ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND.)	
V+	0.3V to +6V
A_, EN, COM, NO_ (Note 1)	0.3V to $(V+ + 0.3V)$
Continuous Current (all other pins)	±20mA
Continuous Current (COM, NO_)	±50mA
Peak Current (COM, NO_ pulsed at 1ms,	
10% duty cycle)	±100mA

Continuous Power Dissipation (T _A = +70°C) 10-Pin μMAX (derate 4.1mW/°C above +70°C 10-Pin TDFN (derate 24.4mW/°C)330mW
above +70°C)	1951mW
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range6	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on NO_, COM, EN, or A_ exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+=+4.5V \text{ to } +5.5V, V_{IH}=2.4V, V_{IL}=0.8V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V+=+5V, T_A=+25^{\circ}\text{C}.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CON	MIN	TYP	MAX	UNITS	
ANALOG SWITCH	'						
Analog Signal Range	V _{COM} , V _{NO} _			0		V+	V
O- D:-t	D.	V+ = 4.5V,	T _A = +25°C		2.5	4	
On-Resistance	Ron	$I_{COM} = 10 \text{mA},$ $V_{NO} = 0 \text{ to V} +$	TA = TMIN to TMAX			4.5	Ω
On-Resistance Match	A.D.o.i	V+ = 4.5V,	T _A = +25°C		0.1 0.3		0
Between Channels (Notes 4, 5)	ΔRon	$I_{COM} = 10 \text{mA},$ $V_{NO} = 0 \text{ to V} +$	TA = TMIN to TMAX			0.4	Ω
On-Resistance Flatness	DEL ATIONS	$V+ = 4.5V,$ $I_{COM} = 10mA,$	T _A = +25°C		0.75	1	Ω
(Note 6)	RFLAT(ON)	$V_{NO} = 0 \text{ to V} +$	TA = TMIN to TMAX			1.2	
NO_ Off-Leakage	lue (ess)	V+ = 5.5V; $V_{COM} = 1V, 4.5V;$	T _A = +25°C	-0.1	±0.01	+0.1	
Current (Note 7)	INO_(OFF)	$V_{NO} = 10, 4.50,$ $V_{NO} = 4.5V, 1V$	TA = TMIN to TMAX	-0.3		+0.3	- nA
COM Off-Leakage Current	loov(off)	V+ = 5.5V; $V_{COM} = 1V, 4.5V;$	T _A = +25°C	-0.1	±0.01	+0.1	
(Note 7)	ICOM(OFF)	$V_{NO} = 10, 4.50,$ $V_{NO} = 4.5V, 1V$	TA = TMIN to TMAX	-0.65		+0.65	- nA
COM On-Leakage Current	laarran	V+ = 5.5V; VCOM = 1V, 4.5V;	T _A = +25°C	-0.1	±0.01	+0.1	- Λ
(Note 7)	ICOM(ON)	(1.01)	TA = TMIN to TMAX	-0.65		+0.65	- nA
DIGITAL I/O (A_, EN)		I					1
Input Logic-High	VIH			2.4			V
Input Logic-Low	VIL					0.8	V
Input Logic Current				-100	5	+100	nA

2 _______NIXIN

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V+=+4.5V \text{ to } +5.5V, V_{IH}=2.4V, V_{IL}=0.8V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V+=+5V, T_A=+25^{\circ}\text{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DYNAMIC	1						
Turn-On Time (Note 7)	ton	$V_{NO} = 3V$, $R_L = 300\Omega$,	T _A = +25°C		14	18	ns
rum-on nine (Note 1)	tON	_ ′	TA = TMIN to TMAX			20	115
Turn-Off Time (Note 7)	toff	$V_{NO_{-}} = 3V,$ $R_{I} = 300\Omega,$	T _A = +25°C		6	11	ns
rum-on time (Note 1)	UFF	$C_L = 35pF$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			13	115
Break-Before-Make Time	tbbm	$V_{NO} = 3V$, $R_L = 300\Omega$,	T _A = +25°C		8		ns
(Note 7)	rbbM	$C_L = 35pF$, Figure 3	$T_A = T_{MIN}$ to T_{MAX}	1			113
Charge Injection	Q	V _{GEN} = 2V, R _{GEN} = 0,	C _L = 5pF, Figure 4		2		рС
Off Inclation (Note 9)	1/100	$C_L = 5pF, R_L = 50\Omega,$	f = 10MHz		-57		dB
Off-Isolation (Note 8)	Viso	Figure 5	f = 1MHz		-80		иь
Crantally (Nata O)	Vor	$C_L = 5pF, R_L = 50\Omega,$	f = 10MHz		-52		٩D
Crosstalk (Note 9)	VCT	Figure 5	f = 1MHz		-78		dB
NO_ Off-Capacitance	C _{NO_(OFF)}	Figure 6			13		рF
COM Off-Capacitance	CCOM(OFF)	Figure 6			52		pF
COM On-Capacitance	CCOM(ON)	C _L = 5pF, Figure 6			68		pF
Total Harmonic Distortion	THD	$R_L = 600\Omega$, $f = 20Hz$ to $20kHz$			0.018		%
POWER SUPPLY	<u> </u>			•			
Power-Supply Range	V+			1.8		5.5	V
Positive Supply Current	I+	V+ = 5.5V, V _{IH} = V+, V	/ _{IL} = 0		0.001	1.0	μΑ

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+=+2.7V \text{ to } +3.3V, V_{IH}=2.0V, V_{IL}=0.4V, T_A=-40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $V+=+3V, T_A=+25^{\circ}C.)$ (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH	•						
Analog Signal Range	VCOM, V _{NO} _			0		V+	V
On-Resistance	Ron	V+ = 2.7V, ICOM = 10mA,	T _A = +25°C		4.5	7	Ω
Or-nesistarice	HON	$V_{NO} = 0$ to V+	TA = T _{MIN} to T _{MAX}			8	52
On-Resistance Match Between Channels	ΔRON IC	V+ = 2.7V, I _{COM} = 10mA,	T _A = +25°C		0.1	0.3	Ω
(Notes 4, 5)		$V_{NO} = 0$ to V+	TA = TMIN to TMAX			0.4	52

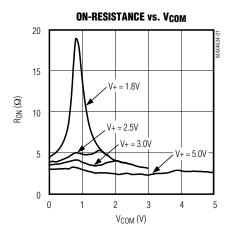
ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

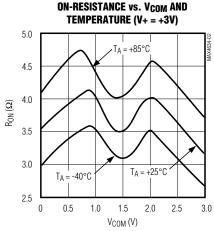
 $(V+=+2.7V \text{ to } +3.3V, V_{IH}=2.0V, V_{IL}=0.4V, T_A=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V+=+3V, T_A=+25^{\circ}\text{C}.)$ (Notes 2, 3)

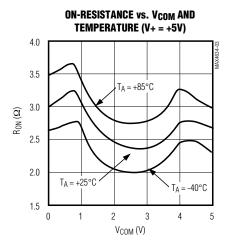
PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
On-Resistance Flatness	RFLAT(ON)	V+ = 2.7V, ICOM = 10mA,	TA = +25°C		1.2	2.5	Ω	
(Note 6)	1 2(0.1)	$V_{NO} = 0$ to $V+$	TA = TMIN to TMAX			3		
NO_Off-Leakage Current	NO (OFF)	V+ = 3.3V;	T _A = +25°C	-0.1	±0.01	+0.1	nA	
(Note 7)	INO_(OFF)	V _{COM} = 1V, 3V; V _{NO} = 3V, 1V	$T_A = T_{MIN}$ to T_{MAX}	-0.3		+0.3		
COM Off-Leakage Current	loon (OFF)	V + = 3.3V; $V_{COM} = 1V, 3V;$	T _A = +25°C	-0.1	±0.01	+0.1	nA.	
(Note 7)	ICOM(OFF)	V _{NO} = 3V, 1V	$T_A = T_{MIN}$ to T_{MAX}	-0.65		+0.65		
COM On-Leakage Current	laarvarii	V+ = 3.3V; $V_{COM} = 1V, 3V;$	T _A = +25°C	-0.1	±0.01	+0.1	nA	
(Note 7)	ICOM(ON)	V _{NO} _ = 1V, 3V, or unconnected	TA = TMIN to TMAX	-0.65		+0.65	TIA .	
DIGITAL I/O (A_, EN)			1	-				
Input High	VIH			2.0			V	
Input Low	VIL					0.4	V	
Input Logic Current				-100	5	+100	nA	
DYNAMIC	•							
Turn-On Time (Note 7)	ton	V _{NO} _ = 2V, C _I = 35pF,	T _A = +25°C		16	22	ns	
rum-on time (Note 1)	TON	$R_L = 300\Omega$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			24	113	
Turn-Off Time (Note 7)	toff	V _{NO} _ = 2V, C _L = 35pF,	T _A = +25°C		8	14	ns	
rum-on time (Note 1)	TOFF	$R_L = 300\Omega$, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			16	113	
Break-Before-Make Time	t _{BBM}	V _{NO} _ = 2V, C _L = 35pF,	T _A = +25°C		9		ne	
(Note 7)	IBBM	$R_L = 300\Omega$, Figure 3	TA = TMIN to TMAX	1			ns	
Charge Injection	Q	V _{GEN} = 1.5V, R _{GEN} = 0	0, C _L = 5pF, Figure 4		2		рС	
Off-Isolation (Note 8)	VISO	$C_L = 5pF, R_L = 50\Omega,$	f = 10MHz		-57		dD.	
On-1301ation (Note o)	V 15U	Figure 5	f = 1MHz		-80		- dB	
Crosstalk (Note 9)	VcT	$C_L = 5pF, R_L = 50\Omega,$	f = 10MHz		-52		dB	
Oroostant (140to 0)		Figure 5	f = 1MHz		-78			

* ______*NIXIN*

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

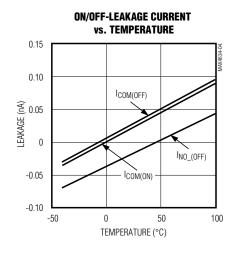

 $(V+=+2.7V \text{ to } +3.3V, V_{IH}=2.0V, V_{IL}=0.4V, T_A=-40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $V+=+3V, T_A=+25^{\circ}C.$) (Notes 2, 3)

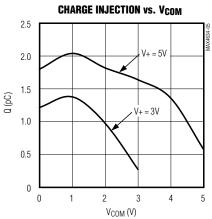

PARAMETER	SYMBOL	CONDITIONS MIN TYP MA		MAX	UNITS	
NO_ Off-Capacitance	CNO_(OFF)	V_{NO} = GND, f = 1MHz, Figure 6			рF	
COM Off-Capacitance	CCOM(OFF)	V _{COM} = GND, f = 1MHz, Figure 6 52			рF	
COM On-Capacitance	C _(ON)	V _{COM} = V _{NO} = GND, f = 1MHz, Figure 6	$OM = V_{NO} = GND, f = 1MHz, Figure 6$ 68			pF
Total Harmonic Distortion	THD	$R_L = 600\Omega$, $f = 20$ Hz to 20kHz 0.018			%	
POWER SUPPLY						
Positive Supply Current	l+	$V+ = 3.3V$, $V_{IH} = V+$, $V_{IL} = 0$		0.001	1	μΑ

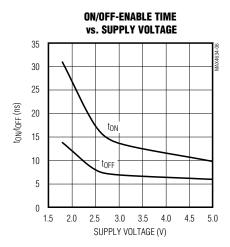

- Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: TDFN parts are tested at +25°C and guaranteed by design and correlation over the entire temperature range.
- **Note 4:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 5:** R_{ON} and ΔR_{ON} matching specifications for TDFN-packaged parts are guaranteed by design.
- **Note 6:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 7: Guaranteed by design.
- **Note 8:** Off-isolation = $20\log_{10}$ (V_{COM} / V_{NO}), where V_{COM} = output and V_{NO} = input to off switch.
- Note 9: Between any two switches.

Typical Operating Characteristics

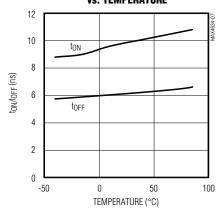
 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

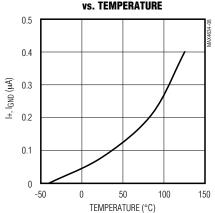


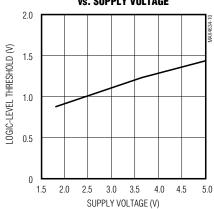


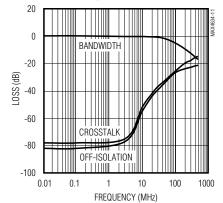


Typical Operating Characteristics (continued)


 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$




ON/OFF-ENABLE TIME vs. TEMPERATURE



LOGIC-LEVEL THRESHOLD vs. SUPPLY VOLTAGE

FREQUENCY RESPONSE

Pin Description

PIN				
μMAX/ TDFN	NAME	FUNCTION		
1	A0	Address Input. See the <i>Truth Table</i> for details.		
2	NO1	Normally Open Switch 1		
3	GND	Ground		
4	NO3	Normally Open Switch 3		
5	EN	Enable Logic Input. See the <i>Truth Table</i> for details.		
6	V+	Positive Supply Voltage. Connect to an external power supply. Bypass to GND with a 10µF capacitor placed as close to the pin as possible.		
7	NO4	Normally Open Switch 4		
8	COM	Analog Switch Common Terminal		
9	NO2	Normally Open Switch 2		
10	A1	Address Input. See the <i>Truth Table</i> for details.		
_	EP	Exposed Pad. Internally connected to GND. Connect to a large PCB ground plane for proper operation. Not intended as an electrical connection point (TDFN package only).		

Detailed Description

The MAX4634 is a low-on-resistance, low-voltage analog multiplexer that operates from a +1.8V to +5.5V single supply. CMOS switch construction allows processing of analog signals that are within the supply voltage range (GND to V+).

To disable all switch channels, drive EN low. All four inputs and COM become high impedance during this state. If the disable feature is not needed, connect EN to V+.

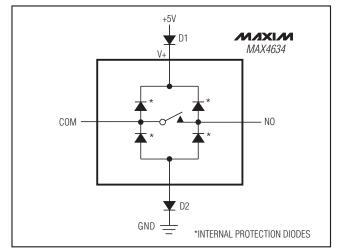


Figure 1. Overvoltage Protection Using External Blocking Diodes

Applications Information

Power-Supply Sequencing and Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals or logic inputs, especially if the analog or logic signals are not current limited. If this sequencing is not possible, and if the analog or logic inputs are not current limited to < 20mA, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog signal range to a diode drop (about 0.7V) below V+ for D1 or to a diode drop above ground for D2. The addition of diodes does not affect leakage. On-resistance increases by a small amount at low supply voltages. Maximum supply voltage (V+) must not exceed 6V.

Protection diodes D1 and D2 also protect against some overvoltage situations. A fault voltage up to the absolute maximum rating at an analog signal input does not damage the device, even if the supply voltage is below the signal voltage.

Test Circuits/Timing Diagrams

Figure 2. Switching Time

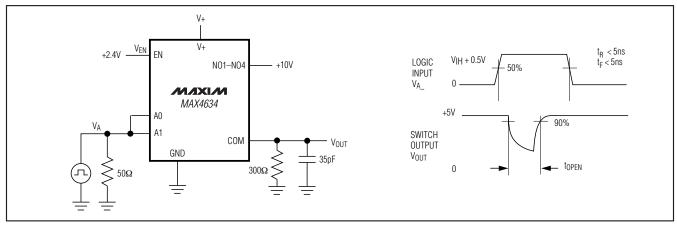


Figure 3. Break-Before-Make Interval

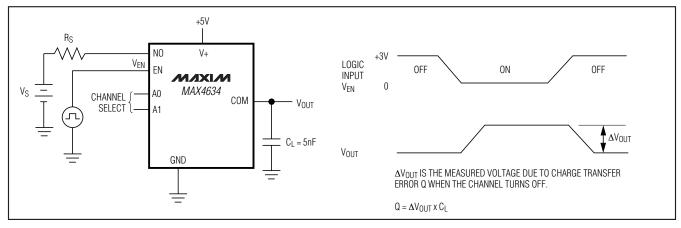


Figure 4. Charge Injection

Test Circuits/Timing Diagrams (continued)

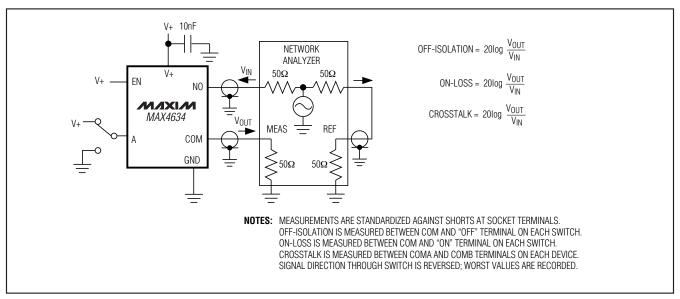


Figure 5. Off-Isolation/On-Channel Bandwidth

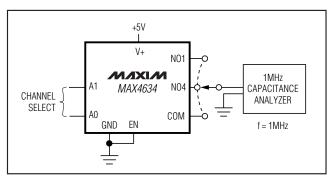


Figure 6. Channel Off/On-Capacitance

Chip Information

PROCESS: CMOS

_Package Information

For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
10 μMAX	_	<u>21-0061</u>
10 TDFN	T1033-1	<u>21-0137</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/00	Initial release	_
1	2/02	Added QFN package	_
2	5/03	Added QFN packaging information	_
3	2/09	Added TDFN package information (replaced QFN), style edits	1, 7

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

10 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600