000111                     |  |  |  |
| В5н                                | Interrupt control register 05                                         | ICR05        | R/W    |                           | 00000111                     |  |  |  |
| В6н                                | Interrupt control register 06                                         | ICR06        | R/W    |                           | 00000111                     |  |  |  |
| В7н                                | Interrupt control register 07                                         | ICR07        | R/W    | Interrupt                 | 00000111в                    |  |  |  |
| В8н                                | Interrupt control register 08                                         | ICR08        | R/W    | controller                | 00000111в                    |  |  |  |
| В9н                                | Interrupt control register 09                                         | ICR09        | R/W    |                           | 00000111в                    |  |  |  |
| ВАн                                | Interrupt control register 10                                         | ICR10        | R/W    |                           | 00000111в                    |  |  |  |
| BBн                                | Interrupt control register 11                                         | ICR11        | R/W    |                           | 00000111в                    |  |  |  |
| ВСн                                | Interrupt control register 12                                         | ICR12        | R/W    |                           | 00000111в                    |  |  |  |
| BDн                                | Interrupt control register 13                                         | ICR13        | R/W    |                           | 00000111в                    |  |  |  |
| ВЕн                                | Interrupt control register 14                                         | ICR14        | R/W    |                           | 00000111                     |  |  |  |
| BFн                                | Interrupt control register 15                                         | ICR15        | R/W    |                           | 00000111                     |  |  |  |
| COн to FFн                         |                                                                       | Externa      |        |                           |                              |  |  |  |

| Address | Register                             | Abbreviation | Access | Resource name      | Initial value |
|---------|--------------------------------------|--------------|--------|--------------------|---------------|
| 1FF0⊦   | Program address detection register 0 | PADR0        | R/W    |                    | XXXXXXXXB     |
| 1FF1⊦   | Program address detection register 0 | PADR0        | R/W    |                    | XXXXXXXXB     |
| 1FF2н   | Program address detection register 0 | PADR0        | R/W    | Address Match      | XXXXXXXXB     |
| 1FF3⊦   | Program address detection register 1 | PADR1        | R/W    | Detection Function | XXXXXXXXB     |
| 1FF4⊦   | Program address detection register 1 | PADR1        | R/W    |                    | XXXXXXXXB     |
| 1FF5⊦   | Program address detection register 1 | PADR1        | R/W    |                    | XXXXXXXXB     |

FUJITSU

| З900н         Reload L         PRLL0         R/W           3901н         Reload H         PRLH0         R/W           3902н         Reload L         PRLL1         R/W           3903н         Reload L         PRL11         R/W           3903н         Reload L         PRL12         R/W           3904н         Reload L         PRL2         R/W           3905h         Reload L         PRL2         R/W           3906h         Reload L         PRL2         R/W           3906h         Reload L         PRL13         R/W           3907h         Reload L         PRL4         R/W           3908h         Reload L         PRL4         R/W           3908h         Reload L         PRL4         R/W           3909h         Reload L         PRL4         R/W           3908h         Reload L         PRL5         R/W           3900h         Reload L         PRL5         R/W           3900h         Reload L         PRL6         R/W           3900h         Reload L         PRL6         R/W           3900h         Reload L         PRL7         R/W           3900h | XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 3902HReload LPRLL1R/WGenerator 0/1XXXXX3903HReload HPRLL1R/WGenerator 0/1XXXXX3904HReload LPRLL2R/WXXXXX3905HReload HPRLL2R/WI6-bit Programmable Pulse<br>Generator 2/3XXXXX3906HReload LPRLL3R/WXXXXX3907HReload LPRLL4R/WXXXXX3907HReload LPRLH4R/WXXXXX3908HReload LPRLL4R/WXXXXX3909HReload LPRLH4R/WXXXXX3909HReload LPRLH5R/WXXXXX3900HReload LPRLH6R/WXXXXX3900HReload LPRLL6R/WXXXXX3900HReload LPRLL6R/WXXXXX3900HReload LPRLL7R/WXXXXX3900HReload LPRLT7R/WXXXXX3900HReload LPRLT7R/WXXXXX3900HReload HPRLT7R/WXXXXX3910H to<br>3917HReservedXXXXXXXXXX3918HInput Capture Register 0IPCP0RInput Capture 0/1XXXXX3918HInput Capture Register 1IPCP1RXXXXXXXXXX391BHInput Capture Register 1IPCP1RXXXXX                                                                                                                                                                                                                                                                                                                                                                                 | XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB          |
| 3903нReload LPRLH1R/WXXXX3903нReload HPRLL1R/WXXXX3904нReload LPRLL2R/WXXXX3905нReload HPRLL2R/W16-bit Programmable Pulse<br>Generator 2/3XXXX3907нReload LPRLL3R/WXXXXX3907нReload LPRLL4R/WXXXXX3908нReload LPRLL4R/WXXXXX3909нReload LPRLL4R/WXXXXX3908нReload LPRLL5R/WXXXXX3908нReload LPRLL5R/WXXXXX3908hReload LPRLL6R/WXXXXX390BhReload LPRLL6R/WXXXXX390BhReload LPRLL6R/WXXXXX390DhReload LPRLL7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390FhReload LPRLL7R/WXXXXX390FhReload HPRLH7R/WXXXXX3910h to<br>3917hReservedXXXXX3918hInput Capture Register 0IPCP0R391AhInput Capture Register 0IPCP0RXXXXX391AhInput Capture Register 1IPCP1RXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX391BhInput Capture Register 1IPCP1RXXXXX                                                                                                                                                                                                                                                                                                                                                              | XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB                   |
| 3904HReload LPRLL2R/WXXXXX3905HReload HPRLH2R/W16-bit Programmable Pulse<br>Generator 2/3XXXXX3906HReload LPRLL3R/W16-bit Programmable Pulse<br>Generator 2/3XXXXX3907HReload HPRLH3R/WXXXXX3908HReload LPRLL4R/W16-bit Programmable Pulse<br>Generator 4/5XXXXX3908HReload LPRLL4R/W16-bit Programmable Pulse<br>Generator 4/5XXXXX3908HReload LPRLH5R/WXXXXX3908HReload LPRLH5R/WXXXXX390BHReload LPRLL6R/WXXXXX390CHReload LPRLL6R/WXXXXX390EHReload LPRLH7R/WXXXXX390FHReload HPRLH7R/WXXXXX3910H to<br>3917HReservedXXXXX3918HInput Capture Register 0IPCP0R3918HInput Capture Register 1IPCP1R391BHInput Capture Register 1IPCP1R391BHInput Capture Register 1IPCP1R                                                                                                                                                                                                                                                                                                                                                                                                                      | XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB                   |
| З905нReload HPRLH2R/W16-bit Programmable Pulse<br>Generator 2/3XXXXXЗ906нReload LPRLL3R/WGenerator 2/3XXXXX3907нReload HPRLH3R/WXXXXX3908нReload LPRLL4R/WXXXXX3909нReload LPRLL4R/WKXXXX3908нReload LPRLH4R/WKXXXX3908нReload LPRLH5R/WKXXXX3908нReload LPRLH5R/WKXXXX3908нReload LPRLH5R/WKXXXX3908нReload LPRLH6R/WKXXXX3908нReload LPRLH6R/WKXXXX3908нReload LPRLH6R/WKXXXX3908нReload LPRLH7R/WKXXXX3908нReload LPRLH6R/WKXXXX3908нReload HPRLH7R/WKXXXX3908нReload HPRLH7R/WKXXXX3908нReload HPRLH7R/WKXXXX3907hReload HPRLH7R/WKXXXX3918hInput Capture Register 0IPCP0RKXXXX3918hInput Capture Register 1IPCP1RKXXXX3918hInput Capture Register 1IPCP1RXXXXXXXXXXXXXXXXXXXXXXXXX3918hInput Capture Register 1IPCP1R3918hInput Capture Register 1IPCP1RXXXXX </td <td>XXXXB<br/>XXXXB<br/>XXXXB<br>XXXXB<br/>XXXXB<br/>XXXXB<br/>XXXXB<br/>XXXXB</br></td>                                                                                                                                                                                                                                | XXXXB<br>XXXXB<br>XXXXB<br>                                                                              |
| 3906HReload LPRLL3R/WGenerator 2/3XXXXX3907HReload HPRLH3R/WGenerator 2/3XXXXX3908HReload LPRLH4R/WXXXXX3909HReload LPRLH4R/W16-bit Programmable Pulse<br>Generator 4/5XXXXX390AHReload LPRLH5R/WXXXXX390AHReload LPRLH5R/W16-bit Programmable Pulse<br>Generator 4/5XXXXX390BHReload LPRLH5R/WXXXXX390CHReload LPRLH6R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390EHReload LPRLH7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390FHReload LPRLH7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX3910H to<br>3917HReload HPRLH7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX3918HInput Capture Register 0IPCP0R<br>AInput Capture Register 0IPCP0R<br>A391AHInput Capture Register 1IPCP1RInput Capture 0/1XXXXXXXXXXXXXXXXXXXXXXXXX391BHInput Capture Register 1IPCP1R391BHInput Capture Register 1IPCP1RXXXXX                                                                                                                                                                                                                                                             | XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB                                              |
| BiologicalHickord LHickord LKXXXX3907HReload LPRLL4R/WAXXXXXXXXXXXXXXXXXXX3908HReload LPRLL5R/W16-bit Programmable Pulse<br>Generator 4/5XXXXX3908HReload LPRLL5R/WXXXXXXXXXX390CHReload LPRLL6R/W16-bit Programmable Pulse<br>Generator 4/5XXXXX390DHReload LPRLL6R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390EHReload LPRLL7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390FHReload HPRLH7R/WXXXXX3910H to<br>3917HReservedReservedXXXXX3918HInput Capture Register 0IPCP0R10put Capture 0/1XXXXX391AHInput Capture Register 1IPCP1RXXXXX391BHInput Capture Register 1IPCP1RXXXXX                                                                                                                                                                                                                                                                                                                                                                                                             | XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB                                                       |
| 3908HReload LPRLL4R/W3909HReload HPRLH4R/W390AHReload LPRLL5R/W390BHReload HPRLL5R/W390CHReload LPRLL6R/W390DHReload HPRLH6R/W390DHReload LPRLH6R/W390DHReload HPRLH6R/W390DHReload HPRLH7R/W390EHReload LPRLH7R/W390FHReload HPRLH7R/W3910H to<br>3917HReservedXXXXX3918HInput Capture Register 0IPCP0R391AHInput Capture Register 1IPCP1R391BHInput Capture Register 1IPCP1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XXXXB<br>XXXXB<br>XXXXB<br>XXXXB<br>XXXXB                                                                |
| 3909HReload HPRLH4R/W16-bit Programmable Pulse<br>Generator 4/5XXXXX390AHReload LPRLL5R/W16-bit Programmable Pulse<br>Generator 4/5XXXXX390BHReload HPRLH5R/WXXXXX390CHReload LPRLL6R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390DHReload LPRLH6R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390EHReload LPRLL7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390FHReload HPRLH7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX3910H to<br>3917HReload HPRLH7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX3910H to<br>3917HReload HPRLH7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX3910H to<br>3917HInput Capture Register 0IPCP0RXXXXX3918HInput Capture Register 0IPCP0RInput Capture 0/1XXXXX391AHInput Capture Register 1IPCP1RXXXXXXXXXX391BHInput Capture Register 1IPCP1RXXXXX                                                                                                                                                                                                                                                                            | XXXXB<br>XXXXB<br>XXXXB<br>XXXXB                                                                         |
| 390AHReload LPRLL5R/WRobit Hogrammable Fulse<br>Generator 4/5XXXXX390BHReload HPRLH5R/WXXXXX390CHReload LPRLL6R/WXXXXX390DHReload HPRLH6R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390EHReload LPRLL7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390FHReload HPRLH7R/WXXXXX3910H to<br>3917HReservedXXXXXXXXXX3918HInput Capture Register 0IPCP0R<br>XXXXXXXXXX3918HInput Capture Register 0IPCP0R<br>XXXXX391AHInput Capture Register 1IPCP1R391BHInput Capture Register 1IPCP1R391BHInput Capture Register 1IPCP1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XXXXB<br>XXXXB<br>XXXXB                                                                                  |
| OBORHHeload LHILLSHIVXXXX390BHReload HPRLH5R/WXXXXX390CHReload LPRLL6R/WXXXXX390DHReload HPRLH6R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390EHReload LPRLL7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXX390FHReload HPRLH7R/WXXXXX3910H to<br>3917HReservedXXXXXXXXXX3918HInput Capture Register 0IPCP0R<br>Input Capture Register 0XXXXX3918HInput Capture Register 1IPCP1R391BHInput Capture Register 1IPCP1R391BHInput Capture Register 1IPCP1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XXXX <sub>B</sub><br>XXXX <sub>B</sub>                                                                   |
| З90СнReload LPRLL6R/WXXXXXЗ90DнReload HPRLH6R/W16-bit Programmable Pulse<br>Generator 6/7XXXXXЗ90EнReload LPRLL7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXXЗ90FнReload HPRLH7R/WXXXXX3910н to<br>3917нReservedXXXXXXXXXX3918нInput Capture Register 0IPCP0RXXXXXЗ918нInput Capture Register 0IPCP0RXXXXXЗ918нInput Capture Register 1IPCP1RXXXXXЗ918нInput Capture Register 1IPCP1RXXXXXЗ918нInput Capture Register 1IPCP1RXXXXXЗ918нInput Capture Register 1IPCP1RXXXXXЗ918нInput Capture Register 1IPCP1RXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XXXXB                                                                                                    |
| З90DнReload HPRLH6R/W16-bit Programmable Pulse<br>Generator 6/7XXXXXЗ90EнReload LPRLL7R/W16-bit Programmable Pulse<br>Generator 6/7XXXXXЗ90FнReload HPRLH7R/WXXXXXЗ910н to<br>З917нReservedXXXXXXXXXXЗ918нInput Capture Register 0IPCP0RЗ919нInput Capture Register 0IPCP0RЗ918нInput Capture Register 1IPCP1RЗ918нInput Capture Register 1IPCP1RЗ918нInput Capture Register 1IPCP1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |
| З90EнReload LPRLL7R/WGenerator 6/7XXXXX390FнReload HPRLH7R/WXXXXX3910н to<br>3917нReservedXXXXX3918нInput Capture Register 0IPCP0R3918нInput Capture Register 0IPCP0R3919нInput Capture Register 0IPCP0R391AнInput Capture Register 1IPCP1R391BнInput Capture Register 1IPCP1R391BнInput Capture Register 1IPCP1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>XXX</b> B                                                                                             |
| 390EнReload HPRLH7R/WXXXXX3910н to<br>3917нReservedXXXXX3918нInput Capture Register 0IPCP0R3919нInput Capture Register 0IPCP0R3918нInput Capture Register 0IPCP0R3919нInput Capture Register 1IPCP1R3918нInput Capture Register 1IPCP1R3918нInput Capture Register 1IPCP1R3918нInput Capture Register 1IPCP1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |
| 3910н to<br>3917нReserved3917нInput Capture Register 0IPCP0R3918нInput Capture Register 0IPCP0R3919нInput Capture Register 0IPCP0R391АнInput Capture Register 1IPCP1R391ВнInput Capture Register 1IPCP1R391ВнInput Capture Register 1IPCP1R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>XXX</b> B                                                                                             |
| Reserved         3917н       Input Capture Register 0       IPCP0       R       XXXXX         3918н       Input Capture Register 0       IPCP0       R       XXXXX         3919н       Input Capture Register 0       IPCP0       R       XXXXX         391Aн       Input Capture Register 1       IPCP1       R       XXXXX         391Bн       Input Capture Register 1       IPCP1       R       XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>〈XXX</b> B                                                                                            |
| 3919н       Input Capture Register 0       IPCP0       R         391AH       Input Capture Register 1       IPCP1       R         391BH       Input Capture Register 1       IPCP1       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          |
| 391AH     Input Capture Register 1     IPCP1     R     Input Capture 0/1     XXXXX       391BH     Input Capture Register 1     IPCP1     R     XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>KXXX</b> B                                                                                            |
| 391A⊦     Input Capture Register 1     IPCP1     R     XXXXX       391B⊦     Input Capture Register 1     IPCP1     R     XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>KXXX</b> B                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>XXX</b> B                                                                                             |
| 391C <sub>H</sub> Input Capture Register 2 IPCP2 R XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>〈XXX</b> B                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>〈XXX</b> B                                                                                            |
| 391D <sub>H</sub> Input Capture Register 2 IPCP2 R XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>〈XXX</b> B                                                                                            |
| 391E <sub>H</sub> Input Capture Register 3 IPCP3 R Input Capture 2/3 XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>〈XXX</b> B                                                                                            |
| 391F <sub>H</sub> Input Capture Register 3 IPCP3 R XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>XXX</b> B                                                                                             |
| 3920⊢ Input Capture Register 4 IPCP4 R XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>〈XXX</b> B                                                                                            |
| 3921H Input Capture Register 4 IPCP4 R Input Capture 4/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>〈XXX</b> B                                                                                            |
| 3922H Input Capture Register 5 IPCP5 R INput Capture 4/5 XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>XXX</b> B                                                                                             |
| 3923⊢ Input Capture Register 5 IPCP5 R XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>XXX</b> B                                                                                             |
| 3924H Input Capture Register 6 IPCP6 R XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>XXX</b> B                                                                                             |
| 3925H Input Capture Register 6 IPCP6 R Input Capture 6/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>XXX</b> B                                                                                             |
| 3926⊢ Input Capture Register 7 IPCP7 R Input Capture 6/7 XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>XXX</b> B                                                                                             |
| 3927H Input Capture Register 7 IPCP7 R XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>XXX</b> B                                                                                             |

DS07-13703-7E

| Address           | Register                  | Abbreviation                  | Access   | Resource name       | Initial value |  |  |  |
|-------------------|---------------------------|-------------------------------|----------|---------------------|---------------|--|--|--|
| 3928н             | Output Compare Register 0 | OCCP0                         | R/W      |                     | XXXXXXXXB     |  |  |  |
| 3929н             | Output Compare Register 0 | OCCP0                         | R/W      | Output Compose 0/1  | XXXXXXXXB     |  |  |  |
| 392Ан             | Output Compare Register 1 | OCCP1                         | R/W      | Output Compare 0/1  | XXXXXXXXB     |  |  |  |
| 392Вн             | Output Compare Register 1 | OCCP1                         | R/W      |                     | XXXXXXXXB     |  |  |  |
| 392Сн             | Output Compare Register 2 | OCCP2                         | R/W      |                     | XXXXXXXXB     |  |  |  |
| <b>392D</b> н     | Output Compare Register 2 | OCCP2                         | R/W      | Quitaut Compore 0/2 | XXXXXXXXB     |  |  |  |
| <b>392Е</b> н     | Output Compare Register 3 | OCCP3                         | R/W      | Output Compare 2/3  | XXXXXXXXB     |  |  |  |
| <b>392F</b> н     | Output Compare Register 3 | OCCP3                         | R/W      |                     | XXXXXXXXB     |  |  |  |
| 3930н to<br>39FFн |                           | Reserved                      |          |                     |               |  |  |  |
| 3A00н to<br>3AFFн |                           | Reserved for CAN 0 Interface. |          |                     |               |  |  |  |
| 3B00н to<br>3BFFн |                           | Reserved 1                    | or CAN 0 | Interface.          |               |  |  |  |
| 3C00н to<br>3CFFн |                           | Reserved for CAN 1 Interface. |          |                     |               |  |  |  |
| 3D00н to<br>3DFFн |                           | Reserved for CAN 1 Interface. |          |                     |               |  |  |  |
| 3E00н to<br>3FFFн |                           | Reserved                      |          |                     |               |  |  |  |

Read/write notation

R/W : Reading and writing permitted

- R : Read-only
- W : Write-only
- Initial value notation
  - 0 : Initial value is "0".
  - 1 : Initial value is "1".
  - X : Initial value is undefined.
  - \_ : Initial value is unused.
- Note: Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".

Downloaded from Arrow.com.

### ■ CAN CONTROLLER

The MB90540G series contains two CAN controllers (CAN0 and CAN1), the MB90545G series contains only one (CAN0). The Evaluation Chip MB90V540G also has two CAN controllers.

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
  - Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
  - 29-bit ID and 8-byte data
  - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
  - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 Kbps to 1 Mbps (when input clock is at 16 MHz)

| Add             | ress            | Register                          | Abbreviation | Access   | Initial Value                           |  |
|-----------------|-----------------|-----------------------------------|--------------|----------|-----------------------------------------|--|
| CAN0            | CAN1            |                                   | Abbreviation | ALLESS   |                                         |  |
| 000070н         | 000080н         | Message buffer valid register     | BVALR        | R/W      | 0000000 0000000₀                        |  |
| <b>000071</b> н | <b>000081</b> н | Nessage Durier valid register     | DVALIT       | 11/ VV   |                                         |  |
| 000072н         | 000082н         | Transmit request register         | TREQR        | R/W      | 0000000 0000000₀                        |  |
| 000073н         | 000083н         | Transmit request register         | megn         | 11/ VV   | 000000000000000000000000000000000000000 |  |
| 000074н         | 000084н         | Transmit cancel register          | TCANR        | W        | 00000000 00000000B                      |  |
| 000075н         | 000085н         |                                   | TOANT        | vv       |                                         |  |
| 000076н         | 000086н         | Transmit complete register        | TCR          | R/W      | 00000000 00000000B                      |  |
| 000077н         | 000087н         |                                   | TON          | 11/44    |                                         |  |
| <b>000078</b> н | 000088н         | Receive complete register         | RCR          | R/W      | 00000000 0000000₀                       |  |
| 000079н         | <b>000089</b> н |                                   |              |          |                                         |  |
| <b>00007А</b> н | 00008Ан         | Remote request receiving register | RRTRR        | R/W      | 00000000 0000000₀                       |  |
| <b>00007В</b> н | 00008Bн         |                                   | ratifiat     | 10/22    |                                         |  |
| 00007Сн         | 00008Сн         | Receive overrun register          | ROVRR        | R/W      | 0000000 0000000₀                        |  |
| 00007Dн         | 00008Dн         |                                   |              | I L/ ¥ ¥ |                                         |  |
| 00007Eн         | 00008Eн         | Receive interrupt enable register | RIER         | R/W      | 0000000 0000000₀                        |  |
| 00007Fн         | 00008Fн         |                                   | 111611       | 1 1/ V V | (Continued)                             |  |

#### **List of Control Registers**

| Add                 | lress   | - Register                     | Abbreviation | Access  | Initial Value                  |  |
|---------------------|---------|--------------------------------|--------------|---------|--------------------------------|--|
| CAN0                | CAN1    |                                | Abbreviation | ALLESS  |                                |  |
| 003В00н             | 003D00н | Control status register        | CSR          | R/W, R  | 00000 00-1 <sub>в</sub>        |  |
| <b>003B01</b> н     | 003D01н | Control status register        | Con          | n/vv, n | 00000 00-TB                    |  |
| 003B02н             | 003D02н | Last event indicator register  | LEIR         | R/W     | 000-000в                       |  |
| 003В03н             | 003D03н | Last event indicator register  |              |         | 000-0000B                      |  |
| 003B04н             | 003D04н | Receive/transmit error counter | RTEC         | R       | 0000000 0000000 <sub>в</sub>   |  |
| <b>003B05</b> н     | 003D05н | register                       | NIEC         | n       |                                |  |
| 003В06н             | 003D06н | Bit timing register            | BTR R/W      |         | -1111111 11111111 <sub>В</sub> |  |
| <b>003B07</b> н     | 003D07н | Dit tilling register           | DIN          |         | -111111111111111               |  |
| <b>003B08</b> н     | 003D08н | IDE register                   | IDER         | R/W     | XXXXXXXX XXXXXXXX              |  |
| <b>003B09</b> н     | 003D09н |                                |              |         |                                |  |
| 003В0Ан             | 003D0Ан | Transmit DTD register          | TRTRR        | R/W     | 0000000 0000000в               |  |
| 003B0BH             | 003D0Bн | Transmit RTR register          | חחוחו        | U/ AA   |                                |  |
| 003В0Сн             | 003D0CH | Remote frame receive waiting   | RFWTR        | R/W     | XXXXXXXX XXXXXXXX              |  |
| 003B0DH             | 003D0Dн | register                       | gister       |         |                                |  |
| 003B0Eн             | 003D0EH | Transmit request enable regis- | TIER         | R/W     | 0000000 0000000 <sub>в</sub>   |  |
| 003B0Fн             | 003D0Fн | ter                            | HEN          |         |                                |  |
| <b>003B10</b> н     | 003D10н |                                |              | R/W     | XXXXXXXX XXXXXXXX              |  |
| <b>003B11</b> н     | 003D11н | Acceptance mask select regis-  | AMSR         |         |                                |  |
| <b>003B12</b> н     | 003D12н | ter                            | AMON         | 11/ V V | XXXXXXXX XXXXXXXX              |  |
| <b>003B13</b> н     | 003D13н |                                |              |         |                                |  |
| 003B14н             | 003D14н |                                |              |         | XXXXXXXX XXXXXXXX              |  |
| <b>003B15</b> н     | 003D15н | Accontance mack register 0     | AMR0         | R/W     |                                |  |
| <b>003B16</b> н     | 003D16н | Acceptance mask register 0     |              |         | XXXXX XXXXXXXXB                |  |
| <b>003B17</b> н     | 003D17н |                                |              |         | ~~~~~ ~~~~A                    |  |
| 003B18 <sub>H</sub> | 003D18н |                                |              |         | XXXXXXXX XXXXXXXX              |  |
| <b>003B19</b> н     | 003D19н | Accontance mack register 1     | AMR1         | R/W     |                                |  |
| 003B1Aн             | 003D1Aн | Acceptance mask register 1     |              | ע / ח   | <u> </u>                       |  |
| 003B1Bн             | 003D1Bн | 1                              |              |         | XXXXX XXXXXXXXB                |  |

| Add                      | lress                    | Pagiator               | Abbreviation                | A      | Initial Value               |  |
|--------------------------|--------------------------|------------------------|-----------------------------|--------|-----------------------------|--|
| CAN0                     | CAN1                     | Register               | Abbreviation                | Access | Initial Value               |  |
| 003A00н<br>to<br>003A1Fн | 003C00н<br>to<br>003C1Fн | General-purpose RAM    |                             | R/W    | XXXXXXXXB<br>to<br>XXXXXXXB |  |
| 003A20н                  | 003С20н                  |                        |                             |        |                             |  |
| <b>003А21</b> н          | 003C21н                  |                        |                             |        | XXXXXXXXX XXXXXXXX          |  |
| 003А22н                  | 003С22н                  | ID register 0 IDR0     |                             | R/W    |                             |  |
| 003А23н                  | 003С23н                  |                        | XXXXX XXXXXXXX <sub>B</sub> |        |                             |  |
| 003A24н                  | 003C24н                  |                        |                             |        |                             |  |
| 003A25н                  | 003С25н                  | ID register 1          |                             |        | XXXXXXXX XXXXXXXXX          |  |
| 003A26н                  | 003С26н                  | ID register 1          | IDR1                        | R/W    |                             |  |
| <b>003А27</b> н          | 003С27н                  |                        | XXXXX XXXXXXXXB             |        |                             |  |
| 003A28н                  | 003С28н                  |                        |                             |        |                             |  |
| 003A29н                  | 003С29н                  |                        | IDR2                        | R/W    | XXXXXXXX XXXXXXXXX          |  |
| 003А2Ан                  | 003С2Ан                  | ID register 2          | IDITZ                       | H/ VV  | XXXXX XXXXXXXXB             |  |
| 003А2Вн                  | 003С2Вн                  |                        |                             |        |                             |  |
| 003А2Сн                  | 003С2Сн                  |                        |                             | R/W    |                             |  |
| 003A2Dн                  | 003C2Dн                  | ID register 2          | IDR3                        |        | XXXXXXXXX XXXXXXXX          |  |
| 003A2Eн                  | 003C2Eн                  | ID register 3          | IDHS                        |        | XXXXX XXXXXXXX <sub>B</sub> |  |
| 003A2Fн                  | 003C2Fн                  |                        |                             |        |                             |  |
| 003А30н                  | 003С30н                  |                        |                             |        | XXXXXXXX XXXXXXXX           |  |
| <b>003А31</b> н          | 003C31н                  | ID register 4          | IDR4                        | R/W    |                             |  |
| <b>003А32</b> н          | 003С32н                  |                        | 10114                       | H/W    | XXXXX XXXXXXXX <sub>8</sub> |  |
| <b>003А33</b> н          | 003С33н                  |                        |                             |        |                             |  |
| <b>003А34</b> н          | 003C34н                  |                        |                             |        | XXXXXXXX XXXXXXXX           |  |
| <b>003А35</b> н          | 003С35н                  | ID register 5          | IDR5                        | R/W    |                             |  |
| 003А36н                  | 003С36н                  |                        | IDHS                        |        | XXXXX XXXXXXXXB             |  |
| <b>003А37</b> н          | 003С37н                  | ]                      |                             |        |                             |  |
| <b>003А38</b> н          | 003С38н                  |                        |                             |        | XXXXXXXX XXXXXXXX           |  |
| <b>003А39</b> н          | 003С39н                  | D register 6           |                             |        |                             |  |
| 003АЗАн                  | 003С3Ан                  | ID register 6 IDR6 R/W |                             |        |                             |  |
| 003А3Вн                  | 003С3Вн                  | ]                      |                             |        | XXXXX XXXXXXXXB             |  |

List of Message Buffers (ID Registers)

| Add             | lress           | Pagiatar       | Abbreviation | Access   | Initial Value      |  |
|-----------------|-----------------|----------------|--------------|----------|--------------------|--|
| CAN0            | CAN1            | Register       | Abbreviation | Access   | initial value      |  |
| 003А3Сн         | 003С3Сн         |                |              |          | XXXXXXXX XXXXXXXX  |  |
| 003A3Dн         | 003C3Dн         | ID register 7  | IDR7         | R/W      |                    |  |
| 003А3Ен         | 003С3Ен         |                |              | U/ 11    | XXXXX XXXXXXXXAB   |  |
| 003A3Fн         | 003C3Fн         |                |              |          |                    |  |
| <b>003А40</b> н | 003С40н         |                |              |          | XXXXXXXX XXXXXXX   |  |
| <b>003A41</b> н | 003C41н         | ID register 8  | IDR8         | R/W      |                    |  |
| 003А42н         | 003С42н         |                |              |          | ХХХХХ ХХХХХХХХА    |  |
| 003А43н         | 003С43н         |                |              |          |                    |  |
| 003A44н         | 003C44н         |                |              |          | XXXXXXXX XXXXXXX   |  |
| <b>003A45</b> н | 003C45н         | ID register 0  |              |          |                    |  |
| <b>003A46</b> н | 003С46н         | ID register 9  | IDR9         | R/W      | XXXXX XXXXXXXX     |  |
| <b>003А47</b> н | 003C47н         |                |              |          |                    |  |
| <b>003A48</b> н | 003C48н         |                |              |          | XXXXXXXX XXXXXXXX  |  |
| <b>003А49</b> н | 003C49н         | ID register 10 | IDR10        | R/W      |                    |  |
| 003А4Ан         | 003С4Ан         |                |              |          | ХХХХХ ХХХХХХХХА    |  |
| 003А4Вн         | 003C4Bн         |                |              |          |                    |  |
| 003А4Сн         | 003C4Cн         |                |              | R/W -    | XXXXXXXX XXXXXXXX  |  |
| 003A4Dн         | 003C4Dн         | ID register 11 | IDR11        |          |                    |  |
| 003A4Eн         | 003C4Eн         |                |              |          | ХХХХХ ХХХХХХХХ     |  |
| 003A4Fн         | 003C4Fн         |                |              |          |                    |  |
| <b>003А50</b> н | <b>003С50</b> н |                |              |          | XXXXXXXX XXXXXXXXX |  |
| <b>003А51</b> н | <b>003C51</b> н | ID register 12 | IDR12        | R/W      |                    |  |
| 003А52н         | 003С52н         |                | IDITIZ       | 1.7. V V | ХХХХХ ХХХХХХХХА    |  |
| 003А53н         | 003С53н         |                |              |          |                    |  |
| 003А54н         | 003С54н         |                |              |          | XXXXXXXX XXXXXXXX  |  |
| 003А55н         | 003С55н         | ID register 13 | IDR13        | R/W      |                    |  |
| 003A56н         | 003С56н         |                |              |          | ХХХХХ ХХХХХХХХ     |  |
| <b>003А57</b> н | 003C57н         |                |              |          |                    |  |
| <b>003А58</b> н | 003C58н         |                |              |          | XXXXXXXX XXXXXXXX  |  |
| <b>003А59</b> н | 003C59н         | ID register 14 | IDR14        | R/W      |                    |  |
| 003А5Ан         | 003C5Aн         |                |              | VV \r I  | ХХХХХ ХХХХХХХХ     |  |
| 003А5Вн         | 003C5Bн         |                |              |          |                    |  |
| 003А5Сн         | 003С5Сн         |                |              |          | XXXXXXXX XXXXXXXX  |  |
| <b>003А5D</b> н | 003C5Dн         | ID register 15 | IDR15        | R/W      |                    |  |
| 003А5Ен         | 003С5Ен         |                |              |          | XXXXX XXXXXXXXB    |  |
| 003A5Fн         | 003C5Fн         |                |              |          |                    |  |



| Add                      | ress                     | List of Message Buffers (DLC |              |                | ,                                       |  |
|--------------------------|--------------------------|------------------------------|--------------|----------------|-----------------------------------------|--|
| CAN0                     | CAN1                     | Register                     | Abbreviation | Access         | Initial Value                           |  |
| <b>003А60</b> н          | 003С60н                  |                              | 51.050       | 5 444          |                                         |  |
| <b>003A61</b> н          | 003C61н                  | DLC register 0               | DLCR0        | R/W            | XXXX <sub>B</sub>                       |  |
| <b>003А62</b> н          | 003С62н                  | DL O un sister 1             |              |                |                                         |  |
| <b>003А63</b> н          | 003С63н                  | DLC register 1               | DLCR1        | R/W            | XXXXB                                   |  |
| 003A64н                  | 003С64н                  |                              |              |                | VVVV-                                   |  |
| 003А65н                  | 003С65н                  | DLC register 2               | DLCR2        | R/W            | ХХХХв                                   |  |
| 003А66н                  | 003С66н                  | DLC register 2               | DLCR3        | R/W            | XXXX <sub>B</sub>                       |  |
| <b>003А67</b> н          | 003С67н                  | DLC register 3 DLCR3 R/W     |              | <b>///</b> //B |                                         |  |
| <b>003А68</b> н          | 003C68н                  | DLC register 4 DLCR4 R/W     |              | ХХХХв          |                                         |  |
| <b>003А69</b> н          | 003С69н                  | DLC register 4               | DLCR4        | U/ 10          |                                         |  |
| 003А6Ан                  | 003С6Ан                  | DLC register 5               | DLCR5        | R/W            | XXXX <sub>B</sub>                       |  |
| 003А6Вн                  | 003С6Вн                  |                              | DLURD        | U/ M           | <b>///</b> //B                          |  |
| 003А6Сн                  | 003С6Сн                  | DLC register 6               | DLCR6        | R/W            | ХХХХв                                   |  |
| 003A6DH                  | 003C6Dн                  |                              |              |                |                                         |  |
| 003A6Eн                  | 003С6Ен                  | DLC register 7               | DLCR7        | R/W            | ХХХХВ                                   |  |
| 003A6Fн                  | 003C6Fн                  |                              | DEGIN        | 11/ VV         |                                         |  |
| <b>003А70</b> н          | 003C70н                  | DLC register 8               | DLCR8        | R/W            | XXXX                                    |  |
| <b>003A71</b> н          | <b>003C71</b> н          |                              | DECINO       | 11/ VV         |                                         |  |
| <b>003А72</b> н          | 003С72н                  | DLC register 9               | DLCR9        | R/W            | ХХХХв                                   |  |
| 003А73н                  | 003С73н                  |                              | DECITIO      | 10.00          | XXXXXB                                  |  |
| 003A74н                  | 003C74н                  | DLC register 10              | DLCR10       | R/W            | ХХХХв                                   |  |
| <b>003А75</b> н          | 003С75н                  |                              | BEOITIO      | 10.00          |                                         |  |
| <b>003А76</b> н          | 003С76н                  | DLC register 11              | DLCR11       | R/W            | XXXX <sub>в</sub>                       |  |
| <b>003А77</b> н          | 003С77н                  |                              | BEOITT       | 10.00          |                                         |  |
| <b>003А78</b> н          | 003C78н                  | DLC register 12              | DLCR12       | R/W            | ХХХХв                                   |  |
| <b>003А79</b> н          | 003C79н                  |                              |              |                | 70000                                   |  |
| 003А7Ан                  | 003С7Ан                  | DLC register 13              | DLCR13       | R/W            | ХХХХв                                   |  |
| 003А7Вн                  | 003C7Bн                  |                              |              | • •            |                                         |  |
| 003А7Сн                  | 003C7Cн                  | DLC register 14              | DLCR14       | R/W            | XXXXB                                   |  |
| 003A7Dн                  | 003C7Dн                  |                              |              |                |                                         |  |
| 003А7Ен                  | 003C7Eн                  | DLC register 15              | DLCR15       | R/W            | XXXX <sub>в</sub>                       |  |
| 003A7Fн                  | 003C7Fн                  |                              |              |                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |
| 003А80н<br>to<br>003А87н | 003C80н<br>to<br>003C87н | Data register 0 (8 bytes)    | DTR0         | R/W            | XXXXXXXXB<br>to<br>XXXXXXXXB            |  |

### List of Message Buffers (DLC Registers and Data Registers)

(Continued)

DS07-13703-7E

| Address                  |                          | Doristor                   | Abbroviation | A      | Initial Value                 |
|--------------------------|--------------------------|----------------------------|--------------|--------|-------------------------------|
| CAN0                     | CAN1                     | Register                   | Abbreviation | Access | Initial Value                 |
| 003А88н<br>to<br>003А8Fн | 003C88н<br>to<br>003C8Fн | Data register 1 (8 bytes)  | DTR1         | R/W    | XXXXXXXXXB<br>to<br>XXXXXXXXB |
| 003А90н<br>to<br>003А97н | 003С90н<br>to<br>003С97н | Data register 2 (8 bytes)  | DTR2         | R/W    | XXXXXXXXXB<br>to<br>XXXXXXXXB |
| 003А98н<br>to<br>003А9Fн | 003С98н<br>to<br>003С9Fн | Data register 3 (8 bytes)  | DTR3         | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |
| 003AA0н<br>to<br>003AA7н | 003CA0н<br>to<br>003CA7н | Data register 4 (8 bytes)  | DTR4         | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |
| 003АА8н<br>to<br>003ААFн | 003CA8н<br>to<br>003CAFн | Data register 5 (8 bytes)  | DTR5         | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |
| 003АВ0н<br>to<br>003АВ7н | 003CB0н<br>to<br>003CB7н | Data register 6 (8 bytes)  | DTR6         | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |
| 003AB8н<br>to<br>003ABFн | 003CB8н<br>to<br>003CBFн | Data register 7 (8 bytes)  | DTR7         | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |
| 003AC0н<br>to<br>003AC7н | 003CC0н<br>to<br>003CC7н | Data register 8 (8 bytes)  | DTR8         | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |
| 003AC8н<br>to<br>003ACFн | 003CC8н<br>to<br>003CCFн | Data register 9 (8 bytes)  | DTR9         | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |
| 003AD0н<br>to<br>003AD7н | 003CD0н<br>to<br>003CD7н | Data register 10 (8 bytes) | DTR10        | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |
| 003AD8н<br>to<br>003ADFн | 003CD8н<br>to<br>003CDFн | Data register 11 (8 bytes) | DTR11        | R/W    | XXXXXXXXXB<br>to<br>XXXXXXXXB |
| 003АЕ0н<br>to<br>003АЕ7н | 003CE0н<br>to<br>003CE7н | Data register 12 (8 bytes) | DTR12        | R/W    | XXXXXXXXXB<br>to<br>XXXXXXXXB |
| 003АЕ8н<br>to<br>003АЕFн | 003CE8н<br>to<br>003CEFн | Data register 13 (8 bytes) | DTR13        | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |
| 003AF0н<br>to<br>003AF7н | 003CF0н<br>to<br>003CF7н | Data register 14 (8 bytes) | DTR14        | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |
| 003AF8⊦<br>to<br>003AFF⊦ | 003CF8н<br>to<br>003CFFн | Data register 15 (8 bytes) | DTR15        | R/W    | XXXXXXXXB<br>to<br>XXXXXXXXB  |

### ■ INTERRUPT MAP

|                                        | El <sup>2</sup> OS | Interru | pt vector           | Interrupt co | ntrol register |
|----------------------------------------|--------------------|---------|---------------------|--------------|----------------|
| Interrupt cause                        | clear              | Number  | Address             | Number       | Address        |
| Reset                                  | N/A                | #08     | FFFFDC <sub>H</sub> |              | —              |
| INT9 instruction                       | N/A                | #09     | FFFFD8 <sub>H</sub> |              | _              |
| Exception                              | N/A                | #10     | FFFFD4H             | _            |                |
| CAN 0 RX                               | N/A                | #11     | FFFFD0H             | ICR00        | 0000В0н        |
| CAN 0 TX/NS                            | N/A                | #12     | <b>FFFFCC</b> H     |              | 0000000        |
| CAN 1 RX                               | N/A                | #13     | FFFFC8H             | ICR01        | 0000B1н        |
| CAN 1 TX/NS                            | N/A                | #14     | FFFFC4H             |              | UUUUB IH       |
| External Interrupt INT0/INT1           | *1                 | #15     | FFFFC0H             | ICR02        | 0000B2н        |
| Time Base Timer                        | N/A                | #16     | <b>FFFFBC</b> H     | 101102       | 0000B2H        |
| 16-bit Reload Timer 0                  | *1                 | #17     | FFFFB8H             | ICR03        | 0000ВЗн        |
| 8/10-bit A/D Converter                 | *1                 | #18     | FFFFB4н             | 101103       | 0000003H       |
| 16-bit Free-run Timer                  | N/A                | #19     | FFFFB0н             | ICR04        | 0000B4н        |
| External Interrupt INT2/INT3           | *1                 | #20     | <b>FFFFAC</b> H     | 101104       | 0000D4H        |
| Serial I/O                             | *1                 | #21     | FFFFA8н             | ICR05        | 0000B5н        |
| 8/16-bit PPG 0/1                       | N/A                | #22     | FFFFA4н             | 101103       | 0000005        |
| Input Capture 0                        | *1                 | #23     | FFFFA0н             | ICR06        | 0000B6н        |
| External Interrupt INT4/INT5           | *1                 | #24     | FFFF9CH             | 101100       |                |
| Input Capture 1                        | *1                 | #25     | FFFF98⊦             | ICR07        | 0000B7н        |
| 8/16-bit PPG 2/3                       | N/A                | #26     | FFFF94н             | 101107       | 0000071        |
| External Interrupt INT6/INT7           | *1                 | #27     | FFFF90н             | ICR08        | 0000B8н        |
| Watch Timer                            | N/A                | #28     | FFFF8CH             |              | ООООВОН        |
| 8/16-bit PPG 4/5                       | N/A                | #29     | FFFF88⊦             | ICR09        | 0000B9н        |
| Input Capture 2/3                      | *1                 | #30     | FFFF84 <sub>H</sub> | 10109        | 0000039H       |
| 8/16-bit PPG 6/7                       | N/A                | #31     | FFFF80H             | ICR10        | 0000ВАн        |
| Output Compare 0                       | *1                 | #32     | FFFF7CH             |              | UUUUBAH        |
| Output Compare 1                       | *1                 | #33     | FFFF78н             | ICR11        | 0000BBн        |
| Input Capture 4/5                      | *1                 | #34     | FFFF74 <sub>H</sub> |              | ООООВВН        |
| Output Compare 2/3 - Input Capture 6/7 | *1                 | #35     | FFFF70н             | ICR12        | 0000ВСн        |
| 16-bit Reload Timer 1                  | *1                 | #36     | FFFF6CH             | 10112        | 0000BCH        |
| UART 0 RX                              | *2                 | #37     | FFFF68 <sub>H</sub> | ICR13        | 0000BDн        |
| UART 0 TX                              | *1                 | #38     | FFFF64 <sub>H</sub> | 10113        | UUUUBDH        |
| UART 1 RX                              | *2                 | #39     | FFFF60 <sub>H</sub> |              | 0000PE         |
| UART 1 TX                              | *1                 | #40     | FFFF5CH             | ICR14        | 0000BEн        |
| Flash Memory                           | N/A                | #41     | FFFF58н             |              |                |
| Delayed interrupt                      | N/A                | #42     | FFFF54H             | ICR15        | 0000BFн        |



### (Continued)

\*1 : The interrupt request flag is cleared by the El<sup>2</sup>OS interrupt clear signal.

\*2 : The interrupt request flag is cleared by the El<sup>2</sup>OS interrupt clear signal. A stop request is available.

- Notes :
  - N/A : The interrupt request flag is not cleared by the El<sup>2</sup>OS interrupt clear signal.
  - For a peripheral module with two interrupt causes for a single interrupt number, both interrupt request flags are cleared by the El<sup>2</sup>OS interrupt clear signal.
  - At the end of El<sup>2</sup>OS, the El<sup>2</sup>OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the El<sup>2</sup>OS and in the meantime another interrupt flag is set by a hardware event, the later event is lost because the flag is cleared by the El<sup>2</sup>OS clear signal caused by the first event. So it is recommended not to use the El<sup>2</sup>OS for this interrupt number.
  - If El<sup>2</sup>OS is enabled, El<sup>2</sup>OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same El<sup>2</sup>OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the El<sup>2</sup>OS, the other interrupt should be disabled.

## ELECTRICAL CHARACTERISTICS

### 1. Absolute Maximum Ratings

 $(V_{SS} = AV_{SS} = 0.0 V)$ 

| Parameter                             | Symbol        | Va        | lue       | Units | Remarks                                     |    |
|---------------------------------------|---------------|-----------|-----------|-------|---------------------------------------------|----|
| Farameter                             | Symbol        | Min       | Max       | Units | nemarks                                     |    |
|                                       | Vcc           | Vss - 0.3 | Vss + 6.0 | V     |                                             |    |
| Power supply voltage                  | AVcc          | Vss - 0.3 | Vss + 6.0 | V     | Vcc = AVcc                                  | *1 |
| Tower supply voltage                  | AVRH,<br>AVRL | Vss - 0.3 | Vss + 6.0 | V     | $AV_{CC} \ge AVRH/AVRL,$<br>$AVRH \ge AVRL$ | *1 |
| Input voltage                         | VI            | Vss - 0.3 | Vss + 6.0 | V     |                                             | *2 |
| Output voltage                        | Vo            | Vss - 0.3 | Vss + 6.0 | V     |                                             | *2 |
| Maximum clamp current                 | CLAMP         | - 2.0     | + 2.0     | mA    |                                             | *6 |
| Total maximum clamp current           | ΣI ICLAMP I   |           | 20        | mA    |                                             | *6 |
| "L" level max output current          | lol           | —         | 15        | mA    |                                             | *3 |
| "L" level avg. output current         | OLAV          |           | 4         | mA    |                                             | *4 |
| "L" level max overall output current  | ΣΙοι          | —         | 100       | mA    |                                             |    |
| "L" level avg. overall output current | ΣΙοιαν        | —         | 50        | mA    |                                             | *5 |
| "H" level max output current          | Іон           | —         | -15       | mA    |                                             | *3 |
| "H" level avg. output current         | Іонач         | —         | -4        | mA    |                                             | *4 |
| "H" level max overall output current  | ΣІон          |           | -100      | mA    |                                             |    |
| "H" level avg. overall output current | ΣΙοήαν        |           | -50       | mA    |                                             | *5 |
| Dower concumption                     | D-            |           | 500       | mW    | Flash device                                |    |
| Power consumption                     | PD            |           | 400       | mW    | MASK ROM                                    |    |
| Operating temperature                 | TA            | -40       | +105      | °C    |                                             |    |
| Storage temperature                   | Tstg          | -55       | +150      | °C    |                                             |    |

\*1 : AVcc, AVRH, AVRL should not exceed Vcc. Also, AVRH, AVRL should not exceed AVcc, and AVRL does not exceed AVRH.

\*2 : VI and Vo should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supercedes the VI rating.

\*3 : The maximum output current is a peak value for a corresponding pin.

\*4 : Average output current is an average current value observed for a 100 ms period for a corresponding pin.

\*5 : Total average current is an average current value observed for a 100 ms period for all corresponding pins.


- \*6 : Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0
  - Use within recommended operating conditions.
  - Use at DC voltage (current) .
  - The + B signal should always be applied with a limiting resistance placed between the + B signal and the microcontroller.
  - The value of the limiting resistance should be set so that when the + B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
  - Note that when the microcontroller drive current is low, such as in the power saving modes, the + B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
  - Note that if a + B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
  - Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.

(Continued)



#### (Continued)

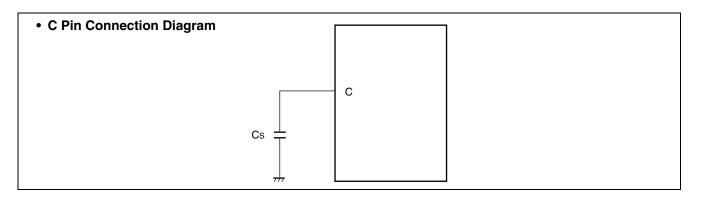
- Care must be taken not to leave the + B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept + B signal input.
- Sample recommended circuits :



WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

#### 2. Recommended Conditions

(Vss = AVss = 0.0 V)


| Parameter             | Symbol       |       | Value |      | Units | Remarks                                                                                                |  |  |
|-----------------------|--------------|-------|-------|------|-------|--------------------------------------------------------------------------------------------------------|--|--|
| Falameter             | Symbol       | Min   | Тур   | Max  | Units | nemarks                                                                                                |  |  |
|                       |              |       |       |      |       | Under normal operation : Other than<br>MB90F548GL(S)/543G(S)/547G(S)/<br>548G(S)                       |  |  |
| Power supply voltage  | Vcc,<br>AVcc | 4.5   | 5.0   | 5.5  | V     | Under normal operation when A/D<br>conveter is used :<br>MB90F548GL(S)/543G(S)/547G(S)/<br>548G(S)     |  |  |
|                       |              | 3.5   | 5.0   | 5.5  | v     | Under normal operation when A/D<br>conveter is not used :<br>MB90F548GL(S)/543G(S)/547G(S)/<br>548G(S) |  |  |
|                       |              | 3.0   |       | 5.5  | V     | Maintain RAM data in stop mode                                                                         |  |  |
| Smooth capacitor      | Cs           | 0.022 | 0.1   | 1.0  | μF    | *                                                                                                      |  |  |
| Operating temperature | TA           | -40   |       | +105 | °C    |                                                                                                        |  |  |

\*: Use a ceramic capacitor or a capacitor of better 4. AC characteristics. The bypass capacitor should be greater than this capacitor.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.



### 3. DC Characteristics

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}, \text{ V}_{SS} = AV_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):

| Parameter               | Cumhal | Pin name                                                        | Condition                      |           | Value |           | Units | Remarks                    |
|-------------------------|--------|-----------------------------------------------------------------|--------------------------------|-----------|-------|-----------|-------|----------------------------|
| Parameter               | Symbol | Fin name                                                        | Condition                      | Min       | Тур   | Max       | Units | nemarks                    |
| Input H                 | VIHS   | CMOS<br>hysteresis<br>input pin                                 | _                              | 0.8 Vcc   |       | Vcc + 0.3 | V     |                            |
| voltage                 | VIH    | TTL input pin                                                   |                                | 2.0       |       |           | V     |                            |
|                         | VIHM   | MD input pin                                                    | _                              | Vcc - 0.3 |       | Vcc + 0.3 | V     |                            |
| Input L                 | Vils   | CMOS<br>hysteresis<br>input pin                                 | _                              | Vcc - 0.3 |       | 0.2 Vcc   | V     |                            |
| voltage                 | VIL    | TTL input pin                                                   | _                              |           |       | 0.8       | V     |                            |
|                         | VILM   | MD input pin                                                    |                                | Vss - 0.3 |       | Vss + 0.3 | V     |                            |
| Output H<br>voltage     | Vон    | All output pins                                                 | Vcc = 4.5 V,<br>Іон = -4.0 mA  | Vcc - 0.5 |       | _         | V     |                            |
| Output L<br>voltage     | Vol    | All output pins                                                 | Vcc = 4.5 V,<br>Io∟ = 4.0 mA   |           |       | 0.4       | V     |                            |
| Input leak<br>current   | lı∟    | _                                                               | Vcc = 5.5 V,<br>Vss < VI < Vcc | -5        |       | 5         | μA    |                            |
| Pull-up<br>resistance   | Rup    | P00 to P07,<br>P10 to P17,<br>P20 to P27,<br>P30 to P37,<br>RST | _                              | 25        | 50    | 100       | kΩ    |                            |
| Pull-down<br>resistance | Rdown  | MD2                                                             | _                              | 25        | 50    | 100       | kΩ    | Except<br>Flash<br>devices |

 $V_{cc} = 5.0 V \pm 10\%$ ,  $V_{ss} = AV_{ss} = 0.0 V$ ,  $T_{A} = -40 \text{ }^{\circ}\text{C to} + 105 \text{ }^{\circ}\text{C}$ )

(Continued)

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_{A} = -40 \text{ °C to } +105 \text{ °C} ) \\ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V \pm 10\%, V_{SS} = AV_{SS} = 0.0 V, T_{A} = -40 \text{ °C to } +105 \text{ °C} ) \\ V_{CC} = 5.0 V \pm 10\%, V_{SS} = AV_{SS} = 0.0 V, T_{A} = -40 \text{ °C to } +105 \text{ °C} ) \\ \end{array}$ 

| 1                 | 1           | 1                                                                 | <b>v</b> cc =                                                          | 5.0 v ± |       | ss = AV ss | = 0.0 v             | $T_{A} = -40 ^{\circ}\text{C} \text{ to} + 105 ^{\circ}\text{C}$ |
|-------------------|-------------|-------------------------------------------------------------------|------------------------------------------------------------------------|---------|-------|------------|---------------------|------------------------------------------------------------------|
| Parameter         | Sym-        | Pin name                                                          | Condition                                                              |         | Value |            | Units               | Remarks                                                          |
|                   | bol         |                                                                   |                                                                        | Min     | Тур   | Max        |                     |                                                                  |
|                   |             |                                                                   | Internal frequency : 16 MHz,<br>At normal operating                    | —       | 40    | 55         | mA                  |                                                                  |
|                   |             | Internal frequency : 16 MHz,<br>At Flash programming/eras-<br>ing |                                                                        | 50      | 70    | mA         | Flash device        |                                                                  |
|                   | Iccs        |                                                                   | Internal frequency : 16 MHz,<br>At sleep mode                          | _       | 12    | 20         | mA                  |                                                                  |
|                   |             |                                                                   |                                                                        |         | 300   | 600        | μA                  |                                                                  |
|                   | Істs<br>Vcc | $V_{cc} = 5.0 V \pm 10\%$ ,<br>Internal frequency : 2 MHz,        |                                                                        | 600     | 1100  | μA         | MB90F548GL (S) only |                                                                  |
| Power<br>supply   |             | Vcc                                                               | At pseudo timer mode                                                   |         | 200   | 400        | μA                  | MB90543G(S)/<br>547G(S)/548(S) only                              |
| current*          |             |                                                                   |                                                                        |         | 400   | 750        | μA                  | MB90F548GL only                                                  |
|                   | ICCL        |                                                                   | Internal frequency : 8 kHz,<br>At sub operation, $T_A = 25 \text{ °C}$ |         | 50    | 100        | μA                  | MASK ROM                                                         |
|                   |             |                                                                   | At sub operation, $T_A = 25$ C                                         |         | 150   | 300        | μA                  | Flash device                                                     |
|                   | ICCLS       |                                                                   | Internal frequency : 8 kHz,<br>At sub sleep, $T_A = 25 \ ^{\circ}C$    |         | 15    | 40         | μA                  |                                                                  |
|                   | Ісст        |                                                                   | Internal frequency : 8 kHz,<br>At timer mode, $T_A = 25 \ ^{\circ}C$   |         | 7     | 25         | μΑ                  |                                                                  |
|                   | Іссн1       |                                                                   | At stop, T <sub>A</sub> = 25 °C                                        | —       | 5     | 20         | μA                  |                                                                  |
|                   | Іссн2       |                                                                   | At hardware standby mode, $T_A = 25 \ ^{\circ}C$                       |         | 50    | 100        | μA                  |                                                                  |
| Input<br>capacity | CIN         | Other than<br>AVcc, AVss,<br>AVRH,<br>AVRL, C,<br>Vcc, Vss        |                                                                        |         | 5     | 15         | pF                  |                                                                  |

\* : The power supply current testing conditions are when using the external clock.

### 4. AC Characteristics

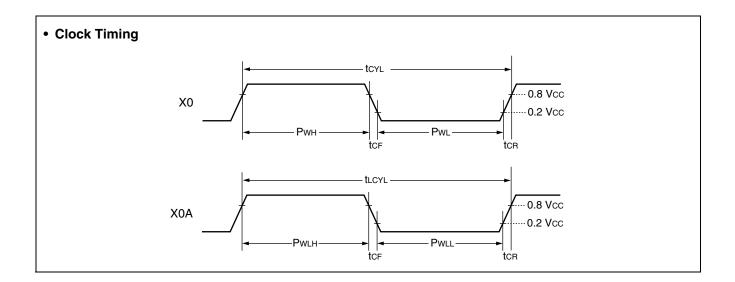
#### (1) Clock Timing

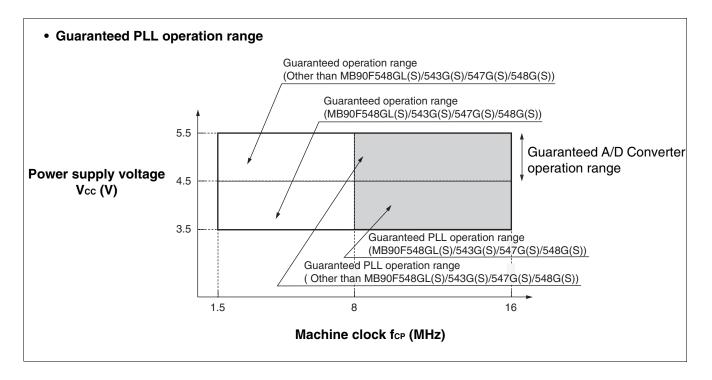
 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_{A} = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):

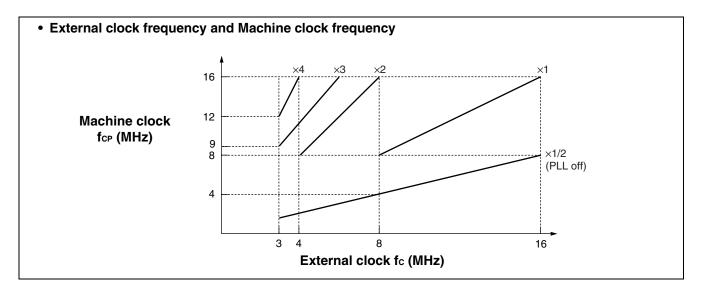
| Deremeter             | Symbol | Din nomo |     | Value  |      | Units | Remarks                                                                                      |                                                                                           |     |                                                     |
|-----------------------|--------|----------|-----|--------|------|-------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----|-----------------------------------------------------|
| Parameter             | Symbol | Pin name | Min | Тур    | Max  | Units | Remarks                                                                                      |                                                                                           |     |                                                     |
|                       |        |          | 3   | —      | 16   | MHz   | No multiplier When using an oscillator circuit $V_{CC} = 5.0 \text{ V} \pm 10\%$             |                                                                                           |     |                                                     |
|                       |        |          | 8   | —      | 16   | MHz   | PLL multiplied by 1<br>When using an oscillator circuit<br>$V_{CC} = 5.0 \text{ V} \pm 10\%$ |                                                                                           |     |                                                     |
|                       |        |          | 4   | _      | 8    | MHz   | PLL multiplied by 2<br>When using an oscillator circuit $V_{CC} = 5.0 \text{ V} \pm 10\%$    |                                                                                           |     |                                                     |
|                       |        | X0, X1   |     | 3      |      | 5.33  | MHz                                                                                          | PLL multiplied by 3<br>When using an oscillator circuit $V_{CC} = 5.0 \text{ V} \pm 10\%$ |     |                                                     |
| Oscillation frequency | fc     |          | 3   | —      | 4    | MHz   | PLL multiplied by 4<br>When using an oscillator circuit<br>$V_{CC} = 5.0 \text{ V} \pm 10\%$ |                                                                                           |     |                                                     |
|                       |        |          | 3   | —      | 5    | MHz   | When using an oscillator circuit<br>Vcc < 4.5 V(MB90F548GL(S)/<br>543G(S)/547G(S)/548G(S))   |                                                                                           |     |                                                     |
|                       |        |          | 3   |        | 16   | MHz   | No multiplier<br>When using an external clock                                                |                                                                                           |     |                                                     |
|                       |        |          |     |        |      | 8     | _                                                                                            | 16                                                                                        | MHz | PLL multiplied by 1<br>When using an external clock |
|                       |        |          | 4   | _      | 8    | MHz   | PLL multiplied by 2<br>When using an external clock                                          |                                                                                           |     |                                                     |
|                       |        |          | 3   | _      | 5.33 | MHz   | PLL multiplied by 3<br>When using an external clock                                          |                                                                                           |     |                                                     |
|                       |        |          | 3   | _      | 4    | MHz   | PLL multiplied by 4<br>When using an external clock                                          |                                                                                           |     |                                                     |
|                       | fc∟    | X0A, X1A |     | 32.768 |      | kHz   |                                                                                              |                                                                                           |     |                                                     |

 $V_{CC} = 5.0 \text{ V} \pm 10\%$ ,  $V_{SS} = AV_{SS} = 0.0 \text{ V}$ ,  $T_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} + 105 \text{ }^{\circ}\text{C}$ )

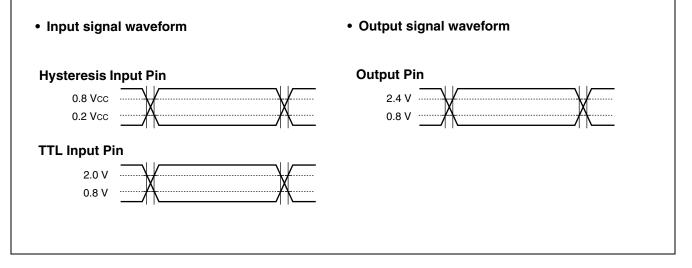
(Continued)


42


(Continued)


(MB90543G(S)/547G(S)/548G(S)/F548GL(S): Vcc = 3.5 V to 5.5 V, Vss = AVss = 0.0 V, T<sub>A</sub> = -40 °C to +105 °C)

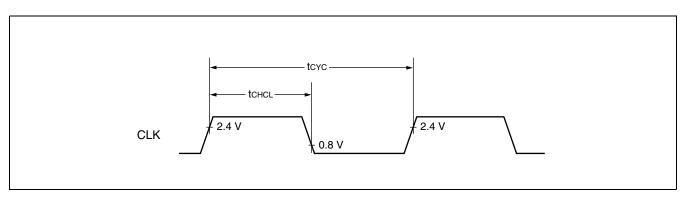
|                                |               |             | Vcc = | = 5.0 V ± | 10%, V | ss = AVs | $ss = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C})$ |
|--------------------------------|---------------|-------------|-------|-----------|--------|----------|------------------------------------------------------------------------------------------------------|
| Parameter                      | Symbol        | Pin name    |       | Value     |        | Units    | Remarks                                                                                              |
| Farameter                      | Symbol        | FIII Haille | Min   | Тур       | Max    | Units    | nelliarks                                                                                            |
|                                |               |             | 62.5  |           | 333    | ns       | No multiplier<br>When using an oscillator circuit<br>$V_{CC} = 5.0 V \pm 10\%$                       |
|                                |               |             | 62.5  | _         | 125    | ns       | PLL multiplied by 1<br>When using an oscillator circuit $V_{CC} = 5.0 \text{ V} \pm 10\%$            |
|                                |               |             | 125   |           | 250    | ns       | PLL multiplied by 2<br>When using an oscillator circuit $V_{CC} = 5.0 \text{ V} \pm 10\%$            |
| Clock cycle time               |               |             | 187.5 |           | 333    | ns       | PLL multiplied by 3<br>When using an oscillator circuit<br>$V_{CC} = 5.0 V \pm 10\%$                 |
|                                | tcy∟          | X0, X1      | 250   |           | 333    | ns       | PLL multiplied by 4<br>When using an oscillator circuit<br>$V_{CC} = 5.0 \text{ V} \pm 10\%$         |
|                                |               |             | 200   |           | 333    | ns       | When using an oscillator circuit<br>Vcc < 4.5 V(MB90F548GL(S)/<br>543G(S)/547G(S)/548G(S))           |
|                                |               |             | 62.5  |           | 333    | ns       | No multiplier<br>When using an external clock                                                        |
|                                |               |             | 62.5  |           | 125    | ns       | PLL multiplied by 1<br>When using an external clock                                                  |
|                                |               |             | 125   | _         | 250    | ns       | PLL multiplied by 2<br>When using an external clock                                                  |
|                                |               |             | 187.5 |           | 333    | ns       | PLL multiplied by 3<br>When using an external clock                                                  |
|                                |               |             | 250   | —         | 333    | ns       | PLL multiplied by 4<br>When using an external clock                                                  |
|                                | <b>t</b> lcyl | X0A, X1A    |       | 30.5      |        | μs       |                                                                                                      |
| Input clock pulse              | Pwн, Pw∟      | X0          | 10    |           |        | ns       | Duty ratio is about 30% to 70%.                                                                      |
| width                          | Pwlh, Pwll    | X0A         |       | 15.2      |        | μs       | ,                                                                                                    |
| Input clock rise and fall time | tcr, tcr      | X0          | —     | —         | 5      | ns       | When using an external clock                                                                         |
| Machine clock                  | fср           |             | 1.5   |           | 16     | MHz      | When using main clock                                                                                |
| frequency                      | flcp          |             | —     | 8.192     |        | kHz      | When using sub-clock                                                                                 |
| Machine clock cycle            | tcp           |             | 62.5  |           | 666    | ns       | When using main clock                                                                                |
| time                           | <b>t</b> LCP  |             |       | 122.1     |        | μs       | When using sub-clock                                                                                 |


(Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): = 5.0 V + 10% Vss = AVss = 0.0 V T\_A = -40 °C to +105 °C) 40 °C to +105 °C) v  $50V + 10\% V_{ss} = AV_{s}$ 








AC characteristics are set to the measured reference voltage values below.



#### (2) Clock Output Timing

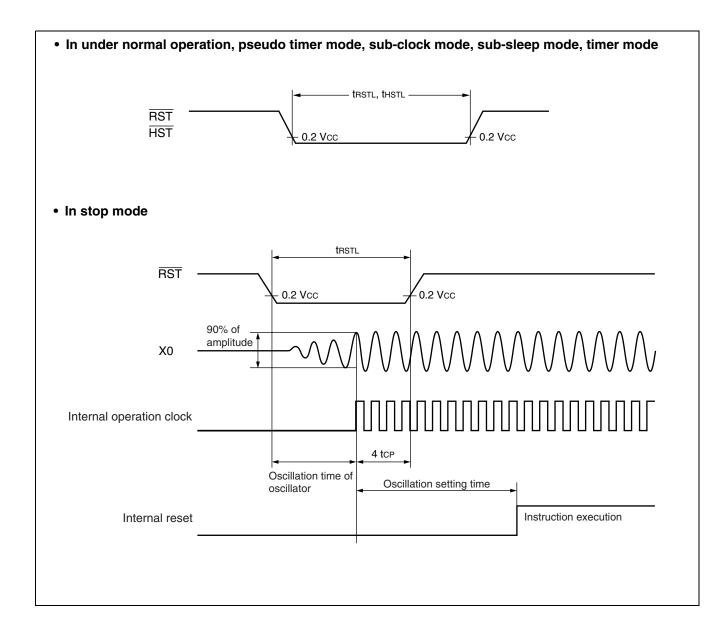
 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C} ) \\ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 5.0 V \pm 10\%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C} ) \\ V_{CC} = 5.0 V \pm 10\%, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C} ) \\ \end{array}$ 

| Parameter                                | Symbol        | Pin name  | Condition                                           | Va   | lue | Units | Remarks |
|------------------------------------------|---------------|-----------|-----------------------------------------------------|------|-----|-------|---------|
| Falameter                                | Symbol        | r in name | Condition                                           | Min  | Max | onits | Temarks |
| Cycle time                               | tcyc          | CLK       | $V_{cc} = 5 V \pm 10\%$                             | 62.5 | _   | ns    |         |
| $CLK^\uparrow  ightarrow CLK^\downarrow$ | <b>t</b> cнc∟ | OLK       | $\mathbf{v}\mathbf{c}\mathbf{c}=5\mathbf{v}\pm10\%$ | 20   |     | ns    |         |



#### (3) Reset and Hardware Standby Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 °C to +105 °C)$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):


|                             |               |      |                                        | 10%, Vs | s=AVss= | = 0.0 V, $T_A = -40 ^{\circ}C \text{ to } +105 ^{\circ}C$ )                |
|-----------------------------|---------------|------|----------------------------------------|---------|---------|----------------------------------------------------------------------------|
| Parameter                   | Symbol        | Pin  | Value                                  |         | Units   | Remarks                                                                    |
| rarameter                   | Symbol        | name | Min                                    | Мах     | Units   | nemarks                                                                    |
|                             |               |      | 4 t <sub>CP</sub>                      |         | ns      | Under normal operation                                                     |
| Reset input time            |               |      | Oscillation time of oscillator + 4 tcp |         | ms      | In stop mode                                                               |
|                             | <b>T</b> RSTL | RST  | 100                                    |         | μs      | In pseudo timer mode<br>(MB90543G (S) /547G (S) /<br>548G (S) )            |
|                             |               |      | 4 tcp                                  |         | ns      | In pseudo timer mode<br>(Other than MB90543G (S) /<br>547G (S) /548G (S) ) |
|                             |               |      | 2 tlcp                                 |         | μs      | In sub-clock mode,<br>sub-sleep mode,<br>timer mode                        |
| Hardware standby input time | tнsт∟         | HST  | 4 tcp                                  | _       | ns      | Under normal operation                                                     |

Note : " $t_{cp}$ " represents one cycle time of the machine clock.

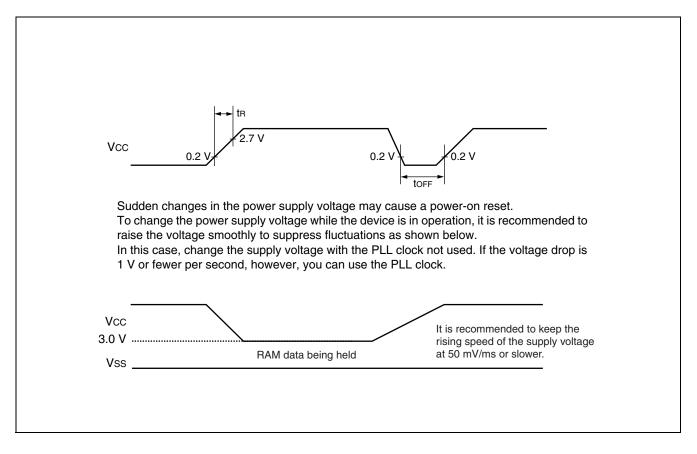
Oscillation time of oscillator is time that amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between handreds of  $\mu$ s to several ms. In the external clock, the oscillation time is 0 ns.

ITSU

Any reset can not fully initialize the Flash Memory if it is performing the automatic algorithm.



#### (4) Power On Reset

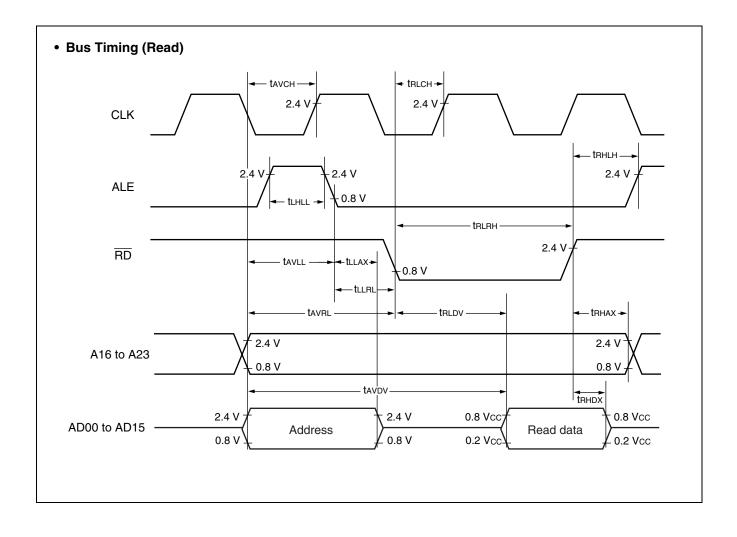

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_{A} = -40 \text{ }^{\circ}\text{C to} + 105 \text{ }^{\circ}\text{C})$  (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):

 $V_{CC} = 5.0 V \pm 10\%$ ,  $V_{SS} = AV_{SS} = 0.0 V$ ,  $T_{A} = -40 \circ C to + 105 \circ C$ )

| Parameter          | Symbol Pin |      | Condition | Va   | lue | Units | Remarks                     |
|--------------------|------------|------|-----------|------|-----|-------|-----------------------------|
| Falameter          | Symbol     | name | Condition | Min  | Max | Units | nemaiks                     |
| Power on rise time | tR         | Vcc  |           | 0.05 | 30  | ms    | *                           |
| Power off time     | toff       | Vcc  |           | 50   |     | ms    | Waiting time until power-on |

\*: Vcc must be kept lower than 0.2 V before power-on.

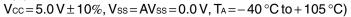
- Note : The above values are used for creating a power-on reset.
  - Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.

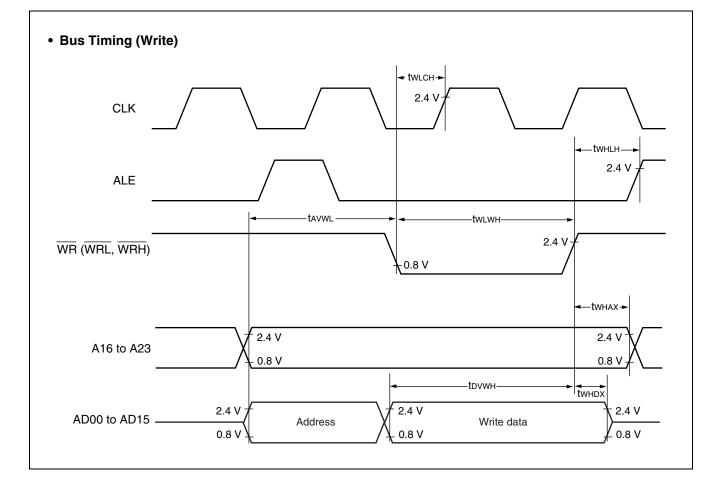



#### (5) Bus Timing (Read)

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{cc} = 3.5 V to 5.5 V, V_{ss} = AV_{ss} = 0.0 V, T_{A} = -40 °C to + 105 °C)$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):

| Parameter                                                  | Symbol        | Pin name                               | Condition | Va           | lue          | Units | Remarks |
|------------------------------------------------------------|---------------|----------------------------------------|-----------|--------------|--------------|-------|---------|
| Parameter                                                  | Symbol        | Pin name                               | Condition | Min          | Max          | Units | Remarks |
| ALE pulse width                                            | tlhll         | ALE                                    |           | tcp/2 - 20   |              | ns    |         |
| Valid address $\rightarrow ALE \downarrow$ time            | tavll         | ALE,<br>A16 to A23,<br>AD00 to<br>AD15 |           | tcp/2 – 20   |              | ns    |         |
| $ALE \downarrow \to Address$ valid time                    | tllax         | ALE, AD00<br>to AD15                   |           | tcp/2 – 15   | —            | ns    |         |
| Valid address $\rightarrow \overline{RD} \downarrow$ time  | tavrl         | A16 toA23,<br>AD00 to<br>AD15, RD      |           | tcp – 15     |              | ns    |         |
| Valid address $\rightarrow$ Valid data input               | tavdv         | A16 to A23,<br>AD00 to<br>AD15         |           |              | 5 tcp/2 – 60 | ns    |         |
| RD pulse width                                             | trlrh         | RD                                     |           | 3 tcp/2 - 20 |              | ns    |         |
| $\overline{RD} \downarrow \to Valid$ data input            | trldv         | RD, AD00 to<br>AD15                    |           |              | 3 tcp/2 - 60 | ns    |         |
| $\overline{RD}^{\uparrow}  ightarrow$ Data hold time       | tRHDX         | RD, AD00 to<br>AD15                    |           | 0            |              | ns    |         |
| $\overline{RD}^{\uparrow} \to ALE^{\uparrow}$ time         | trhlh         | RD, ALE                                |           | tcp/2 - 15   |              | ns    |         |
| $\overline{RD}^{\uparrow} \to Address$ valid time          | <b>t</b> RHAX | RD, A16 to<br>A23                      |           | tcp/2 - 10   | —            | ns    |         |
| Valid address $ ightarrow CLK^\uparrow$ time               | tavch         | A16 to A23,<br>AD00 to<br>AD15, CLK    |           | tcp/2 - 20   |              | ns    |         |
| $\overline{RD} \downarrow \to CLK^\uparrow$ time           | <b>t</b> RLCH | RD, CLK                                |           | tcp/2 - 20   |              | ns    |         |
| $ALE \downarrow \rightarrow \overline{RD} \downarrow time$ | tllrl         | ALE, RD                                |           | tcp/2 – 15   |              | ns    |         |


 $V_{cc} = 5.0 V \pm 10\%$ ,  $V_{ss} = AV_{ss} = 0.0 V$ ,  $T_{A} = -40 \circ C \text{ to} + 105 \circ C$ )



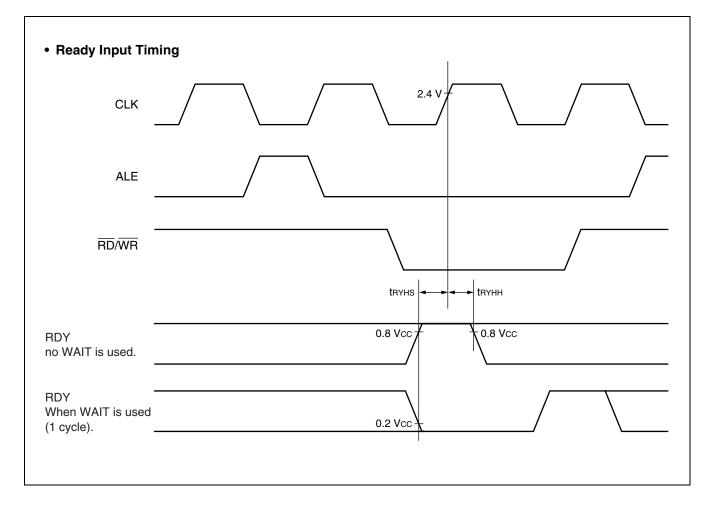

#### (6) Bus Timing (Write)

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{cc} = 3.5 V to 5.5 V, V_{ss} = AV_{ss} = 0.0 V, T_{A} = -40 °C to + 105 °C)$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):

| Parameter                                                     | Symbol | Pin name                          | Condition | Valu         | е   | Units | Remarks |
|---------------------------------------------------------------|--------|-----------------------------------|-----------|--------------|-----|-------|---------|
| Falanetei                                                     | Symbol | Finname                           | Condition | Min          | Max | Units | nemarks |
| Valid address $ ightarrow \overline{WR} {\downarrow}$ time    | tavwl  | A16 to A23<br>AD00 to AD15,<br>WR |           | tc₽ – 15     | _   | ns    |         |
| WR pulse width                                                | tw∟wн  | WR                                |           | 3 tcp/2 - 20 |     | ns    |         |
| Valid data output $\rightarrow \overline{WR}^{\uparrow}$ time | tovwн  | AD00 to AD15,<br>WR               |           | 3 tcp/2 - 20 |     | ns    |         |
| $\overline{WR}^{\uparrow}  ightarrow$ Data hold time          | twhdx  | AD00 to AD15,<br>WR               |           | 20           |     | ns    |         |
| $\overline{WR}^{\uparrow} \rightarrow Address$ valid time     | twнах  | A16 to A23,<br>WR                 |           | tcp/2 - 10   |     | ns    |         |
| $\overline{WR}^{\uparrow} \rightarrow ALE^{\uparrow}$ time    | twhlh  | WR, ALE                           |           | tср/2 – 15   |     | ns    |         |
| $\overline{WR}^{\uparrow} \rightarrow CLK^{\uparrow}$ time    | twlch  | WR, CLK                           | ]         | tcp/2 - 20   |     | ns    |         |





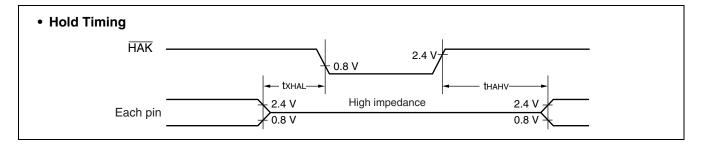

#### (7) Ready Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_{A} = -40 \text{ }^{\circ}\text{C to} + 105 \text{ }^{\circ}\text{C})$  (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):

 $V_{cc} = 5.0 V \pm 10\%$ ,  $V_{ss} = AV_{ss} = 0.0 V$ ,  $T_{A} = -40 \circ C to + 105 \circ C$ )

| Parameter      | Symbol        | Pin name | ne Condition Mir | Val | ue  | Units | Remarks |
|----------------|---------------|----------|------------------|-----|-----|-------|---------|
| Falameter      | Symbol        | Fininame |                  | Min | Max | Units | nemarks |
| RDY setup time | <b>t</b> RYHS | RDY      |                  | 45  |     | ns    |         |
| RDY hold time  | tвүнн         | RDY      |                  | 0   |     | ns    |         |

Note : If the RDY setup time is insufficient, use the auto-ready function.




#### (8) Hold Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_{A} = -40 \text{ }^{\circ}\text{C to} + 105 \text{ }^{\circ}\text{C})$  (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):

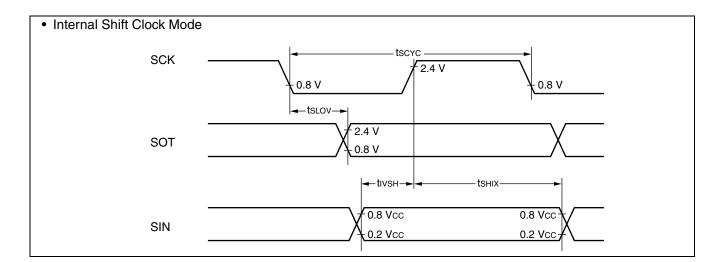
| Parameter                                                     | Symbol        | Pin name | Condition | Value |             | Units | Remarks |
|---------------------------------------------------------------|---------------|----------|-----------|-------|-------------|-------|---------|
| Falameter                                                     | Symbol        |          | Condition | Min   | Max         | Units | nemarks |
| Pin floating $\rightarrow \overline{HAK} \downarrow$ time     | <b>t</b> xhal | HAK      |           | 30    | <b>t</b> CP | ns    |         |
| $\overline{HAK}^{\uparrow}$ time $\rightarrow$ Pin valid time | thahv         | HAK      |           | tсР   | 2 tcp       | ns    |         |

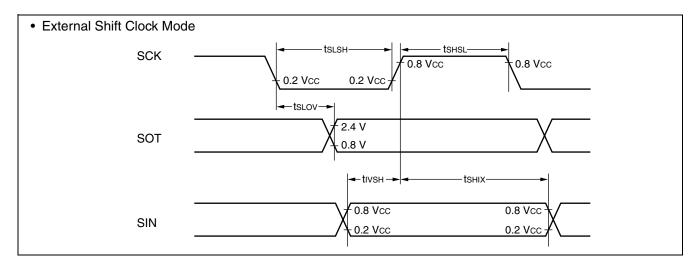
Note : There is more than 1 cycle from the time HRQ is read to the time the  $\overline{HAK}$  is changed.



#### (9) UART0/1, Serial I/O Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 °C to + 105 °C)$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):


| Parameter                                      | Symbol Pin name |                               | Condition                                                   | Value             |     | Units | Remarks   |
|------------------------------------------------|-----------------|-------------------------------|-------------------------------------------------------------|-------------------|-----|-------|-----------|
| Falameter                                      | Symbol          | Fininalite                    | Condition                                                   | Min               | Max | Units | neillaiks |
| Serial clock cycle time                        | tscyc           | SCK0 to SCK2                  |                                                             | 8 tcp             |     | ns    |           |
| $SCK \!\!\downarrow  ightarrow SOT$ delay time | tslov           | SCK0 to SCK2,<br>SOT0 to SOT2 | Internal clock opera-                                       | - 80              | 80  | ns    |           |
| $Valid\;SIN\to\;SCK\uparrow$                   | tivsh           | SCK0 to SCK2,<br>SIN0 to SIN2 | tion output pins are $C_L = 80 \text{ pF} + 1 \text{ TTL}.$ | 100               |     | ns    |           |
| $SCK^\uparrow 	o Valid SIN hold time$          | tsнıx           | SCK0 to SCK2,<br>SIN0 to SIN2 |                                                             | 60                |     | ns    |           |
| Serial clock "H" pulse width                   | tshsl           | SCK0 to SCK2                  |                                                             | 4 t <sub>CP</sub> |     | ns    |           |
| Serial clock "L" pulse width                   | tslsh           | SCK0 to SCK2                  |                                                             | 4 t <sub>CP</sub> |     | ns    |           |
| $SCK \!\!\downarrow  ightarrow SOT$ delay time | tslov           | SCK0 to SCK2,<br>SOT0 to SOT2 | External clock oper-<br>ation output pins are               |                   | 150 | ns    |           |
| Valid SIN $\rightarrow$ SCK $\uparrow$         | tivsh           | SCK0 to SCK2,<br>SIN0 to SIN2 | $C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$                    | 60                |     | ns    |           |
| $SCK^{\uparrow} 	o Valid SIN hold time$        | tsнıx           | SCK0 to SCK2,<br>SIN0 to SIN2 |                                                             | 60                |     | ns    |           |

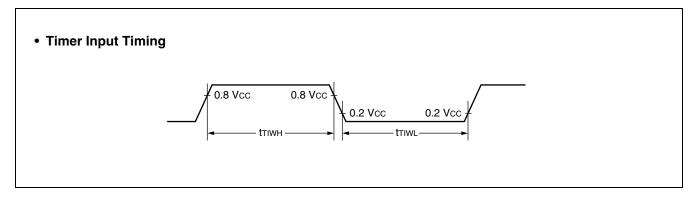

 $V_{CC} = 5.0 V \pm 10\%$ ,  $V_{SS} = AV_{SS} = 0.0 V$ ,  $T_A = -40 \circ C \text{ to} + 105 \circ C$ )

Note : • AC characteristic in CLK synchronized mode.

• CL is load capacity value of pins when testing.

• For tcp (Machine clock cycle time), refer to "(1) Clock Timing".

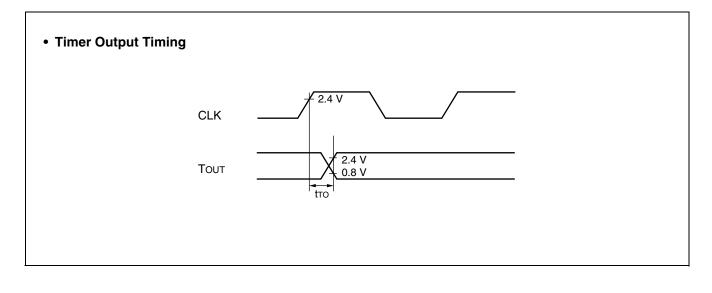





#### (10) Timer Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_{A} = -40 \text{ }^{\circ}\text{C to} + 105 \text{ }^{\circ}\text{C})$  (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):

| $Vcc=5.0V\pm$ | 10%, Vss=AV | ss=0.0V, | $\Gamma_A = -40$ | $^{\circ}$ C to + 105 $^{\circ}$ | C) |
|---------------|-------------|----------|------------------|----------------------------------|----|
|               |             |          |                  |                                  | _  |

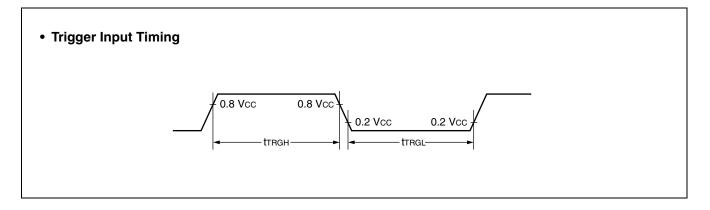

| Parameter         | Symbol | Pin name Condition |           | Value             |     | Units | Remarks |
|-------------------|--------|--------------------|-----------|-------------------|-----|-------|---------|
| Farameter         | Symbol |                    | condition | Min               | Max | Units | nemarks |
| Input pulse width | tтıwн  | TIN0, TIN1         |           | 4 t <sub>CP</sub> |     | ns    |         |
|                   | t⊤ıw∟  | IN0 to IN7         |           | <b>4 I</b> CP     |     |       |         |



#### (11) Timer Output Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_A = -40 °C to + 105 °C)$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):

| Parameter                              | Symbol      | Pin name                     | Condition | Va  | lue | Units | Remarks |
|----------------------------------------|-------------|------------------------------|-----------|-----|-----|-------|---------|
| raiameter                              | Symbol      | r in name                    | Condition | Min | Max | Onits | nema ko |
| $CLK^\uparrow \to T_{OUT}$ change time | <b>t</b> ⊤o | TOT0 , TOT1,<br>PPG0 to PPG3 | _         | 30  | _   | ns    |         |




### (12) Trigger Input Timing

 $(MB90543G(S)/547G(S)/548G(S)/F548GL(S): V_{CC} = 3.5 V \text{ to } 5.5 V, V_{SS} = AV_{SS} = 0.0 V, T_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 105 \text{ }^{\circ}\text{C})$ (Other than MB90543G(S)/547G(S)/548G(S)/F548GL(S):

 $V_{cc} = 5.0 V \pm 10\%$ ,  $V_{ss} = AV_{ss} = 0.0 V$ ,  $T_{A} = -40 \circ C to + 105 \circ C$ )

| Parameter         | Symbol        | Pin name Conditio |           | in name Condition Value |     | Units | Remarks               |  |
|-------------------|---------------|-------------------|-----------|-------------------------|-----|-------|-----------------------|--|
| Farameter         | Symbol        |                   | Condition | Min                     | Max | Units | nemarks               |  |
| Input pulse width | tтван         | INT0 to INT7,     |           | 5 tcp                   | —   | ns    | Under nomal operation |  |
|                   | <b>t</b> trgl | ADTG              |           | 1                       | _   | μs    | In stop mode          |  |



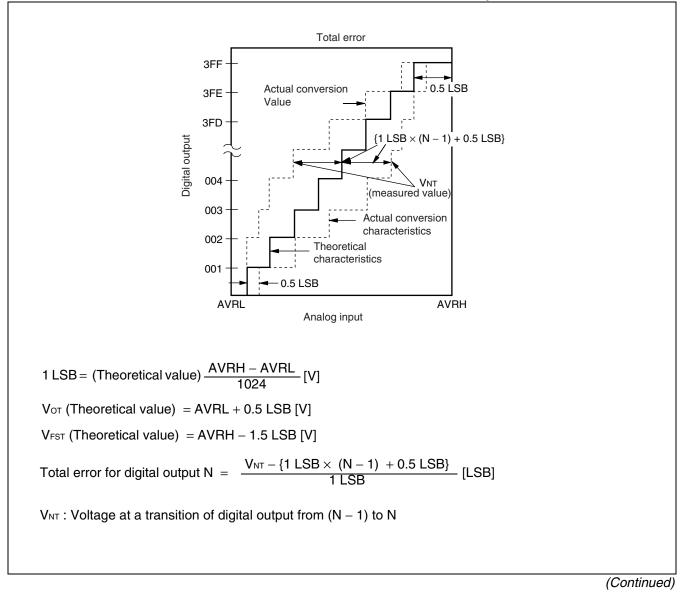
#### 5. A/D Converter

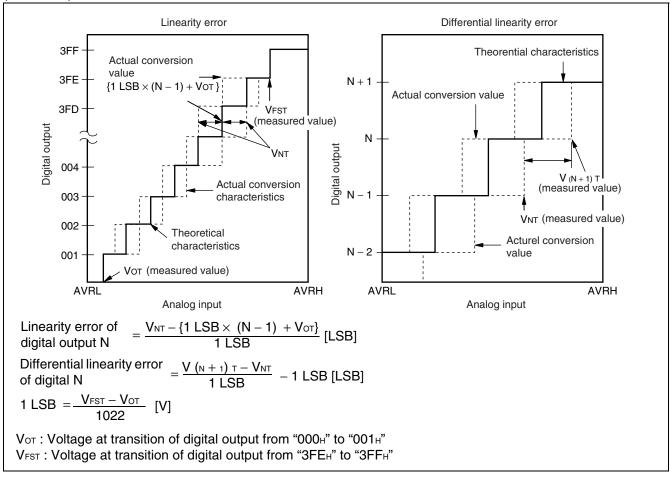
#### Electrical Characteristics

| Parameter                           | Symbol | Pin name   |                   | Value           | Units           | Remarks |                                   |
|-------------------------------------|--------|------------|-------------------|-----------------|-----------------|---------|-----------------------------------|
| Parameter                           | Symbol | Fin hame   | Min               | Тур             | Max             | Units   | nemarks                           |
| Resolution                          |        |            |                   | _               | 10              | bit     |                                   |
| Conversion error                    | _      |            |                   | _               | ± 5.0           | LSB     |                                   |
| Nonlinearity error                  | —      | —          |                   | _               | ± 2.5           | LSB     |                                   |
| Differential nonlinearity error     | _      | _          | —                 | _               | ± 1.9           | LSB     |                                   |
| Zero transition voltage             | Vот    | AN0 to AN7 | AVRL – 3.5<br>LSB | AVRL+0.5<br>LSB | AVRL+4.5<br>LSB | V       |                                   |
| Full scale transition voltage       | VFST   | AN0 to AN7 | AVRH-6.5<br>LSB   | AVRH-1.5<br>LSB | AVRH+1.5<br>LSB | V       |                                   |
| Compare time                        | _      |            | 352 tc₽           | _               | _               | ns      | Internal<br>frequency :<br>16 MHz |
| Sampling time                       | _      |            | 64 tcp            |                 |                 | ns      | Internal<br>frequency :<br>16 MHz |
| Analog port input current           | Iain   | AN0 to AN7 | -1                |                 | 1               | μA      | Vcc = AVcc =<br>5.0 V ± 1%        |
| Analog input voltage range          | VAIN   | AN0 to AN7 | AVRL              | _               | AVRH            | V       |                                   |
| Reference voltage range             |        | AVRH       | AVRL + 2.7        | _               | AVcc            | V       |                                   |
| Therefice voltage range             |        | AVRL       | 0                 | _               | AVRH – 2.7      | V       |                                   |
| Power supply current                | la     | AVcc       |                   | 5               |                 | mA      |                                   |
|                                     | Іан    | AVcc       |                   |                 | 5               | μA      | *                                 |
| Defense and the second              | B      | AVRH       |                   | 400             | 600             | μA      | Flash device                      |
| Reference voltage supply<br>current | IR     |            |                   | 140             | 260             | μA      | MASK ROM                          |
|                                     | Івн    | AVRH       |                   |                 | 5               | μA      | *                                 |
| Offset between input<br>channels    |        | AN0 to AN7 |                   |                 | 4               | LSB     |                                   |

\* : When not using an A/D converter, this is the current ( $V_{CC} = AV_{CC} = AVRH = 5.0 V$ ) when the CPU is stopped.

Note: The functionality of the A/D converter is only guaranteed for VCC =  $5.0 \text{ V} \pm 10 \%$  (also for MB90543G(S)/ 547G(S)/548G(S)/F548GL(S)).


#### • A/D Converter Glossary


Resolution : Analog changes that are identifiable with the A/D converter

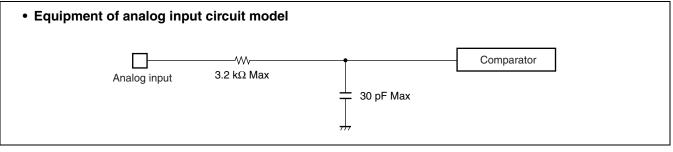
Linearity error : The deviation of the straight line connecting the zero transition point ("00 0000 0000" ←→ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ←→ "11 1111 1111") from actual conversion characteristics

Differential linearity error : The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error : The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.





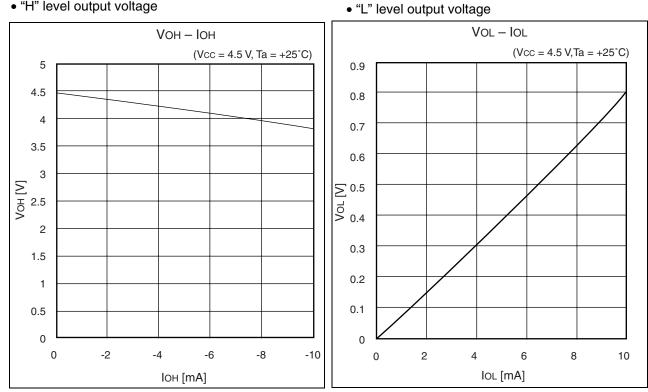

### • Notes on Using A/D Converter

(Continued)

Select the output impedance value for the external circuit of analog input according to the following conditions, :

- Output impedance values of the external circuit of 15 k $\Omega$  or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

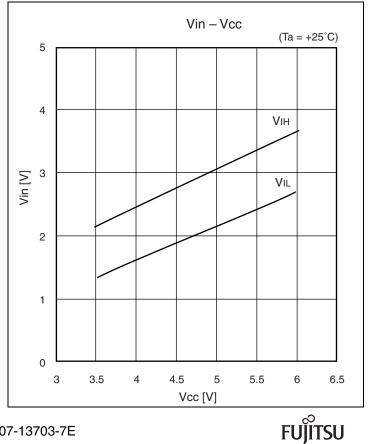
Note : When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period =  $4.00 \ \mu s$  @machine clock of 16 MHz).



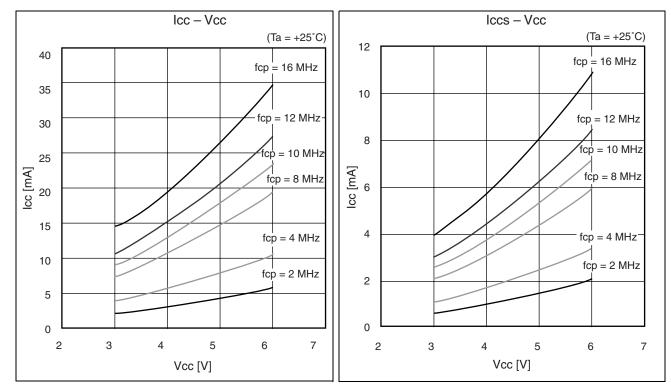

#### • Error

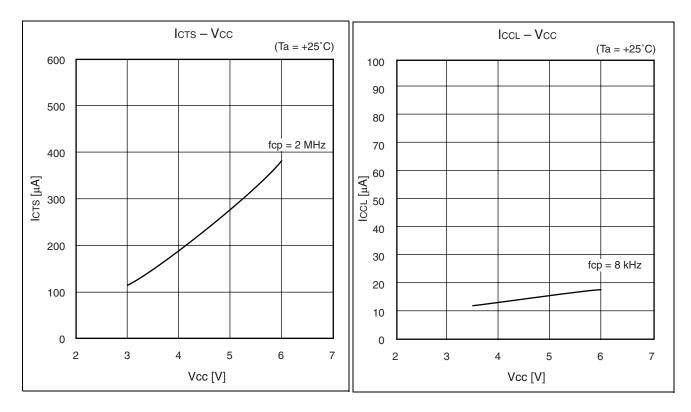
The smaller the | AVRH - AVRL |, the greater the error would become relatively.

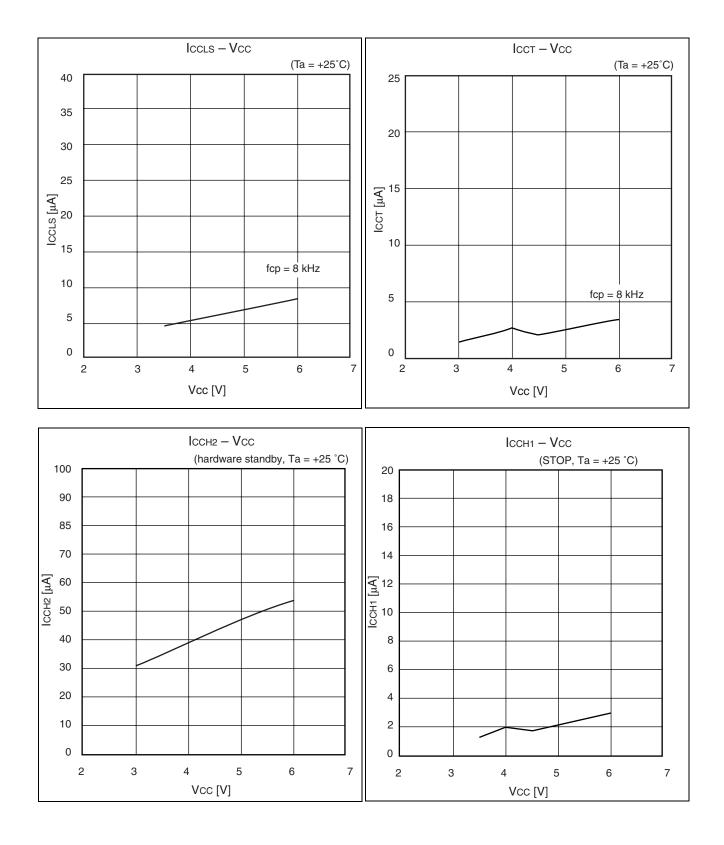
| Parameter                            | Condition                | Value  |         |       | Units | Domorko                                  |              |                              |                              |
|--------------------------------------|--------------------------|--------|---------|-------|-------|------------------------------------------|--------------|------------------------------|------------------------------|
| Farameter                            | Min Typ Max              |        | Remarks |       |       |                                          |              |                              |                              |
| Sector erase time                    |                          |        | 1       | 15    | S     | Excludes 00H programming prior era       |              |                              |                              |
| Chip erase time                      | T <sub>A</sub> = + 25 °C |        | 5       |       | s     | MB90F543G (S) /<br>F548G (S) /F548GL (S) | Excludes 00H |                              |                              |
| Chip erase time                      | $V_{cc} = 5.0 V$         |        |         |       | 7     |                                          | S            | MB90F549G (S) /<br>F546G (S) | programming<br>prior erasure |
| Word (16 bit width) programming time |                          |        | 16      | 3,600 | μs    | Excludes system-level overhead           |              |                              |                              |
| Erase/Program cycle                  | —                        | 10,000 | _       |       | cycle |                                          |              |                              |                              |

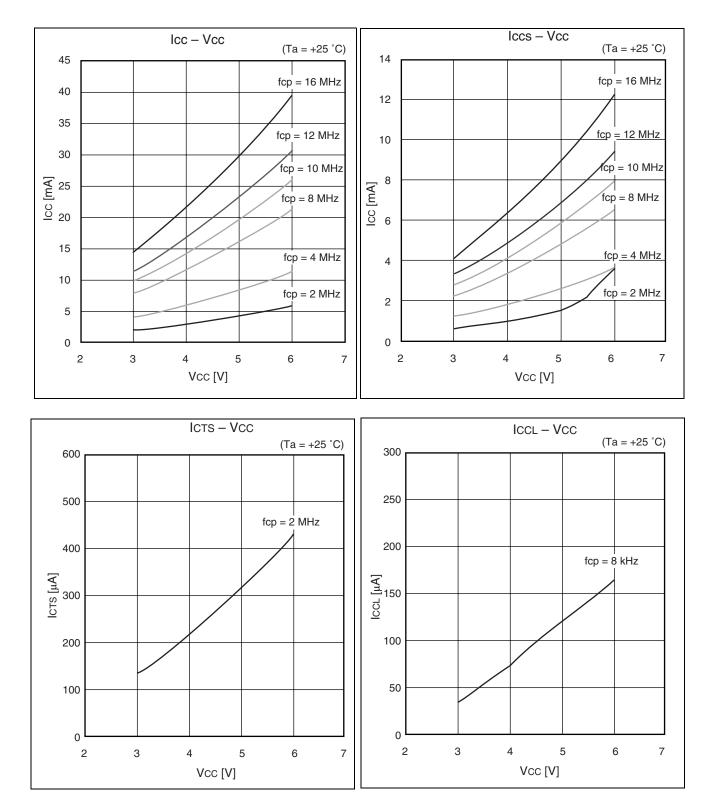

### 6. Flash Memory Program/Erase Characteristics



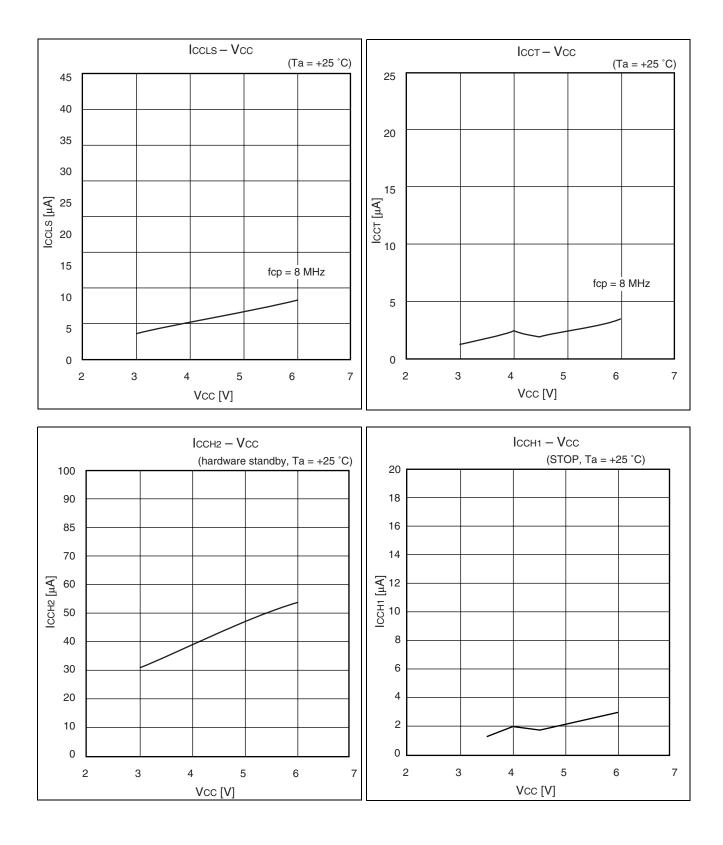

### ■ EXAMPLE CHARACTERISTICS


• "H" level output voltage


• "H" level input voltage/ "L" level input voltage (Hysterisis inpiut)




#### • Power supply current (MB90549G)



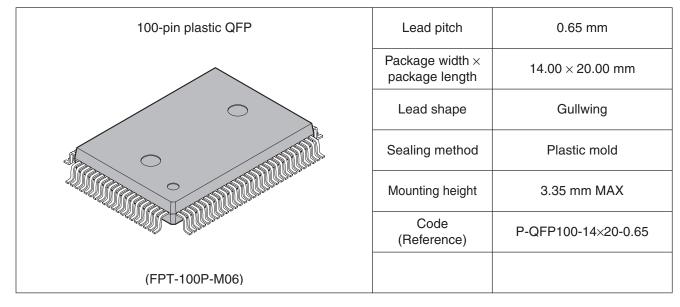


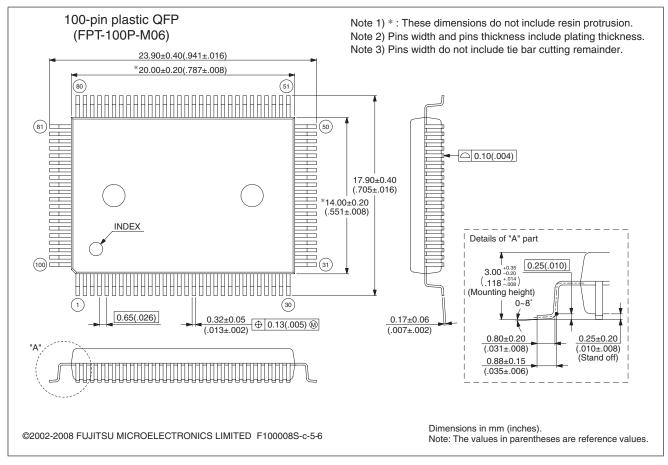





• Power supply current (MB90F549G)




DS07-13703-7E

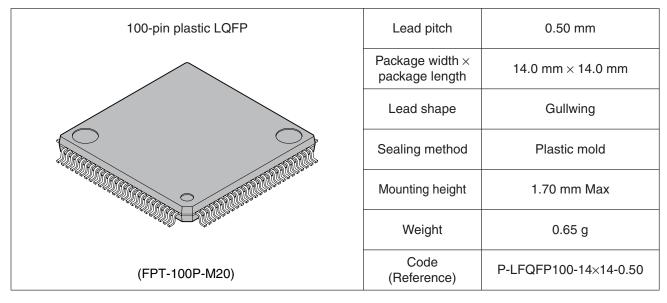

FUJITSU

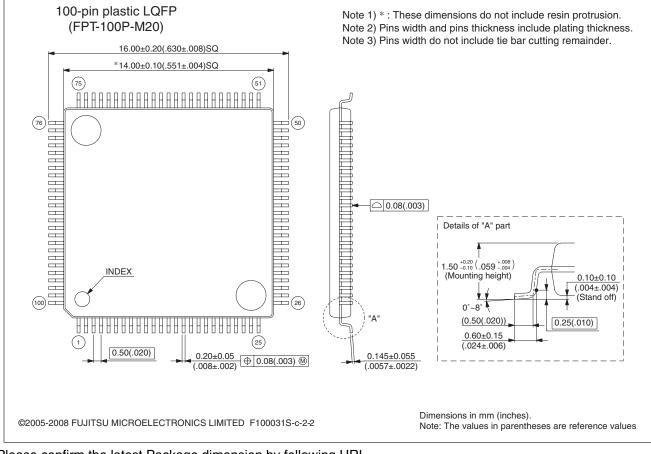
### ■ ORDERING INFORMATION

| Part number                                                                                                                                                                                                                                        | Package                                | Remarks |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|
| MB90F543GPF<br>MB90F543GSPF<br>MB90F546GPF<br>MB90F546GSPF<br>MB90F548GSPF<br>MB90F548GSPF<br>MB90F548GLPF<br>MB90F549GPF<br>MB90F549GSPF<br>MB90543GPF<br>MB90543GSPF<br>MB90543GSPF<br>MB90547GSPF<br>MB90548GSPF<br>MB90549GPF<br>MB90549GPF    | 100-pin Plastic QFP<br>(FPT-100P-M06)  |         |
| MB90F543GPMC<br>MB90F543GSPMC<br>MB90F546GPMC<br>MB90F546GSPMC<br>MB90F548GSPMC<br>MB90F548GSPMC<br>MB90F548GLPMC<br>MB90F549GPMC<br>MB90F549GSPMC<br>MB90543GSPMC<br>MB90543GSPMC<br>MB90547GSPMC<br>MB90547GSPMC<br>MB90548GSPMC<br>MB90549GSPMC | 100-pin Plastic LQFP<br>(FPT-100P-M20) |         |

### ■ PACKAGE DIMENSIONS





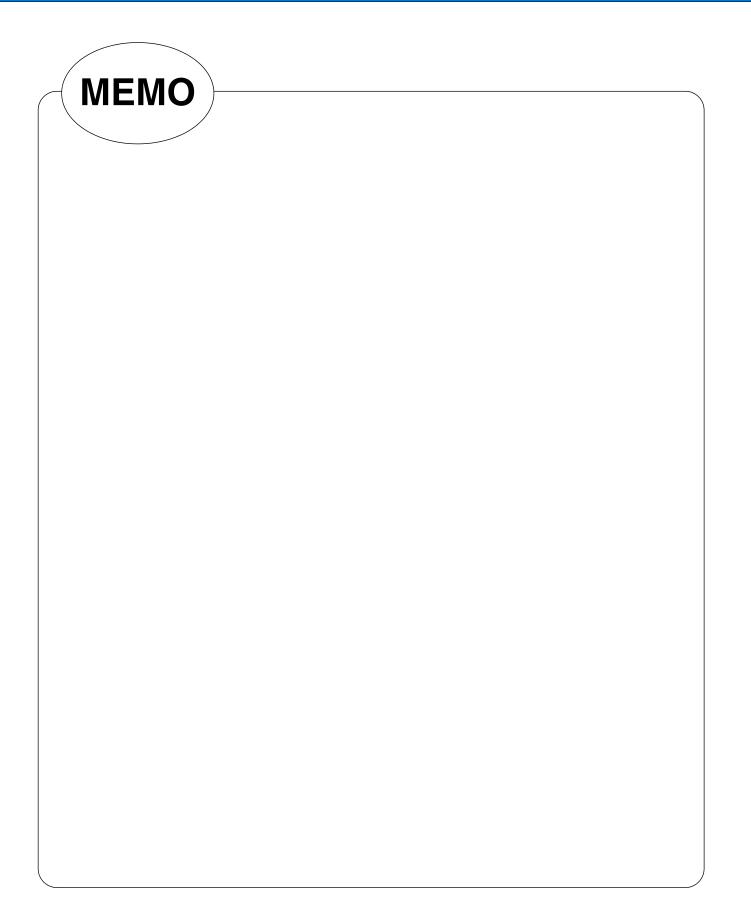


'SU

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

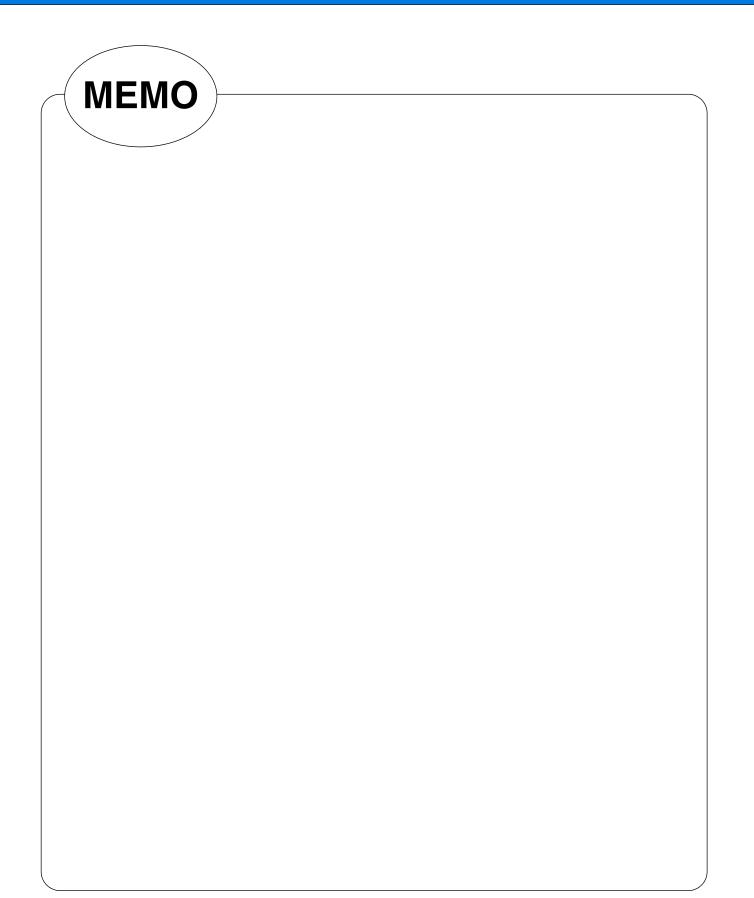
(Continued)

(Continued)






Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/


### ■ MAIN CHANGES IN THIS EDITION

| Page     | Section                                                                        | Change Results                                                                                                                                                         |
|----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5        | ■ PRODUCT LINEUP                                                               | Changed the name in peripheral resource. 16-bit I/O Timer $ ightarrow$ 16-bit Free-run Timer                                                                           |
| 14 to 16 | ■ I/O CIRCUIT TYPE                                                             | Changed the name of input typ.<br>Hysteresis $\rightarrow$ CMOS Hysteresis<br>HYS $\rightarrow$ CMOS Hysteresis                                                        |
| 21       | ■ BLOCK DIAGRAM                                                                | Changed the arrow direction of SOT1 signal at UART1(SCI).<br>" $\leftarrow \rightarrow$ " (input/output) $\rightarrow$ " $\leftarrow$ " (output)                       |
| 28       | ■ I/O MAP                                                                      | Changed the text of "Note".                                                                                                                                            |
| 35       | ■ INTERRUPT MAP                                                                | Changed the name of peripheral resource of the pin number: #19.<br>I/O Timer $\rightarrow$ 16-bit Free-run Timer                                                       |
| 39       | <ul> <li>ELECTRICAL CHARACTERISTICS</li> <li>Recommended Conditions</li> </ul> | Changed the remarks of "parameter: Power supply voltage".                                                                                                              |
| 40       | 3. DC Characteristics                                                          | Changed the maximum value of symbol : VILM of parameter: Input voltage.<br>Vcc + $0.3 \rightarrow Vss + 0.3$                                                           |
|          |                                                                                | Added the following remarks for parameter : Pull-down<br>resistance.<br>Except Flash device                                                                            |
| 42, 43   | 4. AC Characteristics<br>(1) Clock Timing                                      | Added the value when using an external clock in Oscillation frequency and Clock cycle time on (1) Clock Timing for parameter.                                          |
| 44       |                                                                                | Added the item of A/D converter operation range in figure of "• Guaranteed PLL operation range"                                                                        |
| 46       | (3) Reset and Hardware Standby Input<br>Timing                                 | Changed the following item.<br>(3) Reset and Hardware Standby Input Timing Remarks:<br>In sub-clock mode, sub-sleep mode, timer mode<br>$2t_{CP} \rightarrow 2t_{LCP}$ |
| 48       | (4) Power On Reset                                                             | Changed as follows; Due to repetitive operation $\rightarrow$ Waiting time until power-on                                                                              |
| 57       | 5. A/D Converter                                                               | Changed the unit of Zero transition voltage and Full scale transition voltage. $mV \rightarrow V$                                                                      |
| 66       | ORDERING INFORMATION                                                           | Added the MB90F548GLPMC in Part Numbers.                                                                                                                               |

The vertical lines marked in the left side of the page show the changes.







# **FUJITSU MICROELECTRONICS LIMITED**

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

#### North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/

#### Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

#### Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

#### Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

#### All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual

property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department