
ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltage (V _{DD})	6V
Input Voltage (SHDN)	$-0.3V$ to $V_{CC} + 0.3V$
I _{OUT} Continuous	90mA
Operating Temperature Range.	0°C to 70°C
Storage Temperature Range	–65°C to 150°C
Lead Temperature (Soldering, 1	10 sec)300°C

PACKAGE/ORDER INFORMATION

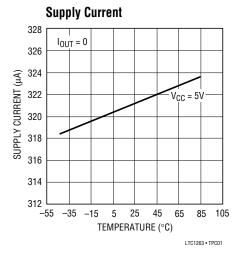
Consult factory for Industrial and Military grade parts and TSSOP package option.

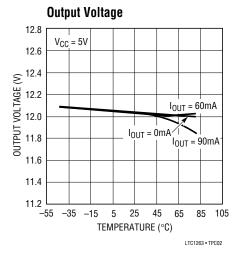
ELECTRICAL CHARACTERISTICS $4.75V \le V_{CC} \le 5.5V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$ (Notes 2, 3).

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OUT}	Output Voltage	$0mA \le I_{OUT} \le 60mA$, $V_{SHDN} = 0V$	•	11.4		12.6	V
I _{CC}	Supply Current	No Load, V _{SHDN} = 0V	•		0.32	1.0	mA
I _{SHDN}	Shutdown Supply Current	No Load, V _{SHDN} = V _{CC}	•		0.5	10	μА
f _{OSC}	Oscillator Frequency	V _{CC} = 5V, I _{OUT} = 60mA			300		kHz
	Power Efficiency	V _{CC} = 5V, I _{OUT} = 60mA			76		%
R _{SW}	V _{CC} to V _{OUT} Switch Impedance	V _{CC} = V _{SHDN} = 5V, I _{OUT} = 0mA	•		0.3	1	kΩ
$\overline{V_{IH}}$	SHDN Input High Voltage		•	2.4			V
V_{IL}	SHDN Input Low Voltage		•			0.8	V
	SHDN Input Current	V _{CC} = 5V, V _{SHDN} = 0V	•	- 40	- 20	-5	μА
		V _{CC} = 5V, V _{SHDN} = 5V	•	-10	0	10	μА
t _{ON}	Turn-On Time	C1 = C2 = $0.47\mu\text{F}$, C3 = C4 = $10\mu\text{F}$ (Note 4) (Figures 1, 2)			600		μѕ
t _{OFF}	Turn-Off Time	C1 = C2 = $0.47\mu\text{F}$, C3 = C4 = $10\mu\text{F}$ (Figures 1, 2)			10		ms

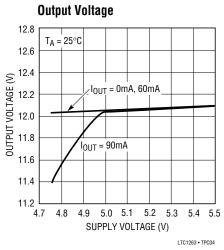
The ● denotes specifications which apply over the full operating temperature range.

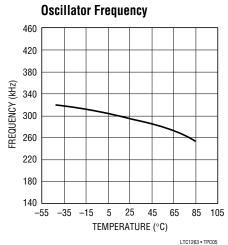
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.


Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.


Note 3: All typicals are given at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 4: A higher value output capacitor can be used but the "turn-on" and "turn-off" time will increase proportionally.




TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

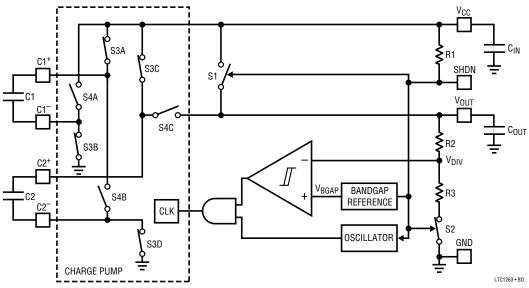
C1⁻ (Pin 1): First Charge Capacitor Negative Input. Connect a $0.47\mu F$ capacitor (C1) between C1⁺ and C1⁻.

C1+ (Pin 2): First Charge Capacitor Positive Input. Connect a $0.47\mu F$ capacitor (C1) between C1+ and C1-.

C2⁻ (**Pin 3**): Second Charge Capacitor Negative Input. Connect a 0.47μF capacitor (C2) between C2⁺ and C2⁻.

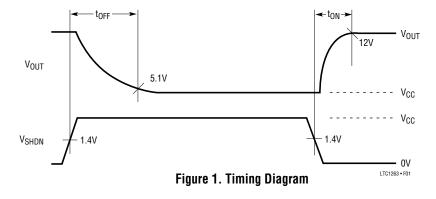
C2⁺ (**Pin 4**): Second Charge Capacitor Positive Input. Connect a 0.47μF capacitor (C2) between C2⁺ and C2⁻.

V_{CC} (**Pin 5**): Positive Supply Input. $4.75V \le V_{CC} \le 5.5V$. Requires a 10μF bypass capacitor to ground (C4).


 V_{OUT} (Pin 6): 12V Output. Requires a $10\mu F$ or a higher value bypass capacitor to ground (C3). $V_{OUT} = V_{CC}$ when in the shutdown mode.

GND (Pin 7): Ground.

SHDN (Pin 8): Active-High TTL Logic Level Shutdown Pin. SHDN is internally pulled up to V_{CC} . Connect to GND for normal operation. In shutdown mode, the charge pump is turned off and $V_{OUT} = V_{CC}$.



BLOCK DIAGRAM

S1 AND S2 SHOWN WITH SHDN PIN LOW. S3A, S3B, S3C, S3D, S4A, S4B AND S4C SHOWN CHARGING C1 AND C2 WITH OSCILLATOR OUTPUT LOW AND $V_{\rm DIV}$ < $V_{\rm BGAP}$ – $V_{\rm HYST}$. AT OSCILLATOR OUTPUT HIGH, S3A, S3B, S3C AND S3D OPEN WHILE S4A, S4B AND S4C CLOSE TO CHARGE $V_{\rm OUT}$. COMPARATOR HYSTERESIS IS $\pm V_{\rm HYST}$

TIMING DIAGRAMS

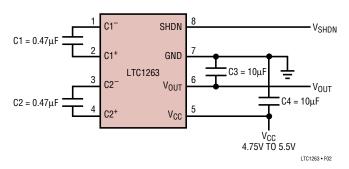


Figure 2. Timing Circuit

OPERATION

The LTC1263 uses a charge pump tripler to generate 12V from a V_{CC} of 5V. The charge pump is clocked by an internal oscillator. The oscillator frequency is not critical and may vary from the typical value of 300kHz. When the oscillator output is low, C1 and C2 are each connected between V_{CC} and GND, charging them to V_{CC} (see Figure 3). When the oscillator output goes high, C1 and C2 are stacked in series with the bottom plate of C1 pulled to V_{CC} (see Figure 4). The top plate of C2 is switched to charge C_{OUT} , which enables V_{OUT} to rise.

 V_{OUT} is regulated to within 5% of 12V by an oscillator pulse gating scheme that turns the charge pump on and off based on the comparator results of V_{OUT} and a reference voltage. First, a resistor divider senses V_{OUT} ; if the output of the divider (V_{DIV}) is less than the output of a bandgap (V_{BGAP}) by the hysteresis voltage (V_{HYST}) of the comparator, then oscillator pulses are applied to the charge pump to raise V_{OUT} . When V_{DIV} is above V_{BGAP} by V_{HYST} , the

 V_{CC} , the gates of all internal switches are driven between GND and the higher of either V_{OUT} or V_{CC} . To reduce supply current, the LTC1263 may be put into shutdown mode by "floating" the SHDN pin or connecting it to V_{CC} . In this mode, the bandgap, comparator, oscillator and resistor divider are switched off to reduce the

oscillator pulses are prevented from clocking the charge

pump. As a result, V_{OIIT} drops until V_{DIV} is below V_{RGAP} by

To ensure proper start-up when V_{OUT} is lower than V_{CC}

and maintain proper operation when V_{OUT} is higher than

 V_{HYST} again.

tor and resistor divider are switched off to reduce the supply current to typically 0.5 μ A. At the same time an internal switch shorts V_{OUT} to V_{CC} ; V_{OUT} takes 10ms (typ) to reach 5.1V (see t_{OFF} in Figure 1). When the SHDN pin is low, the LTC1263 exits shutdown and the charge pump operates to raise V_{OUT} to 12V. V_{OUT} takes 600 μ s (typ) to reach the lower regulation limit of 11.4V (see t_{ON} in Figure 1).

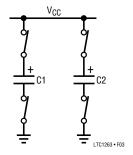


Figure 3. C1 and C2 Charge to V_{CC}

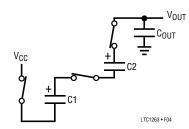


Figure 4. C1 and C2 Stacked in Series with C1⁻ Tied to V_{CC}

APPLICATIONS INFORMATION

Choice of Capacitors

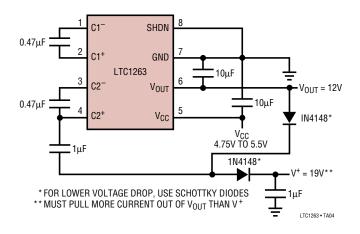
The LTC1263 is tested with the capacitors shown in Figure 2. C1 and C2 are $0.47\mu F$ ceramic capacitors and C_{IN} and C_{OUT} are $10\mu F$ tantalum capacitors. Refer to Table 1 if other choices are desired.

Table 1. Recommended Capacitor Types and Values

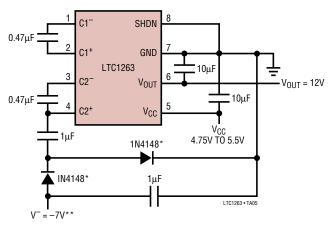
· · · · · · · · · · · · · · · · · · ·					
CAPACITOR	CERAMIC	TANTALUM	ALUMINUM		
C1, C2	0.47μF to 1μF	Not Recommended	Not Recommended		
C _{OUT}	10μF (Min)	10μF (Min)	10μF (Min)		
C _{IN}	10μF (Min)	10μF (Min)	10μF (Min)		

C1 and C2 should be ceramic capacitors with values in the range of $0.47\mu F$ to $1\mu F$. Higher values provide better load regulation. Tantalum capacitors are not recommended as the higher ESR of these capacitors degrades performance at high load currents and $V_{CC} = 4.75V$.

 C_{IN} and C_{OUT} can be ceramic, tantalum or electrolytic capacitors. The ESR of C_{OUT} introduces steps in the V_{OUT} waveform whenever the charge pump charges C_{OUT} . This tends to increase V_{OUT} ripple. Ceramic or tantalum capacitors are recommended for C_{OUT} if minimum ripple is

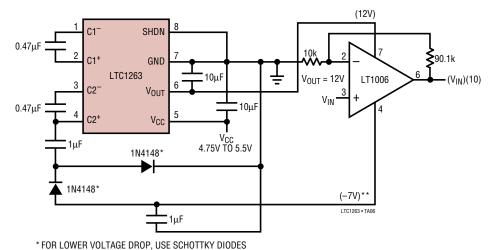

APPLICATIONS INFORMATION

desired. (The LTC1263 does not require a 0.1µF capacitor between V_{CC} and V_{OUT} for stability.)


Besides using it to program flash memories, the LTC1263 can also provide multiple supply voltages with the help of two diodes and two capacitors. Output voltages of 19V and -7V can easily be obtained. In other words, the LTC1263 can power dual supply $(\pm 5V)$ and single supply (15V) op amps.

TYPICAL APPLICATIONS

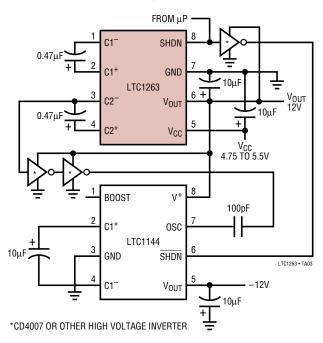
Dual Voltage Supply Output at 12V and 19V



Dual Supply Voltage Output at 12V and -7V

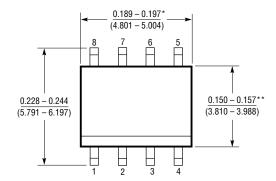
*FOR LOWER VOLTAGE DROP, USE SCHOTTKY DIODES **MUST PULL MORE CURRENT OUT OF V_{OUT} THAN V^-

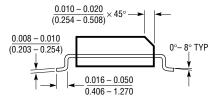
Gain of 10 Amplifier Using LT® 1006 Powered by LTC1263



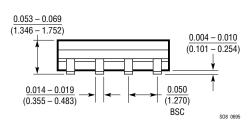
** MUST PULL MORE CURRENT OUT OF V_{OUT} THAN V

TYPICAL APPLICATIONS


Dual Voltage Supply Output at 12V and -12V



PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.


S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)

(LTC DWG # 05-08-1610)

- *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
- **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

TYPICAL APPLICATION

SHDN GND LTC1263 10uF V_{OUT} 12V V_{OUT} 60mA V_{IN} 5V V^{CC} $220\mu F'$ 8V $\times 3$ TP0610 Si4410DY 3μH 10A 0.01Ω V_{OUT} 3.3V P DRIVE VN2222 100Ω 5A SHDN SENSE+ SHUTDOWN LTC1148-3.3 1000pF MBRS120T3 330μF SENSE-6.3V OS-CON $\times 2$ **≨**510Ω N DRIVE C_T **←** Si4410DY 150pF SGND **PGND** 3300pF **\$**22k Burst Mode[™] OPERATION DEFEAT; USE IF REQUIRED LTC1263 • TA07 *PANASONIC BCGCOKB220R OR EQUIVALENT

5V to 3.3V/5A Converter with 12V/60mA Auxiliary Output

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1044A	12V CMOS Voltage Converter	1.5V to 12V Supply Range, 95% Efficiency, ±V _{OUT}
LT1106/LT1107/LT1108	Micropower DC/DC Converter, 5V and 12V	Adjustable V _{OUT} from V _{IN} = 3V, Use Inductor
LTC 1262	12V, 30mA Flash Memory Program Supply	1/2 Source Current as LTC1263, Cannot Short V _{OUT} to GND
LT1301/LT1302/LT1303	Micropower High Efficiency 5V/12V, DC/DC Converter	5V at 600mA or 12V at 120mA, Use Inductor
LT1312	Single PCMCIA VPP Driver/Regulator	120mA Output, Current Limit, Thermal Shutdown
LTC1429	Regulating Positive to Negative Charge Pump	Fixed –4.1V or Adjustable Output, No Inductors

Burst Mode IS A TRADEMARK OF LINEAR TECHNOLOGY CORPORATION