Component Suppliers

SUPPLIER	PHONE	WEBSITE
Central Semiconductor Corp.	631-435-1110	www.centralsemi.com
Murata Mfg. Co., Ltd.	770-436-1300	www.murata.com
TDK Corp.	847-803-6100	www.component.tdk.com
TOKO America, Inc.	847-297-0070	www.tokoam.com

Note: Indicate that you are using the MAX4990 when contacting these component suppliers.

Quick Start

Recommended Equipment

Before beginning, the following equipment is needed:

- MAX4990 EV kit
- A user-supplied electroluminescent (EL) lamp
- 5V DC power supply
- Oscilloscope to monitor VA and VB

Procedure

The MAX4990 EV kit is fully assembled and tested. Follow the steps below to verify board operation:

- 1) Verify that all jumpers (JU1-JU8) are in their default positions, as shown in Table 1.
- 2) Connect the VA and VB alligator clip leads to the EL lamp. Note: Under some conditions, the VA/VB output may be as high as 250Vp-p.
- 3) Connect the oscilloscope to VA and VB. With math function, monitor VA-VB waveform.
- 4) Connect the 5V DC power supply between the VDD and GND pins.
- 5) Switch on the 5V power supply. Verify that the EL lamp illuminates.

Table 1. MAX4990 EV Kit Jumper Descriptions (JU1–JU8)

JUMPER	SIGNAL	SHUNT POSITION	FUNCTION	
11.14	SLEW 1-2*		Set by R2	
JU1	SLEVV	2-3	Adjustable by VR1	
11.10	ENI	1-2*	EN = logic-high: normal operation	
JU2	EN	Open	EN = logic-low: shutdown	
JU3	DIM	1-2	Adjustable by VR2	
303	DIIVI	2-3*	Set by R4	
11.14	EL	1-2	Adjustable by VR3	
JU4	EL	Open*	Set by C2	
JU5	SW 1-2		Adjustable by VC1	
305 300		Open*	Set by C3	
JU6 VDD2		1-2*	Power supplied to U2 by VDD Note: VDD must be ≤ 5V	
		Open	U1 must be powered independently	
JU7	JU7 VDD1 1-2*		Power supplied to U1 by VDD Note: VDD must be ≤ 5V	
		Open	U2 must be powered independently	
JU8	VBATT	1-2*	VDD and VBATT connected together Note: VBATT must be ≤ 5V	
		Open	VBATT supplies L1 independent of VDD	

*Default position.

MIXIM

_Detailed Description of Hardware

The MAX4990 EV kit provides a proven layout for the MAX4990. Component selection, adjustment range, and typical operation values for a typical EL panel (1.5in x 2.5in area, nominal 15nF load capacitance) are described in the sections that follow.

Slew Rate (RSLEW)

Slew rate is set by the resistance on the SLEW pin (see Table 2). Many other adjustments depend upon the slew rate setting as a reference. The equation is:

Slew Rate
$$\left(\frac{V}{100\mu s}\right) = \frac{11.25}{R_{SLFW}} (M\Omega)$$

The VR1 + R1 resistance can be adjusted to a specific value before applying power, by connecting an ohmmeter between JU1 pin 3 and GND. After adjusting VR1 to the desired value, disconnect the ohmmeter, install the JU1 shunt, and finally, apply power to the EV kit.

Output Voltage (RDIM, RSLEW)

The output voltage control interacts with the slew rate control (see Table 3). Peak-to-peak output voltage is set by the ratio of the resistances on the DIM and SLEW pins:

$$V_{P-P} = 200 \times \frac{R_{DIM}}{R_{SLEW}}$$
, subject to the constraint $70V \le V_{P-P} \le 250V$

The VR2 resistance can be adjusted to a specific value before applying power, by connecting an ohmmeter between JU3 pin 1 and GND. After adjusting VR2 to the desired value, disconnect the ohmmeter, install the JU3 shunt, and finally, apply power to the EV kit.

Table 2. Slew Rate Configuration

		_	
JU1 SHUNT POSITION	VR1 TRIMMER	R _{SLEW} (MΩ)	SLEW RATE (V/100µs)
1-2		R2 = 0.374	30
0.0	25% CW	VR1 + R1 = 0.560	20
2-3	50% CW	VR1 + R1 = 0.997	12

CW = Clockwise. Approximate trimmer values provided for initial guidance only.

Table 3. Output Voltage Configuration

JU1 SHUNT POSITION	VR1 TRIMMER	R _{SLEW} (MΩ)	JU3 SHUNT POSITION	VR2 TRIMMER	R _{DIM} (MΩ)	V _{P-P} (V)		
		R2 = 0.374	2-3	_	R4 = 0.374	200		
1-2				7% CW	VR2 = 0.152	90		
1-2	_		1-2	13% CW	VR2 = 0.272	150		
				19% CW	VR2 = 0.386	200		
	25% CW	25% CW VR1 + R1 = 0.560	2-3	_	R4 = 0.374	144		
				10% CW	VR2 = 0.211	80		
			1-2	25% CW	VR2 = 0.496	182		
0.0		<u> </u>					36% CW	VR2 = 0.729
2-3 50% CW		2-3	_	R4 = 0.374	86			
	500/ OW	50% CW VR1 + R1 = 0.997	VR1 + R1 =		19% CW	VR2 = 0.383	86	
	50% CW		1-2	35% CW	VR2 = 0.700	150		
	į		70% CW	VR2 = 1.398	260			

CW = Clockwise. Approximate trimmer values provided for initial guidance only.

Soft-Start (RDIM, CDIM)

Lamp Output Frequency (RSLEW, CEL)

Subject to the constraint that $R_{DIM}/R_{SLEW} \le 1.3$, the gradual turn-on/turn-off time is set by R_{DIM} and C_{DIM} (see Table 4) by the equations:

Lamp output frequency can be set by an external capacitor, CEL (see Table 5):

$$t_{ON} = 2.6 \times R_{DIM} \times C_{DIM}$$
$$t_{OFF} = 1.2 \times R_{DIM} \times C_{DIM}$$

$$f_{EL} = \frac{0.0817}{R_{SLEW} \times C_{EL}}$$

Table 4. Soft-Start Configuration

C _{DIM} (μF)	JU3 SHUNT POSITION	VR2 TRIMMER	R _{DIM} (MΩ)	t _{ON} (S)	toff (S)		
	2-3	_	R4 = 0.374	0.972	0.449		
		7% CW	VR2 = 0.152	0.395	0.182		
		10% CW	VR2 = 0.211	0.549	0.253		
C1 = 1.0	1-2			18% CW	VR2 = 0.374	0.972	0.449
GT = 1.0		25% CW	VR2 = 0.496	1.290	0.595		
		35% CW	VR2 = 0.700	1.820	0.840		
		50% CW	VR2 = 1.000	2.600	1.200		
		70% CW	VR2 = 1.398	3.635	1.678		

CW = Clockwise. Approximate trimmer values provided for initial guidance only.

Table 5. Lamp Output Frequency When JU4 = Open (Internal f_{EL})

C _{EL} (pF)	JU1 SHUNT POSITION	VR1 TRIMMER	R _{SLEW} (MΩ)	f _{EL} (Hz)
	1-2		R2 = 0.374	390
C2 = 560	2-3	25% CW	VR1 + R1 = 0.560	260
		50% CW	VR1 + R1 = 0.997	150
	1-2		R2 = 0.374	218
C2 = 1000	2-3	25% CW	VR1 + R1 = 0.560	146
		50% CW	VR1 + R1 = 0.997	82

CW = Clockwise. Approximate trimmer values provided for initial guidance only.

Lamp Output Frequency (External fel Signal)

When the f_{EL} pin is driven by an external clock, the lamp frequency is f_{EL}/4. The EV kit uses an ICM7556 dual CMOS timer (U2) to generate a 50% duty-cycle square wave. The VR3 value can be adjusted while power is applied (see Table 6).

Boost Converter Frequency (RSLEW, CSW)

ICM7556 square-wave frequency $f_{EL} = 1/(1.4 \times R \times C)$. The boost converter switching frequency can be set by an external capacitor, Csw (see Table 7).

$$f_{SW} = \frac{3.61}{R_{SLEW} \times C_{SW}}$$

Boost Converter Frequency (External fsw Signal)

Boost converter switching frequency can be driven by an external clock. The EV kit uses an ICM7556 dual CMOS timer (U2) to generate a 90% duty-cycle square-wave pulse. The Csw value can be adjusted while power is applied (see Table 8).

Table 6. Lamp Output Frequency When JU4 = Pins 1-2 (External f_{EL})

ICM7556 TIMING CAPACITOR (pF)	VR3 TRIMMER	ICM7556 TIMING RESISTORS ($k\Omega$)	f _{EL} FROM ICM7556 (kHz)	LAMP FREQUENCY = f _{EL} /4 (Hz)
	0% CW	VR3 + R5 = 513.3	0.0927	23
C7 = 15000	50% CW	VR3 + R5 = 263.3	0.180	45
	100% CW	VR3 + R5 = 13.3	3.58	895

CW = Clockwise. Approximate trimmer values provided for initial guidance only.

Table 7. Boost Converter Frequency When JU5 = Open (Internal f_{SW})

C _{SW} (pF)	JU1 SHUNT POSITION	VR1 TRIMMER	R _{SLEW} (MΩ)	f _{SW} (kHz)
	1-2	_	R2 = 0.374	142
C3 = 68	0.0	25% CW	VR1 + R1 = 0.560	95
2-3	2-3	50% CW	VR1 + R1 = 0.997	53

CW = Clockwise. Approximate trimmer values provided for initial guidance only.

Table 8. Boost Converter Frequency When JU5 = Pins 1-2 (External f_{SW})

VC1 TRIMMER	ICM7556 TIMING CAPACITOR (pF)	f _{SW} = ICM7556 SQUARE WAVE = 1.44/((R7 + 2 x R6) x (VC1)) (kHz)
Minimum: 0°	VC1 = 7 + 25	112
Center: 90° or 270°	VC1 = 30 + 25	60
Maximum: 180°	(50 ≤ VC1 ≤ 100) + 25	33

Note: f_{SW} square wave has fixed duty cycle = $(R6 + R7)/(R7 + 2 \times R6) = 90\%$. Approximate trimmer values provided for initial guidance only.

/N/XI/N ______ !

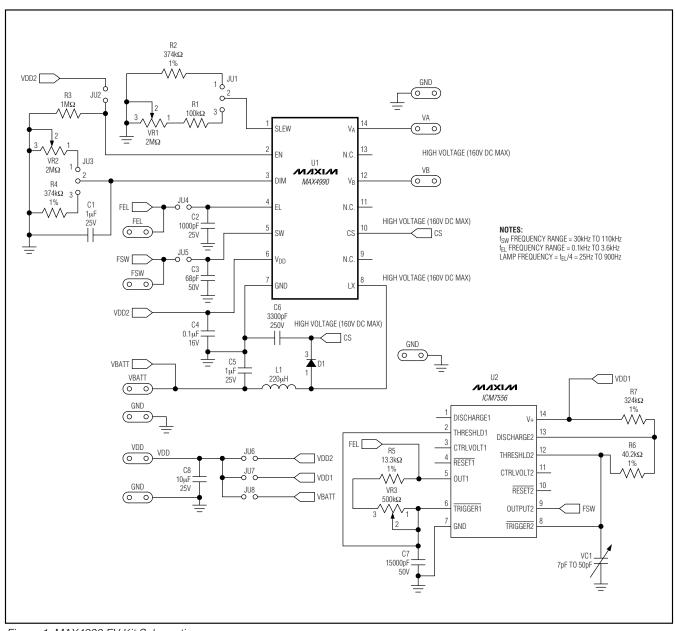


Figure 1. MAX4990 EV Kit Schematic

NIXI/N ______

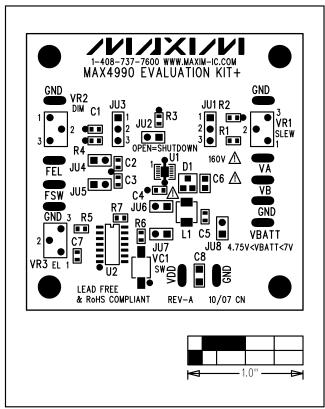


Figure 2. MAX4990 EV Kit Component Placement Guide—Component Side

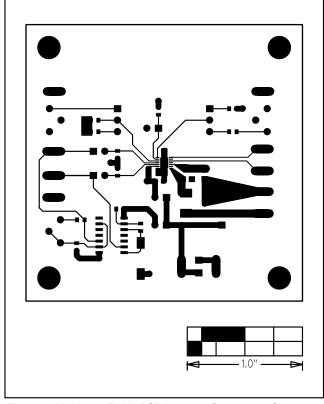


Figure 3. MAX4990 EV Kit PCB Layout—Component Side

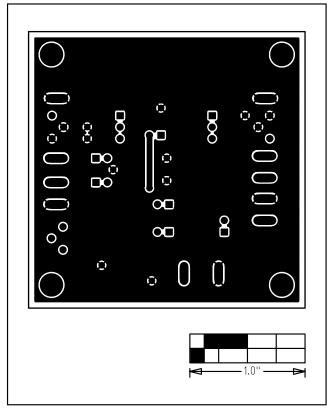


Figure 4. MAX4990 EV Kit PCB Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2007 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.