ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +4.0V
RIN+, RIN- to GND	0.3V to +4.0V
PWRDN to GND	-0.3V to (V _{CC} + 0.3V)
DO_+, DO to GND	0.3V to +4.0V
Short-Circuit Duration (DO_+, DO)	Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$	2)

28-Pin TSSOP (derate 12.8mW/°C above +70°C)1026mW

Storage Temperature	65°C to +150°C
Maximum Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +3.6V, \text{ R}_{L} = 50\Omega \pm 1\%, |V_{ID}| = 0.1V \text{ to } 1.0V, V_{CM} = |V_{ID} / 2| \text{ to } 2.4V - |V_{ID} / 2|, \overline{PWRDN} = \text{high}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}. Typical values are at V_{CC} = +3.3V, \text{ T}_{A} = +25^{\circ}\text{C}.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PWRDN						
Input High Voltage	VIH		2.0			V
Input Low Voltage	VIL				0.8	V
Input Current	l _{IN}	$V_{IN} = V_{CC}$ and $0V$	-15		15	μΑ
LVDS INPUT						
Differential Input High Threshold	V _{TH}			7	100	mV
Differential Input Low Threshold	V _{TL}		-100	-7		mV
Single Ended Input Oursent		\overline{PWRDN} = high or low; V_{RIN+} = 2.4V, RIN- = open or RIN+ = open, V_{RIN-} = 2.4V	-6		+1	
Single-Ended Input Current	lin	\overline{PWRDN} = high or low; V_{RIN+} = 0V, RIN- = open or RIN+ = open, V_{RIN-} = 0V	-18		+1	μA
Power-Off Single-Ended Input Current	IIN(OFF)	$V_{CC} = 0V$; $V_{RIN+} = 2.4V$, RIN- = open or RIN+ = open, $V_{RIN-} = 2.4V$	-1		+12	μA
Differential Input Resistance	RIDIFF	$V_{CC} = +3.6V$ or 0V, $\overline{PWRDN} = $ high or low	5			kΩ
LVDS DRIVER						
Differential Output Voltage	VOD	Figure 1	250	320	450	mV
Change in VOD Between Complementary Output States	ΔV _{OD}	Figure 1			25	mV
Offset (Common-Mode) Voltage	Vos	Figure 1	0.90	1.25	1.375	V
Change in VOS Between Complementary Output States	ΔV _{OS}	Figure 1			25	mV
Output High Voltage	V _{OH}	Figure 1			1.6	V
Output Low Voltage	VOL	Figure 1	0.7			V
Differential Output Resistance (Note 2)	RODIFF	$V_{CC} = +3.6V$ or 0V, $\overline{PWRDN} = high or low$	150	240	330	Ω
Differential High Output Voltage in Fail-Safe	V _{OD+}	R_{IN+} , R_{IN-} undriven with short, open, or 100 Ω termination	250		450	mV
Output Short Oire it Ourrest	laa	$V_{ID} = +100 \text{mV}, V_{DO_{+}} = \text{GND}$	45			~^^
Output Short-Circuit Current	ISC	$V_{ID} = -100 \text{mV}, V_{DO} = \text{GND}$	-15			mA

2

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0V \text{ to } +3.6V, \text{ R}_{L} = 50\Omega \pm 1\%, |V_{ID}| = 0.1V \text{ to } 1.0V, V_{CM} = |V_{ID} / 2| \text{ to } 2.4V - |V_{ID} / 2|, \overline{PWRDN} = \text{high}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}. Typical values are at V_{CC} = +3.3V, \text{ T}_{A} = +25^{\circ}\text{C}.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
Single-Ended Output High-		$V_{CC} = 0V$, $\overline{PWRDN} = GND$; $V_{DO_+} = 3.6V$ or 0V, DO = open; or $V_{DO} = 3.6V$ or 0V, DO_+ = open		-1		+1	μA
Impedance Current IOZ $\overline{PWRDN} = GND;$ $V_{DO_+} = 3.6V \text{ or } 0V, DO = open; \text{ or } V_{DO} = 3.6V \text{ or } 0V, DO_+ = open$			-1		+1	μA	
SUPPLY CURRENT	SUPPLY CURRENT						
Supply Current (Note 2)	Icc	DC	Figure 2		100	140	mA
		200MHz (400Mbps)	Figure 2		130	160	ШA
Power-Down Supply Current	ICCZ	PWRDN = GND				60	μA

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +3.0V \text{ to } +3.6V, R_L = 50\Omega \pm 1\%, C_L = 5pF, |V_{ID}| = 0.2V \text{ to } 1.0V, V_{CM} = |V_{ID} / 2| \text{ to } 2.4V - |V_{ID} / 2|, \overline{PWRDN} = \text{high}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted}. Typical values are at V_{CC} = +3.3V, T_A = +25^{\circ}C.) (Notes 2–5)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Differential Propagation Delay High-to-Low	^t PHLD	Figures 2, 3	1.6	2.2	3.5	ns
Differential Propagation Delay Low-to-High	^t PLHD	Figures 2, 3	1.6	2.2	3.5	ns
Total Peak-to-Peak Jitter (Random and Deterministic) (Note 6)	tjpp	Figures 2, 3		20	120	ps _{p-p}
Differential Output-to-Output Skew (Note 7)	tskoo	Figures 2, 3		40	100	ps
Differential Part-to-Part Skew (Note 8)	^t SKPP	Figures 2, 3			1.9	ns
Rise/Fall Time	T _{TLH} , t _{THL}	Figures 2, 3	150	220	450	ps
Maximum Input Frequency (Note 9)	fMAX	Figures 2, 3	400			Mbps

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +3.0V \text{ to } +3.6V, \text{ R}_{L} = 50\Omega \pm 1\%, \text{ C}_{L} = 5\text{pF}, |V_{ID}| = 0.2V \text{ to } 1.0V, \text{ } V_{CM} = |V_{ID} / 2| \text{ to } 2.4V - |V_{ID} / 2|, \overline{PWRDN} = \text{high}, \text{ } T_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}. \text{ Typical values are at } V_{CC} = +3.3V, \text{ } T_{A} = +25^{\circ}\text{C}.) \text{ (Notes } 2-5)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Power-Down Time	tPD				100	ns
Power-Up Time	tpu	Figures 4, 5			100	μs

Note 1: Current-into-device pins is defined as positive. Current-out-of-device pins is defined as negative. All voltages are referenced to ground, except V_{TH}, V_{TL}, V_{OD}, and Δ V_{OD}.

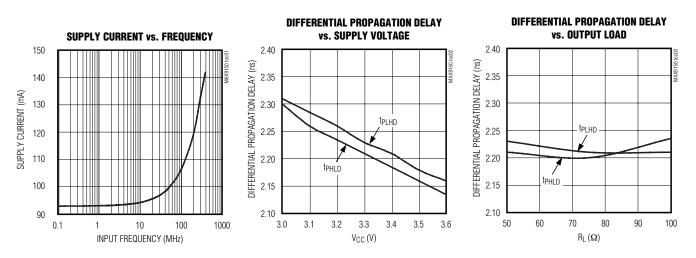
Note 2: Guaranteed by design, not production tested.

Note 3: AC parameters are guaranteed by design and characterization.

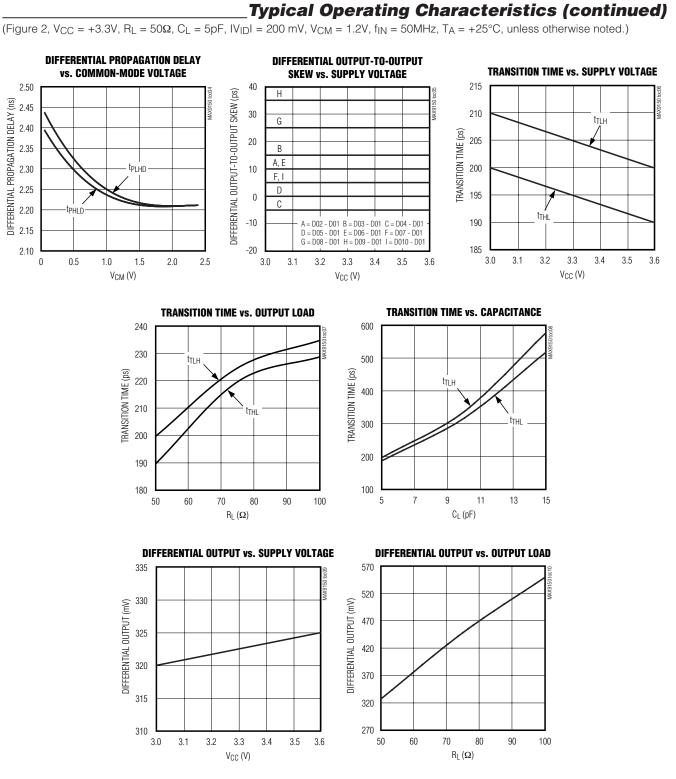
Note 4: CL includes scope probe and test jig capacitance.

Note 5: Signal generator conditions, unless otherwise noted: frequency = 200MHz, 50% duty cycle, R_O = 50Ω , t_R = 1ns, and t_F = 1ns (0% to 100%).

Note 6: Signal generator conditions for t_{JPP}: V_{OD} = 200mV, V_{OS} = 1.2V, frequency = 200MHz, 50% duty cycle, R_O = 50 Ω , t_R = 1ns, and t_F = 1ns (0% to 100%. t_{JPP} includes pulse (duty cycle) skew.


Note 7: tskoo is the magnitude difference in differential propagation delay between outputs for a same-edge transition.

Note 8: tSKPP is the |MAX - MIN| differential propagation delay.


Note 9: Device meets VOD and AC specifications while operating at fMAX.

Typical Operating Characteristics

(Figure 2, V_{CC} = +3.3V, R_L = 50 Ω , C_L = 5pF, IV_{ID}I = 200mV, V_{CM} = 1.2V, f_{IN} = 50MHz, T_A = +25°C, unless otherwise noted.)

/M/IXI/M

MAX9150

Pin Description

PIN	NAME	FUNCTION
1, 3, 11, 13, 16, 18, 20, 24, 26, 28	DO2+, DO1+, DO10+, DO9+, DO8+, DO7+, DO6+, DO5+, DO4+, DO3+	Differential LVDS Outputs. Connect a 100Ω resistor across each of the output pairs (DO_+ and DO) adjacent to the IC, and connect a 100Ω resistor at the
2, 4, 12, 14, 15, 17, 19, 23, 25, 27	DO2-, DO1-, DO10-, DO9-, DO8-, DO7-, DO6-, DO5-, DO4-, DO3-	input of the receiving circuit.
5	PWRDN	Power Down. Drive $\overline{\text{PWRDN}}$ low to disable all outputs and reduce supply current to 60 μ A. Drive $\overline{\text{PWRDN}}$ high for normal operation.
6, 9, 21	GND	Ground
10, 22	V _{CC}	Power. Bypass each V_{CC} pin to GND with 0.1 μF and 1nF ceramic capacitors.
7	RIN+	LVDS Receiver Inputs. RIN+ and RIN- are high-impedance inputs. Connect a
8	RIN-	resistor from RIN+ to RIN- to terminate the input signal.

Detailed Description

The LVDS interface standard is a signaling method intended for point-to-point communication over a controlled impedance medium, as defined by the ANSI/TIA/EIA-644 and IEEE 1596.3 standards. The LVDS standard uses a lower voltage swing than other common communication standards, achieving higher data rates with reduced power consumption while reducing EMI emissions and system susceptibility to noise.

The MAX9150 is a 400Mbps, 10-port LVDS repeater intended for high-speed, point-to-point, low-power applications. This device accepts an LVDS input and repeats it on 10 LVDS outputs. The device is capable of detecting differential signals as low as 100mV and as high as 1V within a 0 to 2.4V input voltage range. The LVDS standard specifies an input voltage range of 0 to 2.4V referenced to ground.

The MAX9150 outputs use a current-steering configuration to generate a 5mA to 9mA output current. This current-steering approach induces less ground bounce and no shoot-through current, enhancing noise margin and system speed performance. The driver outputs are short-circuit current limited, and are high impedance (to ground) when PWRDN = low or the device is not powered. The outputs have a typical differential resistance of 240Ω .

The MAX9150 current-steering architecture requires a resistive load to terminate the signal and complete the

transmission loop. Because the device switches the direction of current flow and not voltage levels, the output voltage swing is determined by the total value of the termination resistors multiplied by the output current. With a typical 6.4mA output current, the MAX9150 produces a 320mV output voltage when driving a transmission line terminated at each end with a 100 Ω termination resistor (6.4mA x 50 Ω = 320mV). Logic states are determined by the direction of current flow through the termination resistors.

Fail-Safe

Fail-safe is a receiver feature that puts the output in a known logic state (high) under certain fault conditions. The MAX9150 outputs are differential high when the inputs are undriven and open, terminated, or shorted (Table 1).

Table 1.	Input/Outpu	ut Function	Table

INPUT, V _{ID}		OUTPUTS, V _{OD}
+100mV		High
-100mV		Low
Open		High
Short	Undriven	High
Terminated	Ununven	High

Note: $V_{ID} = RIN+ - RIN-, V_{OD} = DO_+ - DO_-$ High = 450mV > $V_{OD} > 250mV$ Low = -250mV > $V_{OD} > -450mV$

Applications Information

Supply Bypassing

Bypass each of the V_{CC} pins with high-frequency surface-mount ceramic 0.1 μ F and 1nF capacitors in parallel as close to the device as possible, with the smaller valued capacitor closest to the V_{CC} pins.

Differential Traces

Output trace characteristics affect the performance of the MAX9150. Use controlled impedance traces to match trace impedance to both the transmission medium impedance and termination resistor. Ensure that noise couples as common mode by running the differential traces close together. Reduce skew by matching the electrical length of the traces. Excessive skew can result in a degradation of magnetic field cancellation.

Maintain the distance between the differential traces to avoid discontinuities in differential impedance. Avoid 90° turns and minimize the number of vias to further prevent impedance discontinuities.

Cables and Connectors

Transmission media should have a controlled differential impedance of 100Ω . Use cables and connectors that have matched differential impedance to minimize impedance discontinuities.

Avoid the use of unbalanced cables, such as ribbon or simple coaxial cable. Balanced cables, such as twisted pair, offer superior signal quality and tend to generate less EMI due to canceling effects. Balanced cables tend to pick up noise as common mode, which is rejected by the LVDS receiver.

Termination

Termination resistors should match the differential characteristic impedance of the transmission line. Since the MAX9150 has current-steering devices, an output voltage will not be generated without a termination resistor. Output voltage levels are dependent upon the value of the total termination resistance. The MAX9150 produces LVDS output levels for point-to-point links that are double terminated (100 Ω at each end). With the typical 6.4mA output current, the MAX9150 produces an output voltage of 320mV when driving a transmission line terminated at each end with a 100 Ω termination resistor (6.4mA x 50 Ω = 320mV). Termination resistance values may range between 90 Ω and 150 Ω , depending on the characteristic impedance of the transmission medium.

Minimize the distance between the output termination resistor and the corresponding MAX9150 transmitter output. Use $\pm 1\%$ surface-mount resistors.

Minimize the distance between the input termination resistor and the MAX9150 receiver input. Use a $\pm 1\%$ surface-mount resistor.

Test Circuits and Timing Diagrams

Chip Information

PROCESS : CMOS

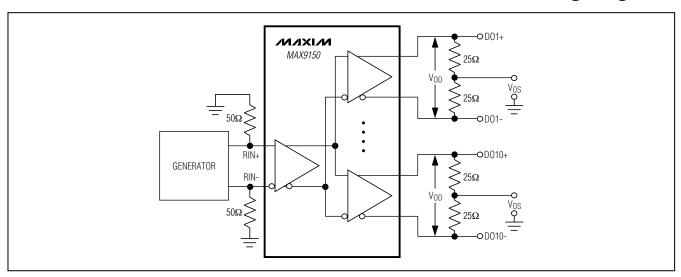


Figure 1. Driver-Load Test Circuit

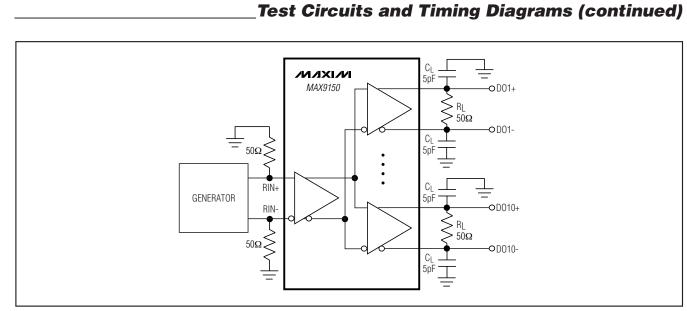


Figure 2. Repeater Propagation Delay and Transition Time Test Circuit

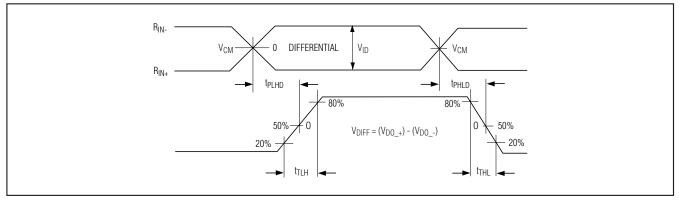
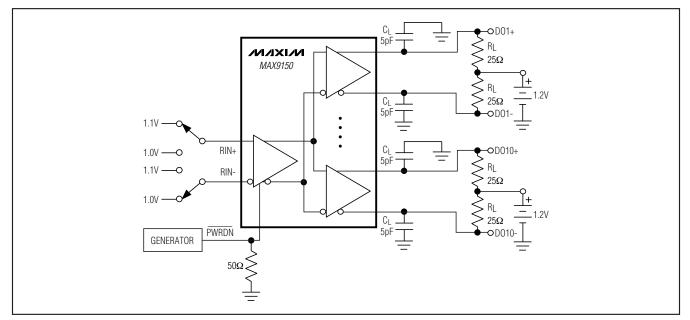



Figure 3. Propagation Delay and Transition Time Waveforms

_Test Circuits and Timing Diagrams (continued)

Figure 4. Power-Up/Down Delay Test Circuit

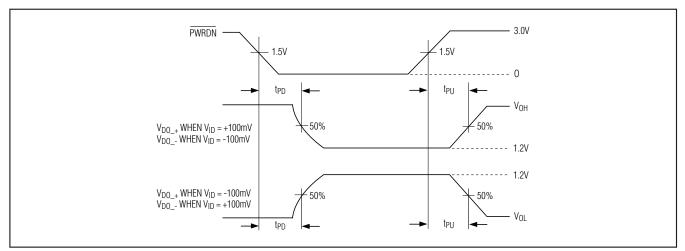


Figure 5. Power-Up/Down Delay Waveform

Package Information

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
28 TSSOP	U28-4	<u>21-0066</u>

MAX9150

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/00	Initial release	
1	3/09	Replaced the obsolete Rev C package outline drawing with the <i>Package Information</i> table	9

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

10 _

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2009 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.

Revision History