Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to SOURCE lead. ($T_{Ambient} = 25^{\circ}C$ unless otherwise specified). PCB mounting uses the standard footprint with 70 μ m copper thickness...

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V_{ds}	Maximum drain to source voltage	_	47	V	
v_{in}	Maximum Input voltage	-0.3	7	V	
lin, max	Maximum IN current	-10	+10	mA	
Isd cont.	Diode max. continuous current (1)				
	(rth=125°C/W)	—	1.4	Α	
Isd pulsed	Diode max. pulsed current (1)	_	10		
Pd	Maximum power dissipation ⁽¹⁾				
	(rth=125°C/W)	—	1	W	
ESD1	Electrostatic discharge voltage (Human Body)	_	4		C=100pF, R=1500Ω,
ESD2	Electrostatic discharge voltage (Machine Model)	_	0.5	kV	C=200pF, R=0Ω, L=10μH
T stor.	Max. storage temperature	-55	150	°C	
Tj max.	Max. junction temperature	-40	+150		

Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{th} 1	Thermal resistance with standard footprint	-	100		°C/W	
Rth2	Thermal resistance with 1" square footprint		50	_		

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
Vds (max)	Continuous drain to source voltage	_	35	
VIH	High level input voltage	4	6	V
VIL	Low level input voltage	0	0.5	
lds	Continuous drain current			
Tamb=85°C	(TAmbient = 85°C, IN = 5V, rth = 100°C/W, Tj = 125°C)	_	1.4	Α
Rin	Recommended resistor in series with IN pin	0.5	5	$k\Omega$
Tr-in (max)	Max recommended rise time for IN signal (see fig. 2)	_	1	μS
Fr-Isc (2)	Max. frequency in short circuit condition (Vcc = 14V)	0	1	kHz

- (1) Limited by junction temperature (pulsed current limited also by internal wiring)
- $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \beg$

International

Rectifier

Static Electrical Characteristics

Standard footprint 70 μ m copper thickness. $T_i = 25^{\circ}C$, (unless otherwise specified).

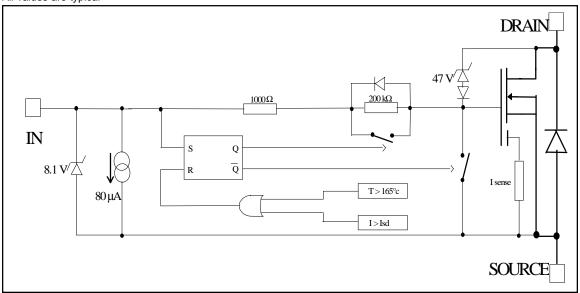
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance T _j = 25°C	100	130	150	mΩ	Vin = 5V. lds = 1A
	$T_j = 150^{\circ}C$	_	220	280	11122	VIN = 5V, IQS = 1A
I _{dss} 1	Drain to source leakage current	0	0.01	25	μA	$V_{CC} = 14V, T_j = 25^{\circ}C$
I _{dss 2}	Drain to source leakage current	0	0.1	50	μΑ	$V_{CC} = 40V, T_{j} = 25^{\circ}C$
V clamp 1	Drain to source clamp voltage 1	48	54	56		Id = 20mA (see Fig.3 & 4)
V clamp 2	Drain to source clamp voltage 2	50	56	60	V	Id=Ishutdown (see Fig.3 & 4)
Vin clamp	IN to source clamp voltage	7	8	9.5) v	lin = 1 mA
Vth	IN threshold voltage	1	1.5	2		$I_{d} = 50 \text{mA}, V_{dS} = 14 \text{V}$
lin, -on	ON state IN positive current	25	90	200		V _{in} = 5V
lin, -off	OFF state IN positive current	50	130	250	μΑ	V _{in} = 5V
						over-current triggered

Switching Electrical Characteristics

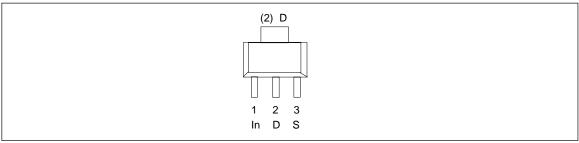
 V_{CC} = 14V, Resistive Load = 10 Ω , Rinput = 50 Ω , 100 μ s pulse, T_j = 25°C, (unless otherwise specified).

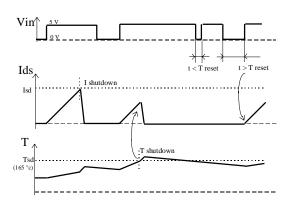
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Ton	Turn-on delay time	0.15	0.5	1		
Tr	Rise time	0.4	0.9	2	[See figure 2
T _{rf}	Time to 130% final R _{ds(on)}	2	6	12	μs	
Toff	Turn-off delay time	0.8	2	3.5		See figure 2
Tf	Fall time	0.5	1.3	2.5		
Qin	Total gate charge	_	30	_	nC	V _{in} = 5V

Protection Characteristics


Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
T _{sd}	Over temperature threshold	_	165	_	°C	See fig. 1
I _{sd}	Over current threshold	4	5.5	7	Α	See fig. 1
V _{reset}	IN protection reset threshold	1.5	2.3	3	V	
T _{reset}	Time to reset protection	2	10	40	μs	$V_{in} = 0V, T_j = 25^{\circ}C$
EOI_OT	Short circuit energy (see application note)		400	_	μJ	$V_{CC} = 14V$

IPS021L


International


TOR Rectifier

Functional Block Diagram All values are typical

Lead Assignments

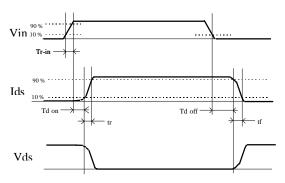
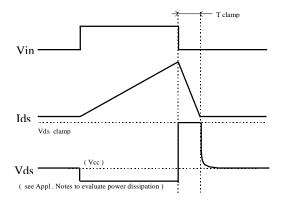



Figure 1 - Timing diagram

Figure 2 - IN rise time & switching time definitions

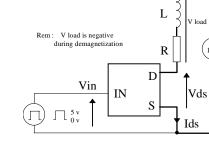


Figure 3 - Active clamp waveforms

Figure 4 - Active clamp test circuit

IPS021L

International Rectifier

All curves are typical values with standard footprints. Operating in the shaded area is not recommended.

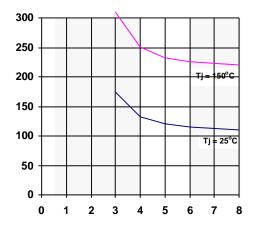


Figure 5 - Rds ON $(m\Omega)$ Vs Input Voltage (V)

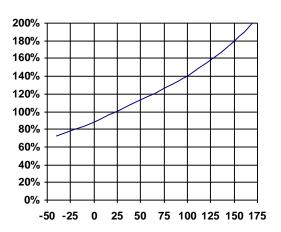


Figure 6 - Normalised Rds(on) (%) Vs Tj (°C)

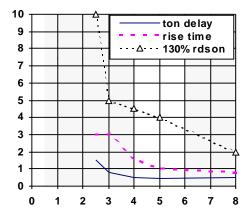


Figure 7 - Turn-ON Delay Time, Rise Time & Time to 130% final Rds(on) (us) Vs Input Voltage (V)

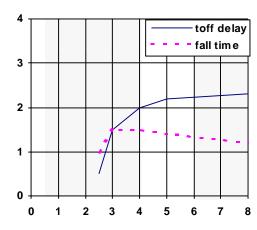


Figure 8 - Turn-OFF Delay Time & Fall Time (us)
Vs Input Voltage (V)

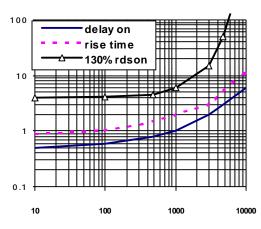


Figure 9 - Turn-ON Delay Time, Rise Time & Time to 130% final Rds(on) (us) Vs IN Resistor (Ω)

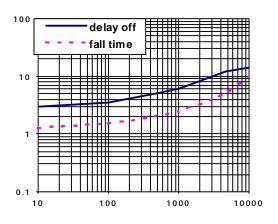


Figure 10 - Turn-OFF Delay Time & Fall Time (us) Vs. IN Resistor (Ω)

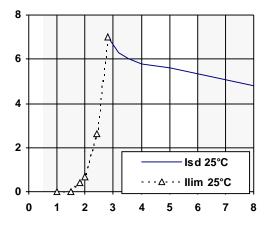


Figure 11 - Current lim. & I shutdown (A) Vs Vin (V)

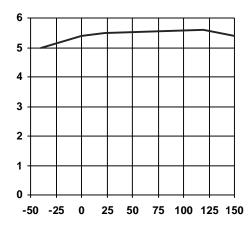


Figure 12 - I shutdown (A) Vs Temperature (°C)

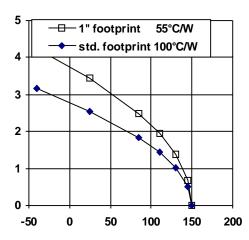


Figure 13 - Max.Cont. Ids (A) Vs Amb. Temperature (°C)

Figure 14 - Ids (A) Vs Protection Resp. Time (s)

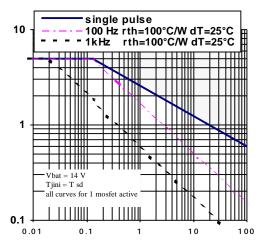


Figure 15 - I clamp (A) Vs Inductive Load (mH)

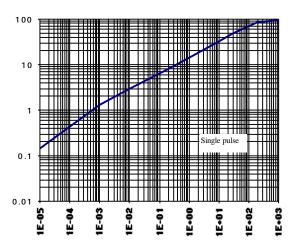


Figure 16 - Transient Thermal Imped. (°C/W) Vs Time (s)

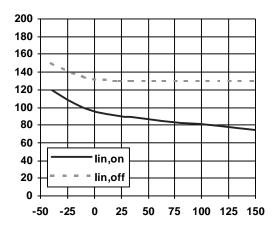


Figure 17 - Input Current (uA) Vs Junction Temperature (°C)

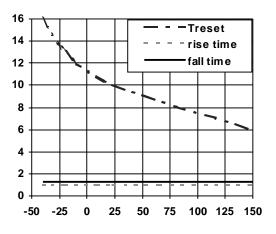
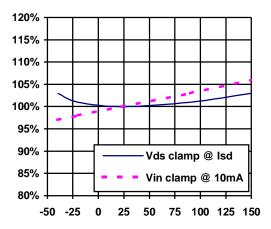
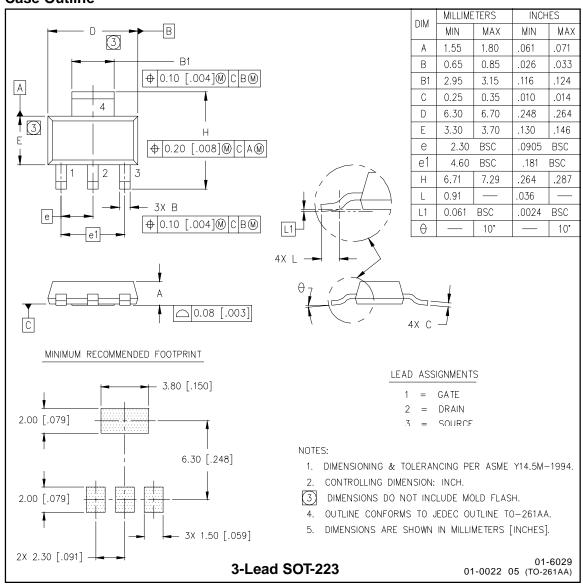
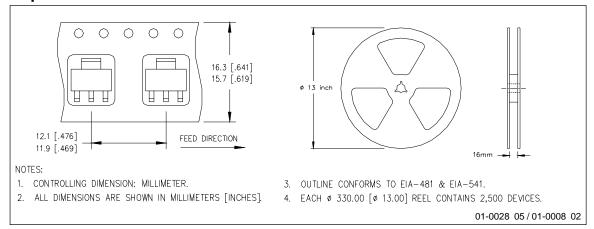


Figure 18 - Rise Time, Fall Time and Treset (μ s) Vs Tj (°C)


Figure 19 -Vin clamp and Vds clamp $\,$ Vs $\,$ Tj (°C) $\,$

Case Outline

IPS021L

Tape & Reel - SOT223

International

TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 6/11/2001