Specifications

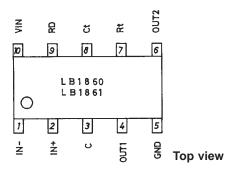
Absolute Maximum Ratings at $Ta = 25 \circ C$, (): LB1860M, LB1861M

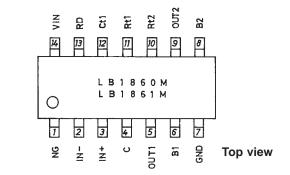
Parameter	Symbol	Conditions	Ratings	Unit
Maximum input current	I _{CC} max	t % 20 ms	200	mA
Output supply voltage	V _{OUT}		Internal	V
Output current	I _{OUT}		1.5	А
RD flow-in current	I _{RD}		10	mA
RD supply voltage	V _{RD}		50	V
Allowable newer dissinction	Pd1 max		1.1	W
Allowable power dissipation	Pd2 max	Mounted on 20 \times 15 \times 1.5 mm glass epoxy board	(0.8)	W
Operating temperature	Topr		-30 to +80	°C
Storage temperature	Tstg		-55 to +125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

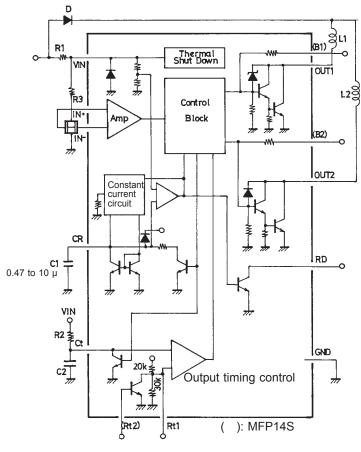
Allowable Operating Ranges at $Ta = 25 \circ C$

Parameter	Symbol Conditions		Ratings	Unit	
Input current range	I _{CC}		6.0 to 50	mA	
Common-mode input voltage range	VICM		0 to V _{IN} –1.5	V	


Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.


Electrical Characteristics at Ta = $25 \circ C$, $I_{CC} = 10 \text{ mA}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Output limiting voltage	V/ 1	LB1860, 1860M: I _O = 0.1 A	54	57	60	V
Output limiting voltage	V _{OLM} 1	LB1861, 1861M: I _O = 0.1 A	30	32	34	V
	V _{O sat1}	I _O = 0.5 A		0.95	1.2	V
Output saturation voltage	V _{O sat2}	I _O = 1.0 A		1.15	1.5	V
	V _{O sat3}	I _O = 1.5 A		1.4	2.0	V
Input voltage	V _{IN}	I _{CC} = 7.0 mA	6.4	6.7	7.0	V
Amp input offset voltage	V _{OFF}		-7.0	0	7.0	mV
Amp input bias current	I _{BA}		-250			nA
RD output saturation voltage	V _{RD} (sat)	I _{RD} = 5 mA		0.15	0.3	V
C flow-out current	I _C 1	C = GND	2.7	3.9	5.0	μA
C discharge current	I _C 2	C = V _{IN}	0.35	0.50	0.65	μA
Comparator input threshold	V _{TH} 1		0.77	0.8 V _{IN}	0.83	V
voltage	V _{TH} 2		0.44	0.47 V _{IN}	0.50	V
Ct discharge voltage	Vct		0.18	0.2 V _{IN}	0.22	V
Rt input current	I _{RT}	V _{RT} = GND	-440	-350	-240	μA
Rt comparator voltage	V _{RT}	R _T = OPEN	0.59	0.62 V _{IN}	0.65	V
Thermal protection circuit operating voltage	TSD	Design target		180		°C
Thermal protection circuit hysteresis	∆TSD	Design target		40		°C


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Pin Assignments

Block Diagram and Application Circuit

Unit (resistance: Ω, capacitance: F)

Figure 1

Truth Table

(): LB1860M, 1861M

IN ⁺	IN-	Ct	Rt1	Rt2	CR	OUT1	OUT2	RD	Mode
Н	L	Н	L	—	L	Н	L	L	Full speed
L	Н	Н	L	—	L	L	Н	L	Full speed
(H)	(L)	—	_	(H)	(L)	(H)	(L)	(L)	(Full speed)
(L)	(H)	—	—	(H)	(L)	(L)	(H)	(L)	(Full speed)
_	_	L	Н	L	L	Н	Н	L	Low speed
_	_	_	_	_	Н	Н	Н	Н	Lock protection

Designer's Notes

- (1) Variable-speed circuit (Rt and Ct pins) Refer to the application circuit diagram
- The time constant gained by external components C2 and R2 is used to set the length of an 'off' operation time period after phase switching. This means that the variable-speed operations can be performed by changing the 'on' operation time of each phase through the duty control.
- The sawtooth waveform signals are generated by the C2-R2 time constant. The voltage of this signal (Ct pin voltage) increases from 1.3 V to 4.0 V (Vct) at each phase switching. That is, during this period, the driver becomes inactive (t_{off}), in which output circuit is turned off.
- If $V_{CC} \ge 4.0$ V, the driver IC remains active (t_{on}) until the next phase switching. During this period, output circuit is turned on.
- If the active drive time of each phase is assumed to 't_o', the following relation can be established:

$$t_{o} = t_{off} + t_{on}$$

$$\uparrow \qquad \uparrow$$
Fixed Rotation speed
constant proportional constant

$$t_{off} = 0.69 \times C2 \times R2$$
......1

- From this relation, it can be observed that the 't_o' and 't_{on}' are in proportional relation with each other, and that the 't_{on}/t_o' equals the 'on' time duty. As a result, a certain rotation speed can be fixed despite the fact that rotation speed exclusively depends on each motor.
- At the start, the 't_{on}' value becomes longer while the 't_{off}' value remains unchanged. This means that the 't_{off}/t_o' duty becomes small enough compared to normal rotation mode. Therefore, the same start torque as that of the full speed rotation can be obtained because the 'on' operation time duty increases. This enables the motor to start at a very low speed.

(2) Supply voltage (V_{IN} pin)

- The LB1860 has the internal parallel regulator which supplies power to the Hall amplifier circuit and the control block. Therefore, the driver ICs are not affected by power source fluctuations and kickbacks from the motor. They maintain the stable operations even if noise signals such as surge are generated.
- Set the resistance R1 between V_{CC} and V_{IN} so that the I_{CC} current of 6 mA to 50 mA can flow onto the V_{IN} pin within the supply voltage range of a fan motor.
- V_{IN} is 6.7 V typ at $I_{CC} = 7$ mA.
- The current flowing into V_{IN} is calculated using the equation shown below.

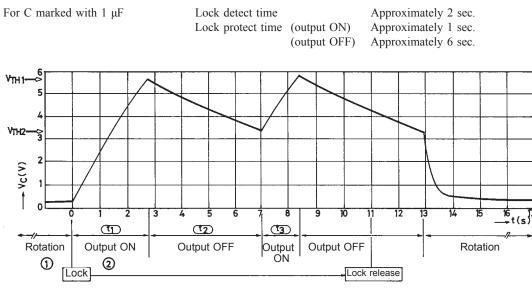
$$I_{CC} = \frac{V_{CC} - V_{IN}}{R1} \qquad 2$$

- Consideration given to surge voltage
- The maximum allowable current at V_{IN} pin is 200 mA. Therefore, the pin is designed to withstand abnormal positive voltage of:

 $Vsurge = V_{IN} + R1 \times 200 \text{ mA} \dots \textbf{3}$

(3) Hall input pin voltage (Pins IN^- , IN^+)

- Set the voltage levels of the input pin for the Hall element output and the Hall element output voltage to within the range of 0 V to V_{IN} 1.5 V.
- The gain between the hall input pin and the output pin is 100 dB or greater. The offset voltage of the hall input amp is ± 7 mV, therefore, the hall element output must be set with the offset voltage (± 7 mV) considered.

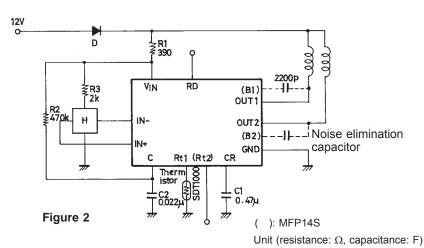

(4) Output transistor (Pins OUT1, OUT2)

 Output current 	$I_0 = 1.5 A max$
 Output saturation voltage 	V_{O} sat = 1.15 V/1.0 A typ
 Output limiting voltage 	$V_{OLM} = 57 V \text{ typ} (LB1860, 1860M)$
	$V_{OLM} = 32 V \text{ typ (LB1861,1861M)}$
· Since the I D1960 carries have a m	rotaat gamar diada hatuyaan aallaatar and h

• Since the LB1860 series have a protect zener diode between collector and base, the kickback voltage induced by the coil is cut at $V_{OLM} = 57 \text{ V} (32 \text{ V})$. When external capacitors are connected between OUT and GND, the capacitance should not exceed 10 μ F.

(5) Output protection function (C pin)

- Capacitor pin used in forming an automatic return circuit.
- If rotation is stopped due to overload, the pin voltage level increases and then forces the output to become inactive. In this case, after proper load adjustment, the output returns to the 'drive' mode from the 'stop' mode automatically. By changing the capacitor value, the lock detect time period can be set.

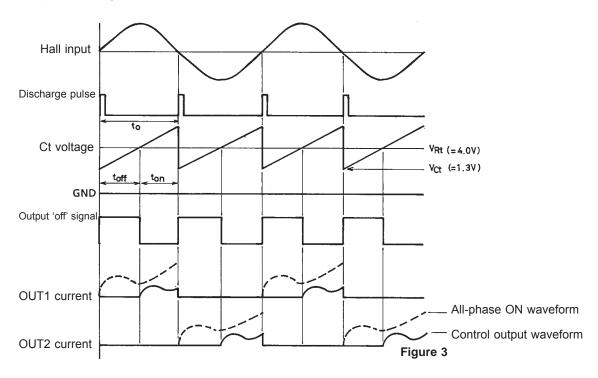

Automatic Return Circuit C Pin Voltage

- 1 When a fan is rotating, the capacitor is charged at 4 μA (typ) and discharged through the C with pulses according to the rotational speed.
- 2 When a fan is locked, no discharge occurs through the C and the C voltage rises, turning OFF the output at $0.8 \times V_{IN}$.
- When the output is turned OFF, discharge occurs through the C at 0.5 μA (typ). If the lock is not released when the C voltage drops to V_{TH}2, the capacitor is charged to V_{TH}1 again. (At this moment, the output is turned ON.) These operations 2 and 3 repeated at a cycle of approximately t_{on} : t_{off} = 1:6 protect a motor.
- 4 If the lock is released when the C voltage drops to V_{TH}2, the output is turned ON, starting rotation.
- (6) Rotation detect signal (RD pin)

• Open collector output (Drive mode: "L", Stop mode: "H")

- (7) Radio noise reducing (Pins B1, B2)
- · Base pin of Darlington connection output transistor
- If radio noises need to be processed properly, the following actions should be taken:
 - **1** Connect a capacitor of 0.01 μ to 0.1 μ F between B1 and B2.
 - **2** Connect a capacitor of 0.001 μ to 0.01 μF between OUT and B.
 - If output causes oscillation, add a resistor of 200 Ω to 1 $k\Omega$ in series with a capacitor.
- (8) Thermal shutdown function
- Shutdown the driver output in case of coil short-circuiting and abnormal IC heating.

Thermistor-controlled Application Circuit Example

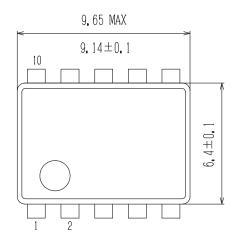


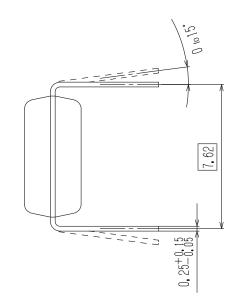
Use of a thermistor enables motor speed to be sensitive to the operating ambient temperature.

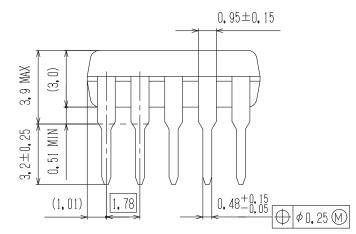
The Rt pin voltage at Ta = 20 °C has 1.42 ms of 't_{off}' as calculated in expression 4 with the application constant of Figure 2. However, the Rt pin voltage at Ta = 40 °C is reduced into less than the Vct (= 1.3 V) level, which results in a 0 of 't_{off}'. This means the 100% duty.

$$t = -C2 \times R2 \times 1n \quad \frac{(V_{IN} - V_{Rt})}{V_{IN} - V_{Ct}}$$
4

Output Timing Chart

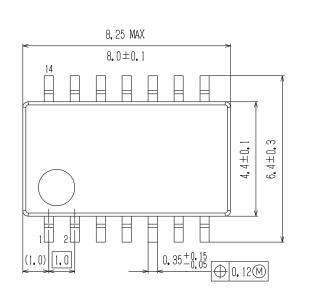

Package Dimensions

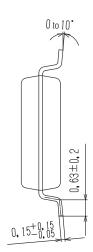

unit : mm

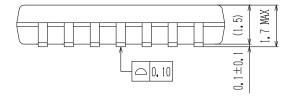

[LB1860, LB1861]

PDIP10 / DIP10S (300 mil) CASE 646AK

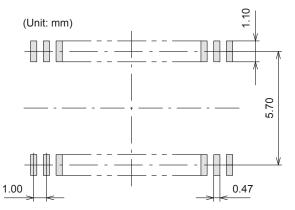
ISSUE O

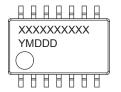

Package Dimensions


unit : mm


[LB1860M, LB1861M]

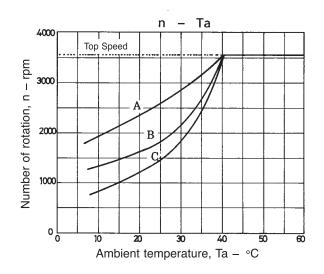
SOIC14 W / MFP14S (225 mil)


CASE 751CB ISSUE A


SOLDERING FOOTPRINT*

NOTE: The measurements are not to guarantee but for reference only.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



XXXXX = Specific Device Code Y = Year M = Month

DDD = Additional Traceability Data

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)				
LB1860M-TLM-E	SOIC14 W / MFP14S (225 mil) (Pb-Free / Halogen Free)	1000 / Tape & Reel				
LB1860M-TLM-H	SOIC14 W / MFP14S (225 mil) (Pb-Free / Halogen Free)	1000 / Tape & Reel				
LB1860M-W-AH	SOIC14 W / MFP14S (225 mil) (Pb-Free / Halogen Free)	1000 / Tape & Reel				
LB1861M-TLM-E	SOIC14 W / MFP14S (225 mil) (Pb-Free / Halogen Free)	1000 / Tape & Reel				
LB1861M-TLM-H	SOIC14 W / MFP14S (225 mil) (Pb-Free / Halogen Free)	1000 / Tape & Reel				
LB1861M-W-AH	SOIC14 W / MFP14S (225 mil) (Pb-Free / Halogen Free)	1000 / Tape & Reel				

† For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf//Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harnless against all claims, costs, damages, and expenses, and reaso