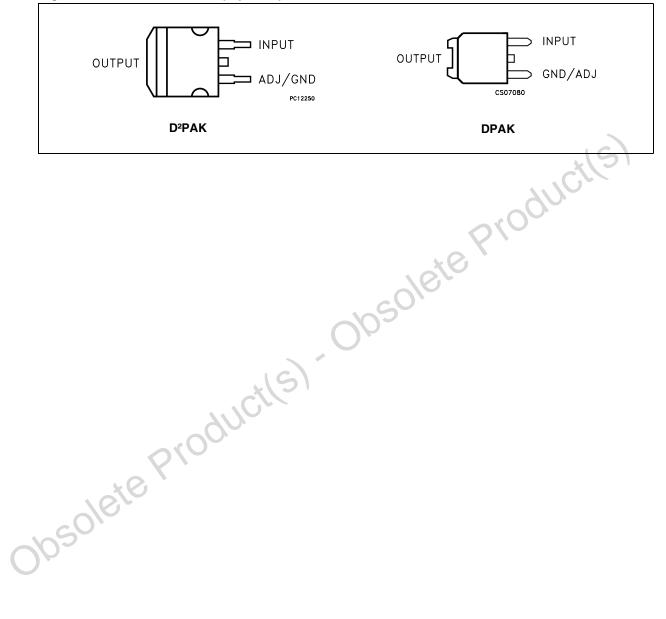

Contents

1	Diagram
2	Pin configuration
3	Maximum ratings 5
4	Schematic application6
5	Electrical characteristics7
6	Typical application
7	Package mechanical data 11
8	Revision history
0	

1 Diagram


Figure 1. Schematic diagram

2 Pin configuration

Figure 2. Pin connections (top view)

Ν

3 Maximum ratings

Symbol	Parameter	Value	Unit
VI	DC input voltage	12	V
Ι _Ο	Output current	Internally limited	
PD	Power dissipation	Internally limited	
T _{STG}	Storage temperature range	-55 to +150	°C
T _{OP}	Operating junction temperature range	-40 to +125	°C

Table 2. Absolute maximum ratings

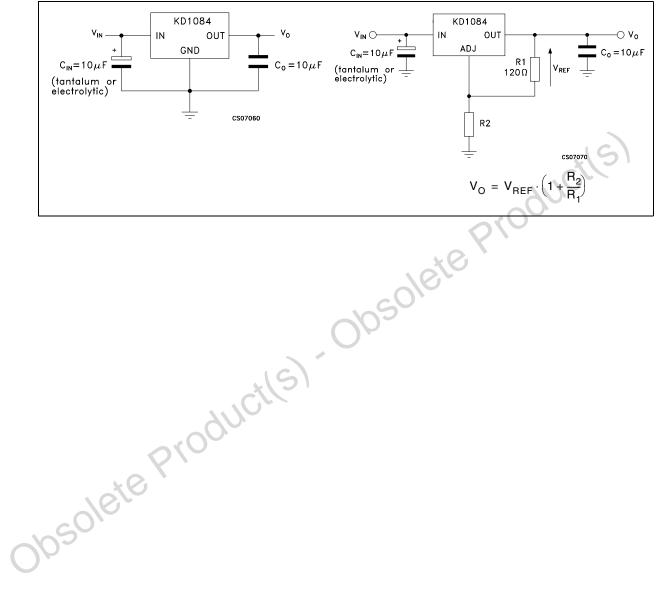

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	Parameter DPAK D ² PAK Un				
R _{thJC}	Thermal resistance junction-case	8	3	°C/W		
R _{thJA}	Thermal resistance junction-ambient	100	62.5	°C/W		
005016	ste Product(s) Ou					

4 Schematic application

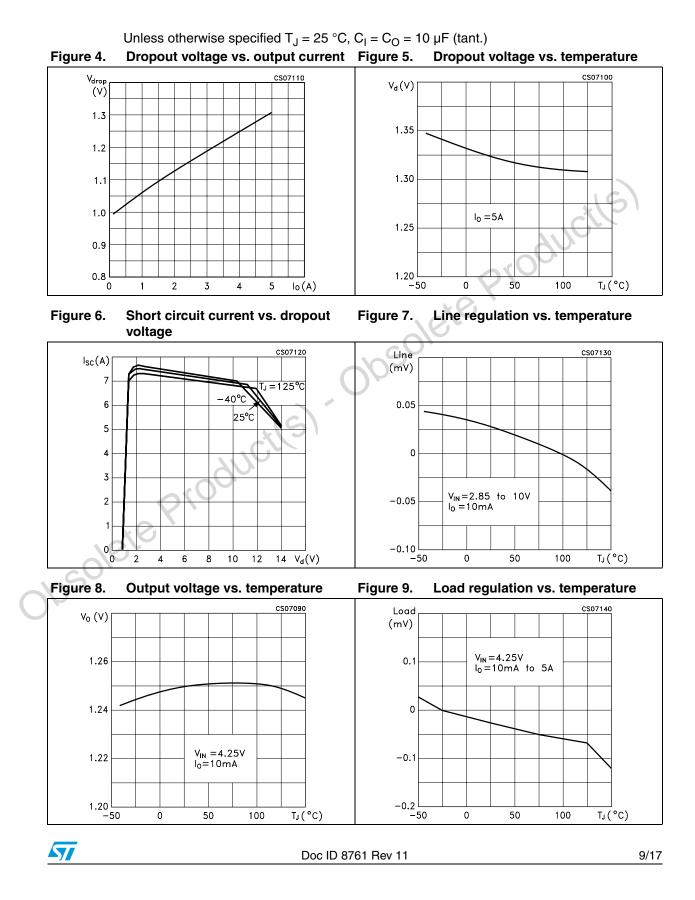
Figure 3. Application circuit

5 Electrical characteristics

 $V_I = 4.8 \text{ V}, C_I = C_O = 10 \ \mu\text{F}$ (tant.), $T_A = -40 \text{ to } 125 \ ^\circ\text{C}$, unless otherwise specified.

Symbol Parameter **Test conditions** Min. Тур. Max. Unit $I_O = 0$ mA, $T_J = 25 \ ^\circ C$ V 1.782 1.8 1.818 Output voltage Vo I_{O} = 0 to 5 A, V_{I} = 3.4 to 10 V 1.764 ٧ 1.8 1.836 I_O = 0 mA, V_I = 3.4 to 10 V $~~T_J$ = 25 $^\circ C$ 0.5 mV 6 ΔV_{O} Line regulation $I_{O} = 0$ mA, $V_{I} = 3.4$ to 10 V 1 6 mV I_{O} = 0 to 5 A, T_{J} = 25 $^{\circ}C$ 3 15 mV Load regulation ΔV_{O} $I_0 = 0$ to 5 A 7 20 mV V V_{d} Dropout voltage $I_0 = 5 A$ 1.3 1.5 $V_I \le 10 \ V$ 5 10 mΑ Quiescent current la $V_{I} - V_{O} = 5 V$ Short circuit current 5.5 7 А I_{sc} Thermal regulation $T_A = 25 \ ^{\circ}C$, 30 ms pulse 0.003 0.015 %/W f = 120 Hz, C_0 = 25 µF, I_0 = 5 A V_I = 5.3 ± 1.5 V SVR Supply voltage rejection 60 75 dB RMS output noise voltage $T_A = 25 \text{ °C}, f = 10 \text{ Hz to } 10 \text{ kHz}$ 0.003 % eN (% of V_O) % S Temperature stability 0.5 T_A = 125 °C, 1000 Hrs S Long term stability 0.5 % Obsolete Prodi

Table 4. Electrical characteristics of KD1084AXX18


 V_I = 4.25 V, C_I = C_O = 10 μF (tant.), T_A = -40 to 125°C, unless otherwise specified.

Itput voltage ne regulation ad regulation	$\begin{split} I_{O} &= 10 \text{ mA, } T_{J} = 25 \text{ °C} \\ I_{O} &= 10 \text{ mA to 5 A, } V_{I} = 2.85 \text{ to } 10 \text{ V} \\ I_{O} &= 10 \text{ mA, } V_{I} = 2.85 \text{ to } 10 \text{ V} T_{J} = 25 \text{ °C} \\ I_{O} &= 10 \text{ mA, } V_{I} = 2.85 \text{ to } 10 \text{ V} \\ I_{O} &= 10 \text{ mA to 5 A, } T_{J} = 25 \text{ °C} \end{split}$	1.237 1.225	1.25 1.25 0.015 0.035 0.1	1.263 1.275 0.2 0.2	V V %	
ne regulation	$I_{O} = 10 \text{ mA}, V_{I} = 2.85 \text{ to } 10 \text{ V} T_{J} = 25 \text{ °C}$ $I_{O} = 10 \text{ mA}, V_{I} = 2.85 \text{ to } 10 \text{ V}$ $I_{O} = 10 \text{ mA to } 5 \text{ A}, T_{J} = 25 \text{ °C}$	1.225	0.015 0.035	0.2		
	$I_{O} = 10 \text{ mA}, V_{I} = 2.85 \text{ to } 10 \text{ V}$ $I_{O} = 10 \text{ mA to } 5 \text{ A}, T_{J} = 25 \text{ °C}$		0.035		0/	
	$I_{O} = 10 \text{ mA to 5 A}, T_{J} = 25 \text{ °C}$			0.2	0/	
ad regulation			01			
au regulation			0.1	0.3	70	
	I _O = 10 mA to 5 A		0.2	0.4		
opout voltage	I _O = 5 A		1.3	1.5	5 V	
iescent current	$V_{I} \leq 10 \text{ V}$		3	10	mA	
ort circuit current	V _I - V _O = 5 V	5.5	7		Α	
ermal regulation	T _A = 25 °C, 30 ms pulse	2	0.003	0.015	%/\	
pply voltage rejection	f = 120 Hz, C _O = 25 μ F, C _{ADJ} = 25 μ F, I _O = 5 A, V _I = 4.75 ± 1.5 V	60	72		dE	
ljust pin current	V _I = 4.25V, I _O = 10 mA		55	120	μA	
just pin current change	V_{I} = 2.85 to 10 V, I_{O} = 10 mA to 5 A		0.2	5	μA	
/IS Output noise voltage of V _O)	T _A = 25 °C, f = 10 Hz to 10 kHz		0.003		%	
mperature stability			0.5		%	
ng term stability	T _A = 125 °C, 1000 Hrs		0.5		%	
lj	ort circuit current ermal regulation pply voltage rejection just pin current just pin current change IS Output noise voltage of V _O) mperature stability	ort circuit current $V_I - V_O = 5 V$ ermal regulation $T_A = 25 \ ^\circ C$, 30 ms pulseoply voltage rejection $f = 120 \ Hz$, $C_O = 25 \ \mu$ F, $C_{ADJ} = 25 \ \mu$ F, $I_O = 5 \ A$, $V_I = 4.75 \pm 1.5 \ V$ just pin current $V_I = 4.25 V$, $I_O = 10 \ m$ Ajust pin current change $V_I = 2.85 \ to 10 \ V$, $I_O = 10 \ m$ A to 5 AIS Output noise voltage of V_O) $T_A = 25 \ ^\circ C$, $f = 10 \ Hz \ to 10 \ Hz$	ort circuit current $V_I - V_O = 5 V$ 5.5ermal regulation $T_A = 25 \ ^\circ C$, 30 ms pulse5.5pply voltage rejection $f = 120 \ Hz, C_O = 25 \ \mu F, C_{ADJ} = 25 \ \mu F, I_O = 5 \ A, V_I = 4.75 \pm 1.5 V$ 60just pin current $V_I = 4.25V, I_O = 10 \ mA$ 7iust pin current change $V_I = 2.85 \ to 10 \ V, I_O = 10 \ mA \ to 5 \ A$ 7IS Output noise voltage of V_O $T_A = 25 \ ^\circ C, f = 10 \ Hz \ to 10 \ Hz$ 7	ort circuit current $V_I - V_O = 5 V$ 5.5 7 ermal regulation $T_A = 25 \ ^\circ C$, 30 ms pulse 0.003 pply voltage rejection $f = 120 \ Hz, C_O = 25 \ \mu F, C_{ADJ} = 10 \ \mu A$ 55 just pin current $V_I = 4.25 V, I_O = 10 \ m A$ 55 just pin current change $V_I = 2.85 \ to 10 \ V, I_O = 10 \ m A \ to 5 \ A$ 0.2 IS Output noise voltage of V_O $T_A = 25 \ ^\circ C, f = 10 \ Hz \ to 10 \ Hz$ 0.003 mperature stability 0.5 0.5	ort circuit current $V_1 - V_0 = 5 V$ 5.5 7 ermal regulation $T_A = 25 \ ^\circ C$, 30 ms pulse 0.003 0.015 pply voltage rejection $f = 120 \ Hz, C_0 = 25 \ \mu F, C_{ADJ} = 10 \ \mu A \ to 5 \ A$ 0.2 \ 5 \end{tabular} Is Output noise voltage of V_O $T_A = 25 \ ^\circ C, f = 10 \ Hz \ to 10 \ Hz$ 0.003 0.003 0.003 0.003 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	

 Table 5.
 Electrical characteristics of KD1084AXX

6 **Typical application**

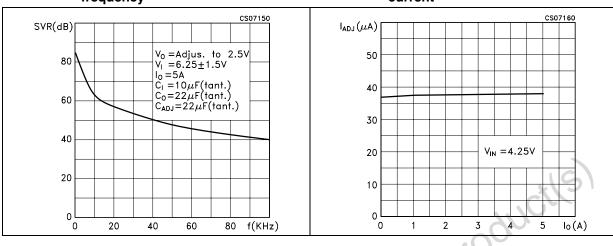
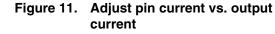
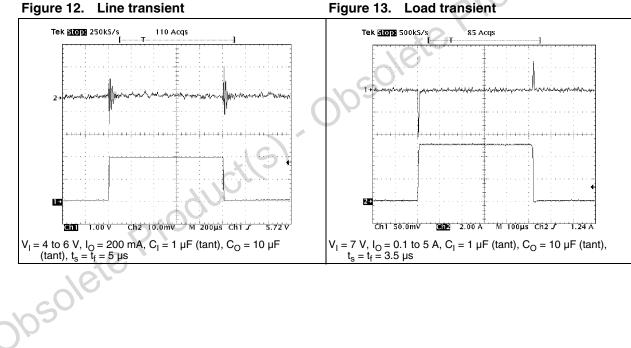
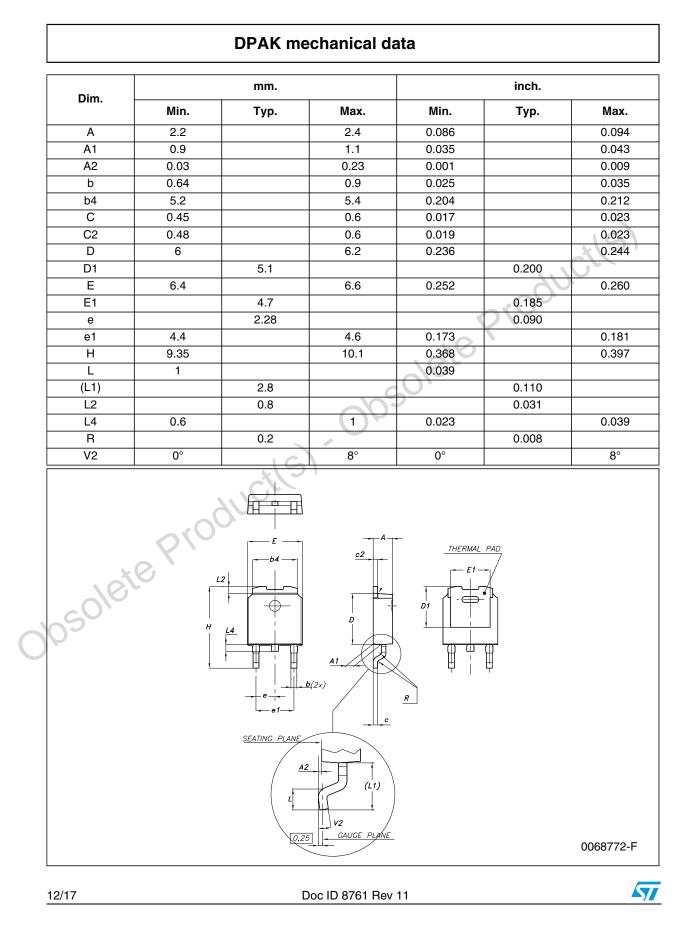
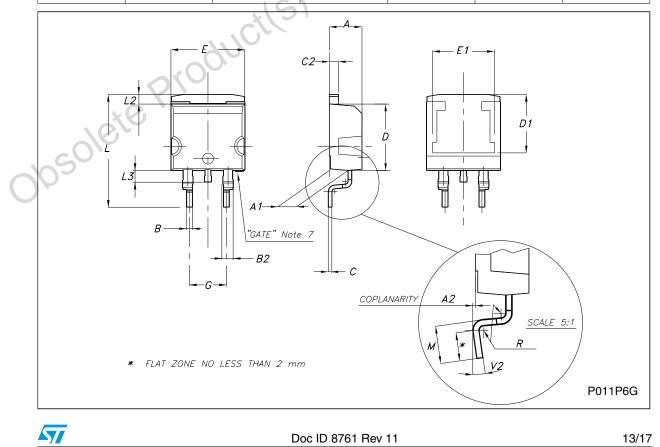




Figure 10. Supply voltage rejection vs. frequency

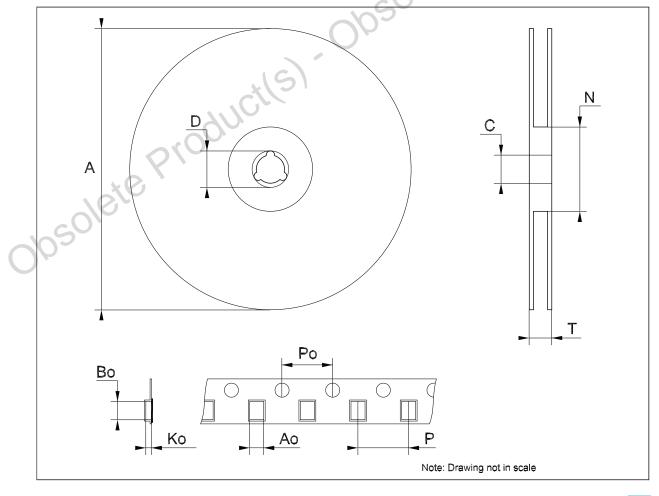

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.


Doc ID 8761 Rev 11

obsolete Product(s). Obsolete Product(s)

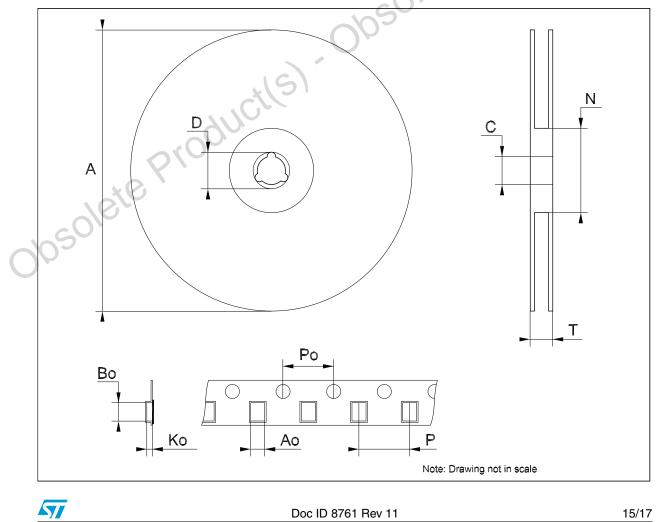
Dim.		mm.			inch.	
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		0.409
E1		8.5			0.335	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.624
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.016	
V2	0°		8°	0°		8°



Doc ID 8761 Rev 11

13/17

Dim.		mm.			inch.	
Diin.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362		
Т			22.4			0.882
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76
Во	10.40	10.50	10.60	0.409	0.413	0.417
Ko	2.55	2.65	2.75	0.100	0.104	0.105
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319



14/17

Tape & reel D²PAK-P²PAK-D²PAK/A-P²PAK/A mechanical data

Dim.		mm.			inch.	
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362		
Т			14.4			0.567
Ao	10.50	10.6	10.70	0.413	0.417	0.421
Во	15.70	15.80	15.90	0.618	0.622	0.626
Ko	4.80	4.90	5.00	0.189	0.193	0.197
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	11.9	12.0	12.1	0.468	0.472	0.476

Doc ID 8761 Rev 11

8 Revision history

Table 6.	Document	revision	history
----------	----------	----------	---------

Date	Revision	Changes
06-Sep-2005	4	Order codes updated.
02-Apr-2007	5	Order codes updated.
30-May-2007	6	Order codes updated.
18-Dec-2007	7	Added Table 1.
21-Feb-2008	8	Modified: Table 1 on page 1.
16-Jul-2008	9	Modified: Table 1 on page 1.
28-Jul-2009	10	Modified: Table 1 on page 1.
12-May-2011	11	Modified: Table 5 on page 8.
osolete	Prod	Modified: Table 5 on page 8.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 8761 Rev 11