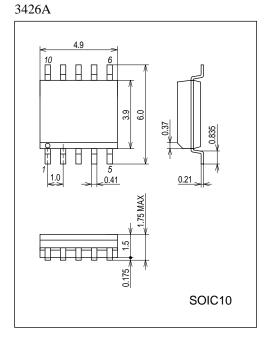
LB1930MC

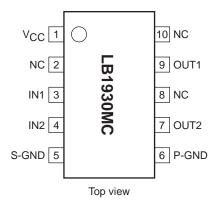
Allowable Operating Ranges at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VCC		2.2 to 10.8	V
High-level input voltage	VIH		2.0 to 10	V
Low-level input voltage	V_{IL}		-0.3 to +0.3	V

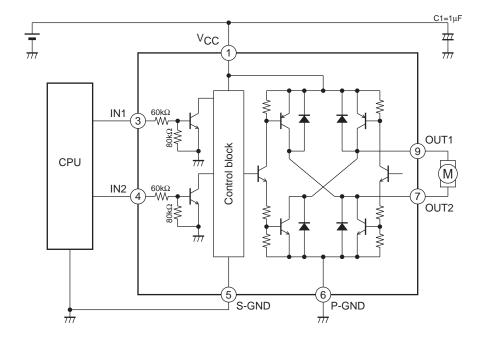

Electrical Characteristics at Ta = 25°C, $V_{CC} = 3V$

Parameter	Symbol	Conditions	Ratings			Unit		
		Conditions	min	typ	max	Unit		
Current drain	I _{CC} 1	Standby mode		0.1	5	μΑ		
	I _{CC} 2	Forward or reverse drive operation		15	21	mA		
	ICC3	Braking		22	31	mA		
Output saturation voltage	V _O (sat)1	Forward or reverse drive: High side + low side, I _O = 200mA		0.25	0.35	V		
	V _O (sat)2	Forward or reverse drive: High side + low side, I _O = 500mA		0.55	0.75	V		
	V _O (sat)3	Forward or reverse drive: High side only, $I_{O} = 200 \text{mA}$		0.15	0.25	V		
Input current	IN	V _{IN} = 5V		70	95	μΑ		
Thermal detection operating temperature	THD	Design guarantee value*	150	180	200	°C		
Spark Killer diode								
Forward voltage	V _{SF}	I _O = 200mA		0.9	1.7	V		
Reverse current	I _{RS}	V _{OUT} = 10V		0.1	5	μΑ		

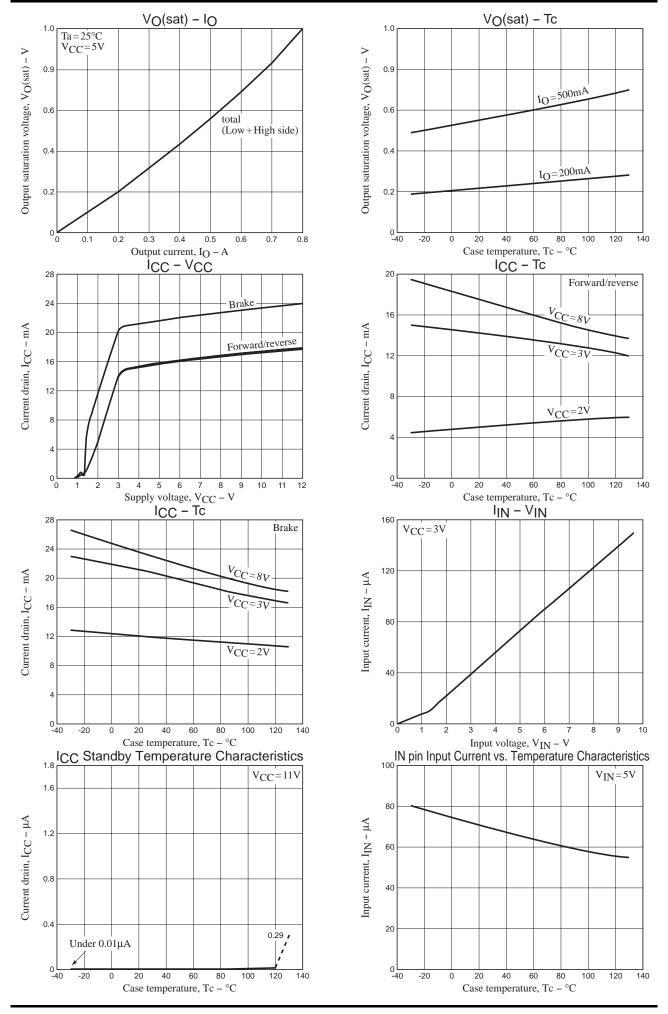
^{*} Design guarantee value, Do not measurement.


Package Dimensions

unit: mm (typ)



Pin Assignment



Block Diagram and Application Circuit Example

Truth Table

IN1	IN2	OUT1	OUT2	Mode		
L	L	OFF	OFF	Standby		
Н	L	Н	L	Forward		
L	Н	L	Н	Reverse		
Н	Н	Н	Н	Brake		

LB1930MC

Usage Notes

Oscillation may occur in the V_{CC} and P-GND lines, since these lines carry a wide range of currents. The following may help if this is a problem.

- (1) Lower the inductance of the wiring by making lines wider and shorter.
- (2) Insert capacitors with good frequency characteristics close to the IC.
- (3) Consider adopting the following methods if the CPU and this IC are mounted on different printed circuit boards that could easily have different ground potentials.
 - Connect S-GND to the CPU ground and connect P-GND to the power system ground.
 - Insert resistors of about $10k\Omega$ in series between the controller outputs and the inputs on this IC.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa