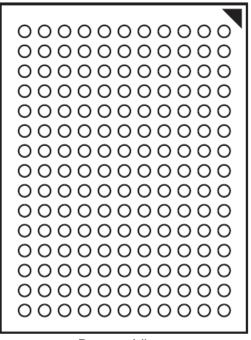


BLOCK DIAGRAM



PIN CONFIGURATION

512K x 36, 165-Ball BGA (Top View)

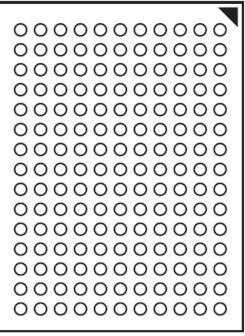
	1	2	3	4	5	6	7	8	9	10	11
А	NC	Α	/CE	/BWc	/BWb	/CE2	/CKE	ADV	А	Α	NC
в	NC	Α	CE2	/BWd	/BWa	CLK	/WE	/OE	А	Α	NC
С	DQPc	NC	Vddq	Vss	Vss	Vss	Vss	Vss	Vddq	NC	DQPb
D	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
Е	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
F	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
G	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
Н	NC	NC	NC	Vdd	Vss	Vss	Vss	Vdd	NC	NC	ZZ
J	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
К	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
L	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
М	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
Ν	DQPd	NC	Vddq	Vss	NC	NC	NC	Vss	Vddq	NC	DQPa
Р	NC	NC	А	Α	TDI	A1*	TDO	Α	А	Α	NC
R	MODE	NC	А	А	TMS	A0*	TCK	А	А	А	А

Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

Bottom View 165-Ball, 13 mm x 15mm BGA

PIN DESCRIPTIONS

Symbol	Pin Name		
CLK	Synchronous Clock		
/CKE	Clock Enable		
A0,A1	Synchronous Burst Address Inputs		
A	Address Inputs		
ADV	Synchronous Burst Address Advance/Load		
MODE	Burst Sequence Selection		
/CE,CE2,/CE2	Synchronous Chip Enable		
/WE	Synchronous Read/Write Control Input		
/BWx (x=a-d)	Synchronous Byte Write Inputs		
/OE	Output Enable		
DQx	Data Inputs/Outputs		
DQPx	Parity Data I/O		
TCK,TDI, TDO,TMS	JTAG Pins		
ZZ	Power Sleep Mode		
NC	No Connect		
V _{DD}	Power Supply		
V _{DDQ}	I/O Power Supply		
Vss	Ground		


Integrated Silicon Solution, Inc.- www.issi.com Rev. D2 08/12/2019

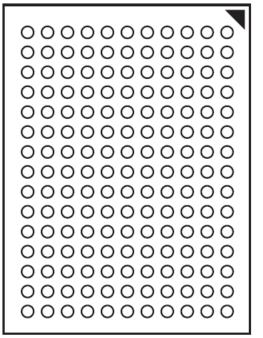
	1	2	3	4	5	6	7	8	9	10	11
А	NC	Α	/CE	/BWc	/BWb	/CE2	/CKE	ADV	А	Α	NC
В	NC	А	CE2	/BWd	/BWa	CLK	/WE	/OE	А	А	NC
С	NC	NC	Vddq	Vss	Vss	Vss	Vss	Vss	Vddq	NC	NC
D	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
Е	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
F	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
G	DQc	DQc	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQb	DQb
Н	NC	NC	NC	Vdd	Vss	Vss	Vss	Vdd	NC	NC	ZZ
J	DQd	DQd	V_{DDQ}	V_{DD}	V_{SS}	Vss	V_{SS}	V_{DD}	V_{DDQ}	DQa	DQa
К	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
L	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
М	DQd	DQd	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	DQa
Ν	NC	NC	V_{DDQ}	V_{SS}	NC	NC	NC	V _{SS}	V_{DDQ}	NC	NC
Ρ	NC	NC	А	Α	TDI	A1*	TDO	Α	А	Α	NC
R	MODE	NC	А	А	TMS	A0*	ТСК	А	А	А	А

512K x 32, 165-Ball BGA (Top View)

Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

Bottom View 165-Ball, 13 mm x 15mm BGA

PIN DESCRIPTIONS


Symbol	Pin Name				
CLK	Synchronous Clock				
/CKE	Clock Enable				
A0,A1	Synchronous Burst Address Inputs				
A	Address Inputs				
ADV	Synchronous Burst Address Advance/Load				
MODE	Burst Sequence Selection				
/CE,CE2,/CE2	Synchronous Chip Enable				
/WE	Synchronous Read/Write Control Input				
/BWx (x=a-d)	Synchronous Byte Write Inputs				
/OE	Output Enable				
DQx	Data Inputs/Outputs				
TCK,TDI, TDO,TMS	JTAG Pins				
ZZ	Power Sleep Mode				
NC	No Connect				
Vdd	Power Supply				
V _{DDQ}	I/O Power Supply				
Vss	Ground				

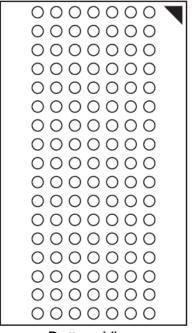
1024K x 18, 165-Ball BGA (Top View)

	1	2	3	4	5	6	7	8	9	10	11
А	NC	Α	/CE	/BWb	NC	/CE2	/CKE	ADV	А	А	А
В	NC	Α	CE2	NC	/BWa	CLK	/WE	/OE	А	А	NC
С	NC	NC	Vddq	Vss	Vss	Vss	Vss	Vss	Vddq	NC	DQPa
D	NC	DQb	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	DQa
Е	NC	DQb	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	DQa
F	NC	DQb	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	DQa
G	NC	DQb	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	DQa
Н	NC	NC	NC	Vdd	Vss	Vss	Vss	Vdd	NC	NC	ZZ
J	DQb	NC	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	NC
К	DQb	NC	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	NC
L	DQb	NC	V_{DDQ}	V_{DD}	V_{SS}	Vss	Vss	V_{DD}	V_{DDQ}	DQa	NC
М	DQb	NC	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	DQa	NC
Ν	DQPb	NC	Vddq	Vss	NC	NC	NC	Vss	Vddq	NC	NC
Ρ	NC	NC	А	А	TDI	A1*	TDO	А	А	А	NC
R	MODE	NC	А	А	TMS	A0*	TCK	А	А	А	А

Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

Bottom View 165-Ball, 13 mm x 15mm BGA

PIN DESCRIPTIONS


Symbol	Pin Name					
CLK	Synchronous Clock					
/CKE	Clock Enable					
A0,A1	Synchronous Burst Address Inputs					
A	Address Inputs					
ADV	Synchronous Burst Address Advance/Load					
MODE	Burst Sequence Selection					
/CE,CE2,/CE2	Synchronous Chip Enable					
/WE	Synchronous Read/Write Control Input					
/BWx (x=a-b)	Synchronous Byte Write Inputs					
/OE	Output Enable					
DQx	Data Inputs/Outputs					
DQPx	Parity Data I/O					
TCK,TDI, TDO,TMS	JTAG Pins					
ZZ	Power Sleep Mode					
NC	No Connect					
V _{DD}	Power Supply					
Vddq	I/O Power Supply					
V _{SS}	Ground					

512K x 36, 119-Ball BGA (Top View)

	1	2	3	4	5	6	7
А	Vddq	А	А	А	А	А	Vddq
В	NC	CE2	А	ADV	А	/CE2	NC
С	NC	А	А	Vdd	А	А	NC
D	DQc	DQPc	Vss	NC	Vss	DQPb	DQb
Е	DQc	DQc	Vss	/CE	Vss	DQb	DQb
F	V_{DDQ}	DQc	Vss	/OE	Vss	DQb	V_{DDQ}
G	DQc	DQc	/BWc	А	/BWb	DQb	DQb
н	DQc	DQc	Vss	/WE	Vss	DQb	DQb
J	V_{DDQ}	V_{DD}	NC	V_{DD}	NC	V_{DD}	V_{DDQ}
К	DQd	DQd	Vss	CLK	Vss	DQa	DQa
L	DQd	DQd	/BWd	NC	/BWa	DQa	DQa
М	Vddq	DQd	Vss	/CKE	Vss	DQa	Vddq
N	DQd	DQd	Vss	A1*	Vss	DQa	DQa
Р	DQd	DQPd	V _{SS}	A0*	V _{SS}	DQPa	DQa
R	NC	А	MODE	V _{DD}	NC	А	NC
т	NC	NC	А	А	А	NC	ZZ
U	Vddq	TMS	TDI	TCK	TDO	NC	Vddq

Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

Bottom View 119-Ball, 14 mm x 22 mm BGA

Integrated Silicon Solution, Inc.- www.issi.com

PIN DESCRIPTIONS

Symbol	Pin Name			
CLK	Synchronous Clock			
/CKE	Clock Enable			
A0,A1	Synchronous Burst Address Inputs			
A	Address Inputs			
ADV	Synchronous Burst Address Advance/Load			
MODE	Burst Sequence Selection			
/CE,CE2,/CE2	Synchronous Chip Enable			
/WE	Synchronous Read/Write Control Input			
/BWx (x=a-d)	Synchronous Byte Write Inputs			
/OE	Output Enable			
DQx	Data Inputs/Outputs			
DQPx	Parity Data I/O			
TCK,TDI, TDO,TMS	JTAG Pins			
ZZ	Power Sleep Mode			
NC	No Connect			
V _{DD}	Power Supply			
V _{DDQ}	I/O Power Supply			
Vss	Ground			

Rev. D2 08/12/2019

512K x 32, 119-Ball BGA (Top View)

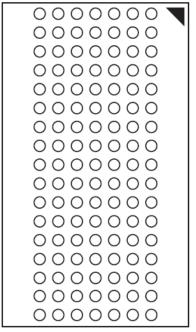
	1	2	3	4	5	6	7
А	Vddq	А	А	А	А	А	Vddq
В	NC	CE2	А	ADV	А	/CE2	NC
С	NC	А	А	Vdd	А	А	NC
D	DQc	NC	Vss	NC	Vss	NC	DQb
Е	DQc	DQc	Vss	/CE	Vss	DQb	DQb
F	V_{DDQ}	DQc	Vss	/OE	Vss	DQb	V_{DDQ}
G	DQc	DQc	/BWc	А	/BWb	DQb	DQb
н	DQc	DQc	Vss	/WE	Vss	DQb	DQb
J	V_{DDQ}	V_{DD}	NC	V_{DD}	NC	V_{DD}	V_{DDQ}
к	DQd	DQd	Vss	CLK	Vss	DQa	DQa
L	DQd	DQd	/BWd	NC	/BWa	DQa	DQa
М	Vddq	DQd	Vss	/CKE	Vss	DQa	Vddq
N	DQd	DQd	Vss	A1*	Vss	DQa	DQa
Р	DQd	NC	V _{SS}	A0*	V_{SS}	NC	DQa
R	NC	А	MODE	V_{DD}	NC	А	NC
Т	NC	NC	А	А	А	NC	ZZ
U	Vddq	TMS	TDI	TCK	TDO	NC	Vddq

Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

0000000000000	000000000000000000000000000000000000000		
-			
Ō	00	000	00
0	00		00
Ō	00		00
-			

Bottom View 119-Ball, 14 mm x 22 mm BGA

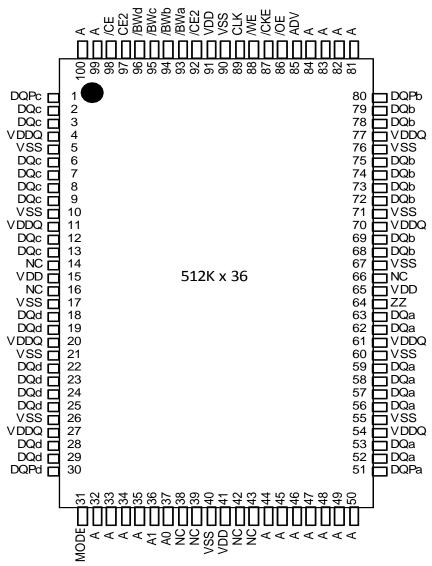
PIN DESCRIPTIONS


Symbol	Pin Name		
CLK	Synchronous Clock		
/CKE	Clock Enable		
A0,A1	Synchronous Burst Address Inputs		
A	Address Inputs		
ADV	Synchronous Burst Address Advance/Load		
MODE	Burst Sequence Selection		
/CE,CE2,/CE2	Synchronous Chip Enable		
/WE	Synchronous Read/Write Control Input		
/BWx (x=a-d)	Synchronous Byte Write Inputs		
/OE	Output Enable		
DQx	Data Inputs/Outputs		
TCK,TDI, TDO,TMS	JTAG Pins		
ZZ	Power Sleep Mode		
NC	No Connect		
Vdd	Power Supply		
Vddq	I/O Power Supply		
V _{SS}	Ground		

1024K x 18, 119-Ball BGA (Top View)

	1	2	3	4	5	6	7
А	Vddq	А	А	А	А	А	Vddq
В	NC	CE2	А	ADV	А	/CE2	NC
С	NC	А	А	Vdd	А	А	NC
D	DQb	NC	Vss	NC	Vss	DQPa	NC
Е	NC	DQb	Vss	/CE	Vss	NC	DQa
F	Vddq	NC	Vss	/OE	Vss	DQa	Vddq
G	NC	DQb	/BWb	А	NC	NC	DQa
Н	DQb	NC	VSS	/WE	Vss	DQa	NC
J	Vddq	Vdd	NC	Vdd	NC	Vdd	Vddq
К	NC	DQb	VSS	CLK	Vss	NC	DQa
L	DQb	NC	NC	NC	/BWa	DQa	NC
М	Vddq	DQb	Vss	/CKE	Vss	NC	Vddq
N	DQb	NC	V _{SS}	A1*	V _{SS}	DQa	NC
Р	NC	DQPb	Vss	A0*	Vss	NC	DQa
R	NC	А	MODE	Vdd	NC	А	NC
Т	NC	А	А	NC	А	А	ZZ
U	Vddq	TMS	TDI	TCK	TDO	NC	Vddq

Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

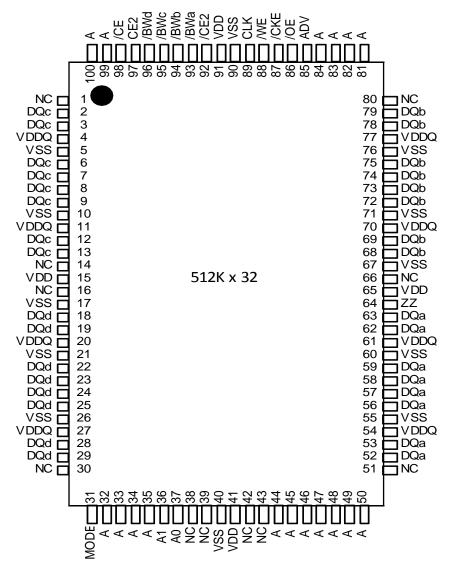

Bottom View 119-Ball, 14 mm x 22 mm BGA

PIN DESCRIPTIONS

Pin Name				
Synchronous Clock				
Clock Enable				
Synchronous Burst Address Inputs				
Address Inputs				
Synchronous Burst Address Advance/Load				
Burst Sequence Selection				
Synchronous Chip Enable				
Synchronous Read/Write Control Input				
Synchronous Byte Write Inputs				
Output Enable				
Data Inputs/Outputs				
Parity Data I/O				
JTAG Pins				
Power Sleep Mode				
No Connect				
Power Supply				
I/O Power Supply				
Ground				

512K x 36, 100PIN QFP (Top View)

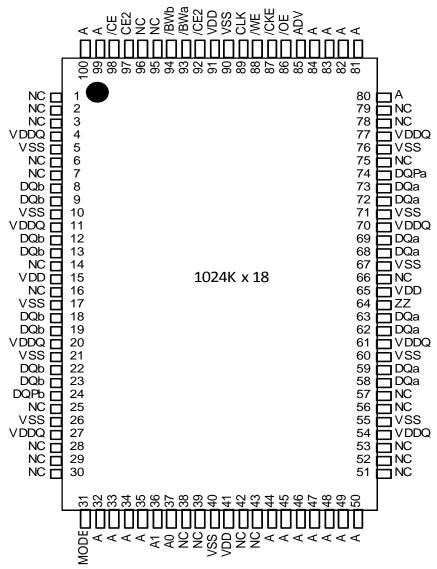
Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.


PIN DESCRIPTIONS

Symbol	Pin Name	Symbol	Pin Name
A	Address Inputs	ZZ	Power Sleep Mode
A0,A1	Synchronous Burst Address Inputs	MODE	Burst Sequence Selection
ADV	Synchronous Burst Address Advance/Load	Vdd	Power Supply
/WE	Synchronous Read/Write Control Input	NC	No Connect
CLK	Synchronous Clock	DQx	Data Inputs/Outputs
/CKE	Clock Enable	DQPx	Parity Data I/O; NC for x32 option
/CE,CE2,/CE2	Synchronous Chip Enable	Vddq	I/O Power Supply
/BWx (x=a-d)	Synchronous Byte Write Inputs	Vss	Ground
/OE	Output Enable		

Integrated Silicon Solution, Inc.- www.issi.com Rev. D2 08/12/2019

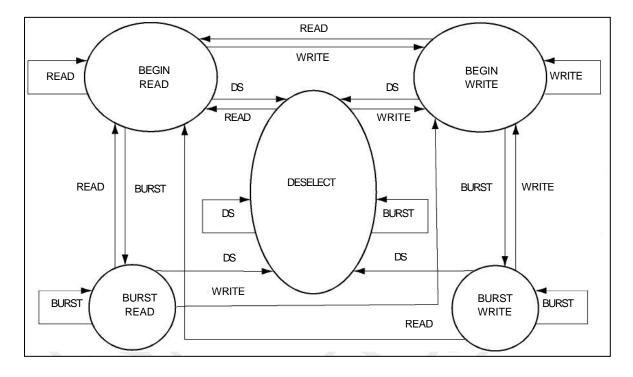
512K x 32, 100PIN QFP (Top View)


Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

PIN DESCRIPTIONS

Symbol	Pin Name	Symbol	Pin Name
A	Address Inputs	ZZ	Power Sleep Mode
A0,A1	Synchronous Burst Address Inputs	MODE	Burst Sequence Selection
ADV	Synchronous Burst Address Advance/Load	Vdd	Power Supply
/WE	Synchronous Read/Write Control Input	NC	No Connect
CLK	Synchronous Clock	DQx	Data Inputs/Outputs
/CKE	Clock Enable	DQPx	Parity Data I/O; NC for x32 option
/CE,CE2,/CE2	Synchronous Chip Enable	V _{DDQ}	I/O Power Supply
/BWx (x=a-d)	Synchronous Byte Write Inputs	Vss	Ground
/OE	Output Enable		

1024K x 18, 100PIN QFP (Top View)


Note: A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.

PIN DESCRIPTIONS

Symbol	Pin Name	Symbol	Pin Name
А	Address Inputs	ZZ	Power Sleep Mode
A0,A1	Synchronous Burst Address Inputs	MODE	Burst Sequence Selection
ADV	Synchronous Burst Address Advance/Load	Vdd	Power Supply
/WE	Synchronous Read/Write Control Input	NC	No Connect
CLK	Synchronous Clock	DQx	Data Inputs/Outputs
/CKE	Clock Enable	DQPx	Parity Data I/O
/CE,CE2,/CE2	Synchronous Chip Enable	Vddq	I/O Power Supply
/BWx (x=a-b)	Synchronous Byte Write Inputs	Vss	Ground
/OE	Output Enable		

STATE DIAGRAM

TRUTH TABLE

SYNCHRONOUS TRUTH TABLE

Operation	Address Used	/CE	CE2	/CE2	ADV	/WE	/BWx	/OE	/CKE	CLK
Not Selected	N/A	Н	Х	Х	L	Х	Х	Х	L	\uparrow
Not Selected	N/A	Х	L	Х	L	Х	Х	Х	L	\uparrow
Not Selected	N/A	Х	Х	Н	L	Х	Х	Х	L	\uparrow
Not Selected Continue	N/A	Х	Х	Х	Н	Х	Х	Х	L	\uparrow
Begin Burst Read	External Address	L	Н	L	L	Н	Х	L	L	\uparrow
Continue Burst Read	Next Address	Х	Х	Х	Н	Х	Х	L	L	↑ (
NOP/Dummy Read	External Address	L	Н	L	L	Н	Х	Н	L	\uparrow
Dummy Read	Next Address	Х	Х	Х	Н	Х	Х	Н	L	\uparrow
Begin Burst Write	External Address	L	Н	L	L	L	L	Х	L	↑ (
Continue Burst Write	Next Address	Х	Х	Х	Н	Х	L	Х	L	\uparrow
NOP/Write Abort	N/A	L	Н	L	L	L	Н	Х	L	↑ (
Write Abort	Next Address	Х	Х	Х	Н	Х	Н	Х	L	1
Ignore Clock	Current Address	Х	Х	Х	Х	Х	Х	Х	Н	\uparrow

Notes:

1. "X" means don't care.

2. The rising edge of clock is symbolized by ↑

3. A continue deselect cycle can only be entered if a deselect cycle is executed first.

4. /WE = L means Write operation in Write Truth Table.

5. /WE = H means Read operation in Write Truth Table.

6. Operation finally depends on status of asynchronous pins (ZZ and /OE).

Integrated Silicon Solution, Inc.- www.issi.com Rev. D2 08/12/2019

ASYNCHRONOUS TRUTH TABLE

Operation	ZZ	/OE	I/O STATUS
Sleep Mode	Н	Х	High-Z
Bood	L	L	DQ
Read	L	Н	High-Z
Write	L	Х	Din, High-Z
Deselected	L	Х	High-Z

Notes:

1. X means "Don't Care".

2. For write cycles following read cycles, the output buffers must be disabled with /OE, otherwise data bus contention will occur.

3. Sleep Mode means power Sleep Mode where stand-by current does not depend on cycle time.

4. Deselected means power Sleep Mode where stand-by current depends on cycle time.

WRITE TRUTH TABLE (x18)

Operation	/WE	/BWa	/BWb
READ	Н	Х	Х
WRITE BYTE a	L	L	Н
WRITE BYTE b	L	Н	L
WRITE ALL BYTEs	L	L	L
WRITE ABORT/NOP	L	Н	Н

Notes:

1. X means "Don't Care".

2. All inputs in this table must beet setup and hold time around the rising edge of CLK.

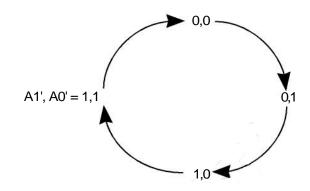
WRITE TRUTH TABLE (x36)

Operation	/WE	/BWa	/BWb	/BWc	/BWd
READ	Н	Х	Х	Х	Х
WRITE BYTE a	L	L	Н	Н	Н
WRITE BYTE b	L	Н	L	Н	Н
WRITE BYTE c	L	Н	Н	L	Н
WRITE BYTE d	L	Н	Н	Н	L
WRITE ALL BYTES	L	L	L	L	L
WRITE ABORT/NOP	L	Н	H	H	H

Notes:

1. X means "Don't Care".

2. All inputs in this table must beet setup and hold time around the rising edge of CLK.



ADDRESS SEQUENCE IN BURST MODE

INTERLEAVED BURST ADDRESS TABLE (MODE = VDD or NC)

External Address	1st Burst Address	2nd Burst Address	3rd Burst Address
A1 A0	A1 A0	A1 A0	A1 A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

LINEAR BURST ADDRESS TABLE (MODE = Vss)

ABSOLUTE MAXIMUM RATINGS AND OPERATING RANGE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	NLP Value	NVP/NVVP Value	Unit
Tstg	Storage Temperature	–65 to +150	–65 to +150	°C
Pd	Power Dissipation	1.6	1.6	W
lout	Output Current (per I/O)	20	20	mA
Vin, Vout	Voltage Relative to Vss for I/O Pins	-0.5 to VDDQ +0.3	-0.5 to VDDQ + 0.3	V
Vin	Voltage Relative to Vss for Address and Control Inputs	-0.3 to V _{DD} +0.5	-0.3 to V _{DD} + 0.3	V

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, precautions may be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

3. This device contains circuitry that will ensure the output devices are in High-Z at power up.

OPERATING RANGE (IS61NLPx)

Range	Ambient Temperature	VDD	VDDQ
Commercial	0°C to +70°C	3.3V ± 5%	3.3V / 2.5V ± 5%
Industrial	-40°C to +85°C	3.3V ± 5%	3.3V / 2.5V ± 5%
Automotive	-40°C to +125°C	3.3V ± 5%	3.3V / 2.5V ± 5%

OPERATING RANGE (IS61NVPx)

Range	Ambient Temperature	VDD	VDDQ	
Commercial	0°C to +70°C	2.5V ± 5%	2.5V ± 5%	
Industrial	-40°C to +85°C	2.5V ± 5%	2.5V ± 5%	
Automotive	*Please contact ISSI			

OPERATING RANGE (IS61NVVPx)

Range	Ambient Temperature	VDD	να			
Commercial	0°C to +70°C	1.8V ± 5%	1.8V ± 5%			
Industrial	-40°C to +85°C	1.8V ± 5%	1.8V ± 5%			
Automotive		*Please contact ISSI				

CHARACTERISTICS

DC ELECTRICAL CHARACTERISTICS (Over operating temperature range)

Symbol	Parameter	Test Conditions	3.3V		2.5V		1.8V		Unit
Symbol Parameter		Test conditions	Min. Max.		Min.	Max.	Min.	Max.	
Voh	Output HIGH	loh=-4.0 mA(3.3V)	2.4		2.0		Vddq		V
VOIT	Voltage	loh=-1.0 mA(2.5V,1.8V)	2.4		2.0		-0.4	_	v
Vol	Output LOW	Iol=8.0 mA(3.3V)		0.4		0.4		0.4	V
VOI	Voltage lol=1.0 mA(2.5V, 1.8V) - 0.4	_	0.4		0.4	v			
Vih	Input HIGH Voltage		2.0	V _{DD} +0.3	1.7	V _{DD} +0.3	0.7* Vdd	V _{DD} +0.3	V
Vil	Input LOW Voltage		-0.3	0.8	-0.3	0.7	-0.3	0.3* V _{DD}	V
lli	Input Leakage Current	Vss≤Vin≤ V _{DD}	-1	1	-1	1	-1	1	μA
llo	Output Leakage Current	Vss≤Vout≤ V _{DDQ} ,/OE=Vih	-1	1	-1	1	-1	1	μA

Notes:

1. All voltages referenced to ground.

2. Overshoot:

3.3V and 2.5V: Vih (AC) \leq VDD + 1.5V (Pulse width less than tkc /2)

- 1.8V: Vih (AC) \leq VDD + 0.5V (Pulse width less than tkc /2)
- Undershoot:
 3.3V and 2.5V: Vil (AC) ≥ -1.5V (Pulse width less than tkc /2)
 1.8V: Vil (AC) ≥ -0.5V (Pulse width less than tkc /2)

 MODE pin has an internal pull-up and should be tied to VDD or Vss. It exhibits ±100µA maximum leakage current when tied to ≤Vss+0.2V or ≥ VDD-0.2V.

5. ZZ pin has an internal pull-down and should be tied to VDD or Vss. It exhibits ±100µA maximum leakage current when tied to ≤Vss+0.2V or ≥ VDD-0.2V.

POWER SUPPLY CHARACTERISTICS (Over Operating Range)

			T		50	-2	00	
Symbol	Parameter	Test Conditions	Temp. range	Max		Max		Unit
			range	x18	x36	x18	x36	
	AC Operating,	Device Selected, OE = Vih, ZZ ≤ Vil,All Inputs	Com.	270	270	220	220	
Icc	Supply Current	≤ 0.2 V or \geq V _{DD} – 0.2V,Cycle Time \geq tkc min.	Ind.	290	290	240	240	mA
	Standby	Device Deselected, V _{DD} = Max.,All Inputs ≤ Vil	Com.	80	80	70	70	
lsb	Current TTL Input	or \geq Vih,ZZ \leq Vil, f = Max.	Ind.	90	90	80	80	mA
	Standby	Device Deselected, V _{DD} = Max.,Vin ≤ Vss +	Com.	60	60	60	60	
Isb1	Current CMOS Input	$0.2V \text{ or } \ge V_{DD} - 0.2V, f = 0$	Ind.	70	70	70	70	mA

Note:

1. Power-up assumes a linear ramp from 0V to V_{DD} (min) within 200ms. During this time Vih < V_{DD} and V_{DDQ} < V_{DD}

CAPACITANCE

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	Vin = 0V	6	pF
Cout	Input/Output Capacitance	Vout = 0V	8	pF

Notes:

Tested initially and after any design or process changes that may affect these parameters. 1.

Test conditions: Ta = 25° C, f = 1 MHz, VDD = 3.3V. 2.

READ/WRITE CYCLE SWITCHING CHARACTERISTICS (Over Operating Range)

Oursels al	Devenueter	-2	250	-2	-200		
Symbol	Parameter	Min.	Max.	Min.	Max.		
fmax	Clock Frequency	_	250	—	200	MHz	
tkc	Cycle Time	4	—	5	—	ns	
tkh	Clock High Time	1.7	_	2	—	ns	
tkl	Clock Low Time	1.7	_	2	—	ns	
tkq	Clock Access Time		2.6		3.0	ns	
tkqx ⁽²⁾	Clock High to Output Invalid	0.8	—	1.5	—	ns	
tkqlz ^(2,3)	Clock High to Output Low-Z	0.8	—	1	—	ns	
tkqhz ^(2,3)	Clock High to Output High-Z		2.6		3.0	ns	
toeq	Output Enable to Output Valid		2.6	—	3.0	ns	
toelz ^(2,3)	Output Enable to Output Low-Z	0	—	0	—	ns	
toehz ^(2,3)	Output Disable to Output High-Z		2.6		3.0	ns	
tas	Address Setup Time	1.2	_	1.4	—	ns	
tws	Read/Write Setup Time	1.2	_	1.4	—	ns	
tces	Chip Enable Setup Time	1.2		1.4		ns	
tse	Clock Enable Setup Time	1.2		1.4		ns	
tadvs	Address Advance Setup Time	1.2	_	1.4		ns	
tds	Data Setup Time	1.2		1.4		ns	
tah	Address Hold Time	0.3	—	0.4	—	ns	
the	Clock Enable Hold Time	0.3		0.4		ns	
twh	Write Hold Time	0.3		0.4		ns	
tceh	Chip Enable Hold Time	0.3	_	0.4		ns	
tadvh	Address Advance Hold Time	0.3		0.4		ns	
tdh	Data Hold Time	0.3		0.4		ns	

Notes:

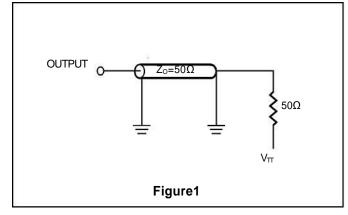
Configuration signal MODE is static and must not change during normal operation. Guaranteed but not 100% tested. This parameter is periodically sampled. 1.

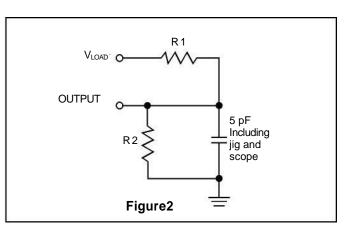
2.

3. Tested with load in Figure 2.

3.3V I/O AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	1.5V
V _{TT}	1.5V
VLOAD	3.3V
R1, R2	317Ω, 351Ω
Output Load	See Figures 1 and 2

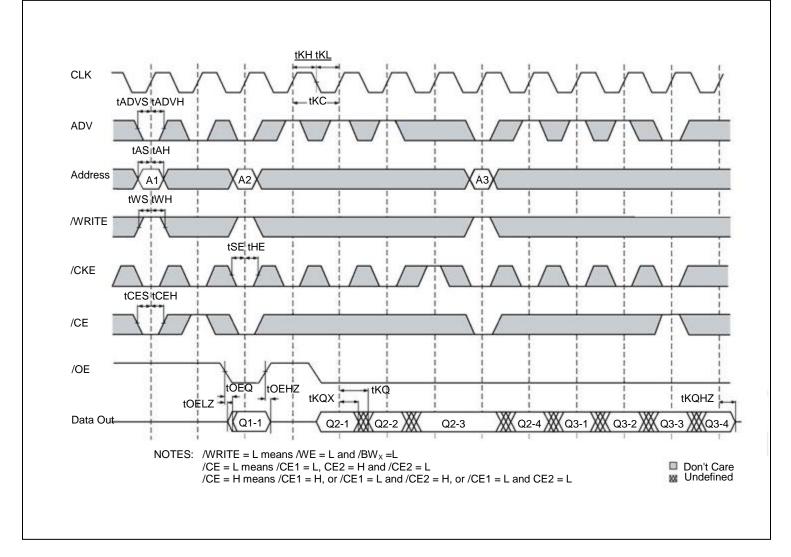

2.5V I/O AC TEST CONDITIONS


Parameter	Unit
Input Pulse Level	0V to 2.5V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	1.25V
V _{TT}	1.25V
V _{LOAD}	2.5V
R1, R2	1667Ω, 1538Ω
Output Load	See Figures 1 and 2

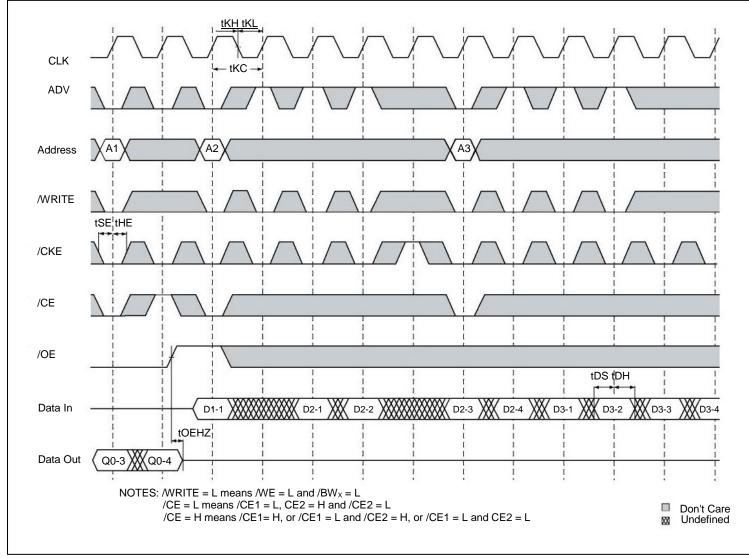
1.8V I/O AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 1.8V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	0.9V
V _{TT}	0.9V
V _{LOAD}	1.8V
R1, R2	1ΚΩ, 1ΚΩ
Output Load	See Figures 1 and 2

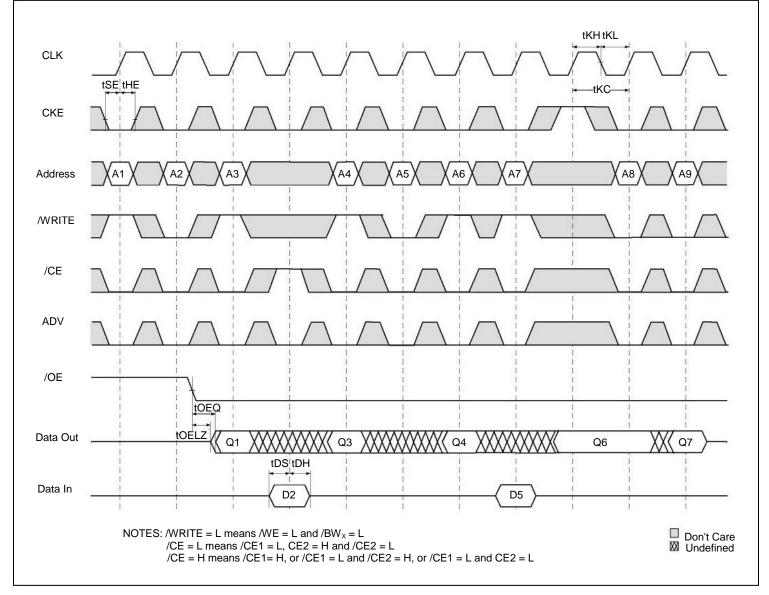
I/O OUTPUT LOAD EQUIVALENT



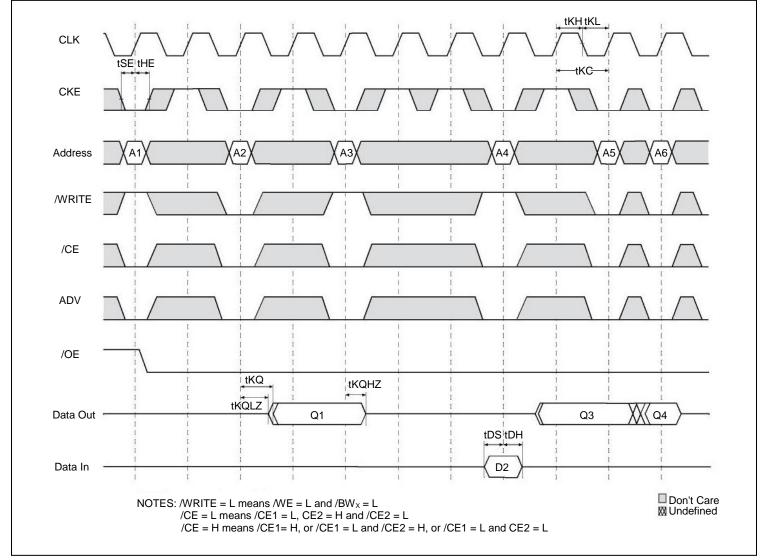
Integrated Silicon Solution, Inc.- www.issi.com Rev. D2 08/12/2019



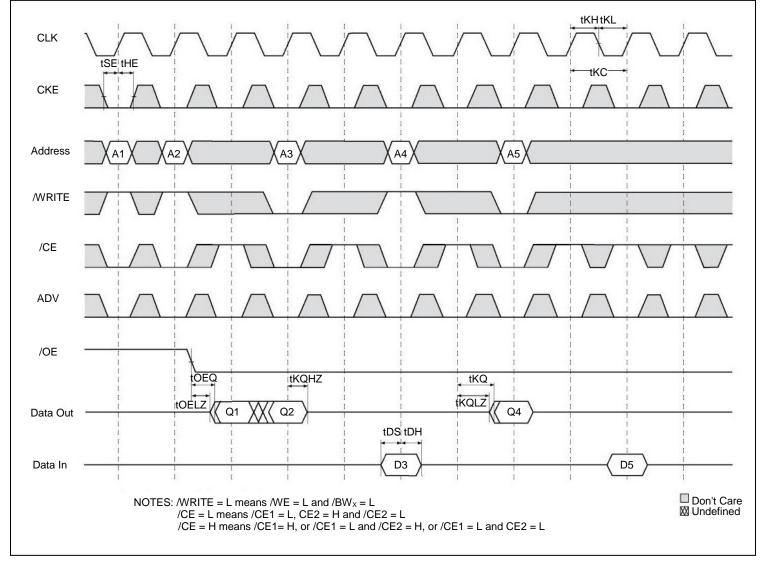
READ CYCLE TIMING



WRITE CYCLE TIMING

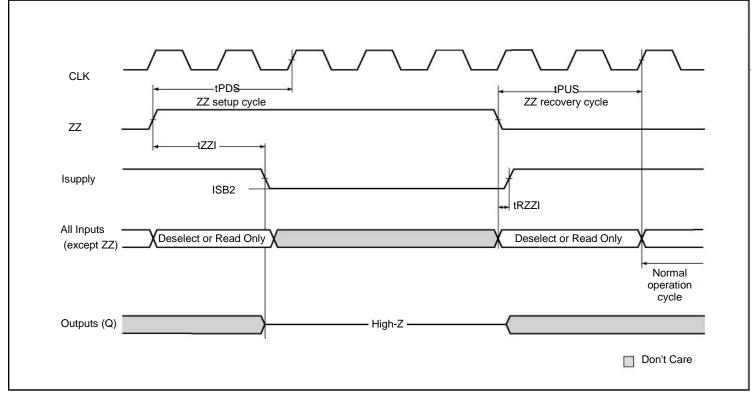


SINGLE READ/WRITE CYCLE TIMING



/CKE OPERATION TIMING

/CE OPERATION TIMING



SNOOZE MODE ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Temperature Range	Min.	Max.	Unit
			Com.	—	40	mA
ISB2	Current during SNOOZE MODE	ZZ ≥ Vih	Ind.		50	
	_		Auto.		TBD	
tPDS	ZZ active to input ignored		—	—	2	cycle
tPUS	ZZ inactive to input sampled		—	2	_	cycle
tZZI	ZZ active to SNOOZE current		—		2	cycle
tRZZI	ZZ inactive to exit SNOOZE current	nt	—	0		ns

SLEEP MODE TIMING

IEEE 1149.1 TAP and Boundary Scan

The SRAM provides a limited set of JTAG functions to test the interconnection between SRAM I/Os and printed circuit board traces or other components. There is no multiplexer in the path from I/O pins to the RAM core.

In conformance with IEEE Standard 1149.1, the SRAM contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register.

The TAP controller has a standard 16-state machine that resets internally on power-up. Therefore, a TRST signal is not required

Disabling the JTAG feature

The SRAM can operate without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (VSS) to prevent clocking of the device. TDI and TMS are internally pulled up and may be left disconnected. They may alternately be connected to V_{DD} through a pull-up resistor. TDO should be left disconnected. On power-up, the device will come up in a reset state, which will not interfere with device operation.

Test Access Port Signal List:

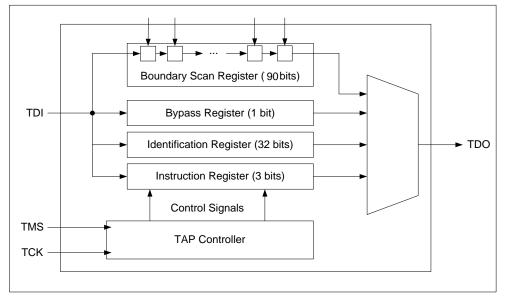
1. Test Clock (TCK)

This signal uses V_{DD} as a power supply. The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK.

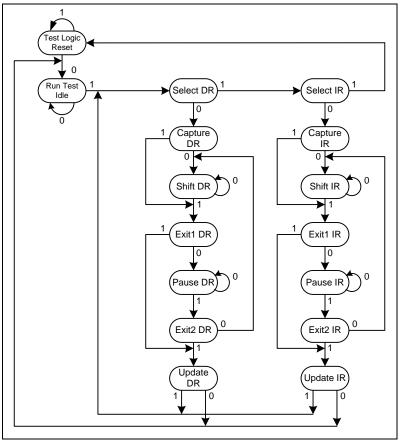
2. Test Mode Select (TMS)

This signal uses V_{DD} as a power supply. The TMS input is used to send commands to the TAP controller and is sampled on the rising edge of TCK.

3. Test Data-In (TDI)


This signal uses V_{DD} as a power supply. The TDI input is used to serially input test instructions and information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. TDI is connected to the most significant bit (MSB) of any register. For more information regarding instruction register loading, please see the TAP Controller State Diagram.

4. Test Data-Out (TDO)


This signal uses V_{DD} as a power supply. The TDO output ball is used to serially clock test instructions and data out from the registers. The TDO output driver is only active during the Shift-IR and Shift-DR TAP controller states. In all other states, the TDO pin is in a High-Z state. The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. For more information, please see the TAP Controller State Diagram.

TAP Controller State and Block Diagram

TAP Controller State Machine

Performing a TAP Reset

A Reset is performed by forcing TMS HIGH (V_{DD}) for five rising edges of TCK. RESET may be performed while the SRAM is operating and does not affect its operation. At power-up, the TAP is internally reset to ensure that TDO comes up in a high-Z state.

TAP Registers

Registers are connected between the TDI and TDO pins and allow data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction registers. Data is serially loaded into the TDI pin on the rising edge of TCK and output on the TDO pin on the falling edge of TCK.

1. Instruction Register

This register is loaded during the update-IR state of the TAP controller. At power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section. When the TAP controller is in the capture-IR state, the two LSBs are loaded with a binary "01" pattern to allow for fault isolation of the board-level serial test data path.

2. Bypass Register

The bypass register is a single-bit register that can be placed between the TDI and TDO balls. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (V_{SS}) when the BYPASS instruction is executed.

3. Boundary Scan Register

The boundary scan register is connected to all the input and bidirectional balls on the SRAM. Several balls are also included in the scan register to reserved balls. The boundary scan register is loaded with the contents of the SRAM Input and Output ring when the TAP controller is in the capture-DR state and is then placed between the TDI and TDO balls when the controller is moved to the shift-DR state. Each bit corresponds to one of the balls on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO.

4. Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code during the capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the shift-DR state.

Scan Register Sizes

Register Name	Bit Size
Instruction	3
Bypass	1
ID	32
Boundary Scan	90

TAP Instruction Set

Many instructions are possible with an eight-bit instruction register and all valid combinations are listed in the TAP Instruction Code Table. All other instruction codes that are not listed on this table are reserved and should not be used. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted from the instruction register through the

TDI and TDO pins. To execute an instruction once it is shifted in, the TAP controller must be moved into the Update-IR state.

1. EXTEST

The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-scan register cells at output balls are used to apply a test vector, while those at input balls capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output driver is turned on, and the PRELOAD data is driven onto the output balls.

2. IDCODE

The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO balls and allows the IDCODE to be shifted out of the device when the TAP controller enters the shift-DR state. The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state.

3. SAMPLE Z

If the SAMPLE-Z instruction is loaded in the instruction register, all SRAM outputs are forced to an inactive drive state (high-Z), moving the TAP controller into the capture-DR state loads the data in the SRAMs input into the boundary scan register, and the boundary scan register is connected between TDI and TDO when the TAP controller is moved to the shift-DR state.

4. SAMPLE/PRELOAD

When the SAMPLE/PRELOAD instruction is loaded into the instruction register and the TAP controller is in the capture-DR state, a snapshot of data on the inputs and bidirectional balls is captured in the boundary scan register. The user must be aware that the TAP controller clock can only operate at a frequency up to 10 MHz, while the SRAM clock operates significantly faster. Because there is a large difference between the clock frequencies, it is possible that during the capture-DR state, an input or output will undergo a transition. The TAP may then try to capture a signal while in transition. This will not harm the device, but there is no guarantee as to the value that will be captured. Repeatable results may not be possible. To ensure that the boundary scan register will capture the correct value of a signal, the SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/ PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CLK captured in the boundary scan register. Once the data is captured, it is possible to shift out the data by putting the TAP into the shift-DR state. This places the boundary scan register between the TDI and TDO balls.

6. BYPASS

When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a shift-DR state, the bypass register is placed between TDI and TDO. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board.

7. PRIVATE

Do not use these instructions. They are reserved for future use and engineering mode.

JTAG DC Operating Characteristics

(Over the Operating Temperature Range, 2.5V and 3.3V Option)

Parameter	Symbol	Min	Max	Units	Notes
JTAG Input High Voltage	V _{IH1}	1.7	V _{DD} +0.3	V	
JTAG Input Low Voltage	V _{IL1}	-0.3	0.7	V	
JTAG Output High Voltage	V _{OH1}	1.7	-	V	I _{ОН1} =2mA
JTAG Output Low Voltage	V _{OL1}	-	0.7	V	I _{OL1} =2mA
JTAG Output High Voltage	V_{OH2}	2.1	-	V	I _{OH2} =100µА
JTAG Output Low Voltage	V _{OL2}	-	0.2	V	I _{OL2} =100μΑ
JTAG Input Leakage Current	I LIJTAG	-10	+10	μA	$0 \le Vin \le V_{DD}$
JTAG Output Leakage Current	I _{LOJTAG}	-10	+10	μA	$0 \le Vout \le V_{DD}$

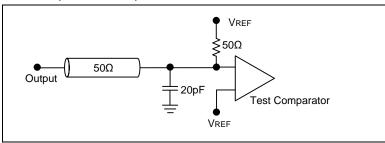
Notes:

1. All voltages referenced to VSS (GND); All JTAG inputs and outputs are LVTTL-compatible.

JTAG DC Operating Characteristics

(Over the Operating Temperature Range, 1.8V Option)

Parameter	Symbol	Min	Max	Units	Notes
JTAG Input High Voltage	V _{IH1}	TBD	TBD	V	
JTAG Input Low Voltage	V _{IL1}	TBD	TBD	V	
JTAG Output High Voltage	V _{OH1}	TBD	TBD	V	
JTAG Output Low Voltage	V _{OL1}	TBD	TBD	V	
JTAG Input Leakage Current	ILIJTAG	TBD	TBD	μA	
JTAG Output Leakage Current	I _{LOJTAG}	TBD	TBD	μA	
otes:					

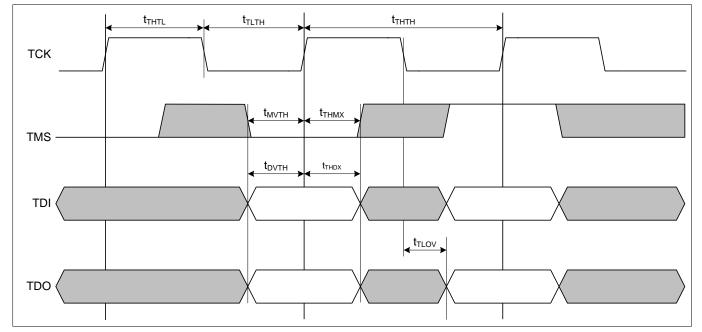

1. All voltages referenced to VSS (GND); All JTAG inputs and outputs are LVTTL-compatible.

JTAG AC Test Conditions

(Over the Operating Temperature Range)

Parameter	Symbol	1.8V Option	2.5V Option	3.3V Option	Units
Input Pulse High Level	V _{IH1}	TBD	2.5	3.0	V
Input Pulse Low Level	V _{IL1}	TBD	0	0	V
Input rise and fall time	T _{R1}	TBD	1.5	1.5	ns
Test load termination supply voltage	V _{REF}	TBD	1.25	1.5	V
Input and Output Timing Reference Level	V _{REF}	TBD	1.25	1.5	V

TAP Output Load Equivalent



JTAG AC Characteristics

(Over the Operating Temperature Range)

Parameter	Symbol	Min	Max	Units
TCK cycle time	t _{тнтн}	100	-	ns
TCK high pulse width	t _{THTL}	40	-	ns
TCK low pulse width	t _{т∟тн}	40	-	ns
TMS Setup	t _{MVTH}	10	-	ns
TMS Hold	t _{тнмх}	10	-	ns
TDI Setup	t _{DVTH}	10	-	ns
TDI Hold	t _{THDX}	10	-	ns
TCK Low to Valid Data	t _{TLOV}	_	20	ns

JTAG Timing Diagram

Instruction Set

Code	Instruction	TDO Output	Notes
000	EXTEST	Boundary Scan Register	2, 6
001	IDCODE	32-bit Identification Register	
010	SAMPLE-Z	Boundary Scan Register	1, 2
011	PRIVATE	Do Not Use	5
100	SAMPLE(/PRELOAD)	Boundary Scan Register	4
101	PRIVATE	Do Not Use	5
110	PRIVATE	Do Not Use	5
111	BYPASS	Bypass Register	3

Notes:

1. Places DQs in high-Z in order to sample all input data, regardless of other SRAM inputs.

2. TDI is sampled as an input to the first ID register to allow for the serial shift of the external TDI data.

3. BYPASS register is initiated to V_{SS} when BYPASS instruction is invoked. The BYPASS register also holds the last serially loaded TDI when exiting the shift-DR state.

4. SAMPLE instruction does not place DQs in high-Z.

5. This instruction is reserved. Invoking this instruction will cause improper SRAM functionality.

6. By default, it places DQs in high-Z. If the internal register on the scan chain is set high, DQs will be updated with information loaded via a previous SAMPLE instruction. The actual transfer occurs during the update IR state after EXTEST is loaded. The value of the internal register can be changed during SAMPLE and EXTEST only.

ID Register Definition

Instruction Field	Description	512K x 36	1024K x 18
Revision Number (31:28)	Reserved for version number.	XXXX	XXXX
Device Depth (27:23)	Defines depth of SRAM. 512K or 1024K	00111	01000
Device Width (22:18)	Defines Width of the SRAM. x36 or x18	00100	00011
ISSI Device ID (17:12)	Reserved for future use.	XXXXXX	XXXXXX
ISSI JEDEC ID (11:1)	Allows unique identification of SRAM vendor.	00001010101	00001010101
ID Register Presence (0)	Indicate the presence of an ID register.	1	1

Boundary Scan Order

(TBA – 119 BGA)

X36 Bit # Bump ID 1 N6 2 N7 3 N10 4 P11 5 P8 6 R8 7 R9 8 P9 9 P10 10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10	Signal NC NC NC NC A18 A17 A16	X18 Bump ID N6 N7 N10 P11 P8 D2	Signal NC NC NC NC
1 N6 2 N7 3 N10 4 P11 5 P8 6 R8 7 R9 8 P9 9 P10 10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10	NC NC NC A18 A17 A16	N6 N7 N10 P11 P8	NC NC NC NC
2 N7 3 N10 4 P11 5 P8 6 R8 7 R9 8 P9 9 P10 10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10	NC NC A18 A17 A16	N7 N10 P11 P8	NC NC NC
3 N10 4 P11 5 P8 6 R8 7 R9 8 P9 9 P10 10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10	NC NC A18 A17 A16	N10 P11 P8	NC NC
4 P11 5 P8 6 R8 7 R9 8 P9 9 P10 10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10	NC A18 A17 A16	P11 P8	NC
5 P8 6 R8 7 R9 8 P9 9 P10 10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10	A18 A17 A16	P8	
6 R8 7 R9 8 P9 9 P10 10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10	A17 A16		_
7 R9 8 P9 9 P10 10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10	A16		A18
8 P9 9 P10 10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10		R8	A17
9 P10 10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10		R9	A16
10 R10 11 R11 12 H11 13 N11 14 M11 15 L11 16 M10	A15	P9	A15
11 R11 12 H11 13 N11 14 M11 15 L11 16 M10	A14	P10	A14
12 H11 13 N11 14 M11 15 L11 16 M10	A13	R10	A13
13 N11 14 M11 15 L11 16 M10	A12	R11	A12
14 M11 15 L11 16 M10	ZZ	H11	ZZ
15 L11 16 M10	DQa0	N11	NC
16 M10	DQa1	M11	NC
	DQa2	L11	NC
17 110	DQa3	M10	DQa8
17 L10	DQa4	L10	DQa7
18 K11	DQa5	K11	NC
19 J11	DQa6	J11	NC
20 K10	DQa7	K10	DQa6
21 J10	DQa8	J10	DQa5
22 H9	NC	H9	NC
23 H10	NC	H10	NC
24 G11	DQb8	G11	DQa4
25 F11	DQb7	F11	DQa3
26 G10	DQb6	G10	NC
27 E11	DQb5	E11	DQa2
28 D11	DQb4	D11	DQa1
29 F10	DQb3	C11	DQa0
30 E10	DQb2	E10	NC
31 D10	DQb1	D10	NC
32 C11	DQb0	F10	NC
33 A11	NC	A11	A19
34 B11	NC	B11	NC
35 A10	A11		
36 B10		A10	A11
37 A9	A10	A10 B10	A11 A10

Continued on next page

165 BGA						
	X36 X18					
Bit #	Bump ID	Signal	Bump ID	Signal		
38	B9	A8	B9	A8		
39	C10	NC	C10	NC		
40	A8	ADV	A8	ADV		
41	B8	/OE	B8	/OE		
42	A7	/CKE	A7	/CKE		
43	B7	/WE	B7	/WE		
44	B6	CLK	B6	CLK		
45	A6	/CE2	A6	/CE2		
46	B5	/Bwa	B5	/Bwa		
47	A5	/Bwb	A5	NC		
48	A4	/Bwc	A4	/Bwb		
49	B4	/Bwd	B4	NC		
50	B3	CE2	B3	CE2		
51	A3	/CE1	A3	/CE1		
52	A2	A7	A2	A7		
53	B2	A6	B2	A6		
54	C2	NC	C2	NC		
55	B1	NC	B1	NC		
56	A1	NC	A1	NC		
57	C1	DQc0	C1	NC		
58	D1	DQc1	D1	NC		
59	E1	DQc2	E1	NC		
60	D2	DQc3	D2	DQb8		
61	E2	DQc4	E2	DQb7		
62	F1	DQc5	F1	NC		
63	G1	DQc6	G1	NC		
64	F2	DQc7	F2	DQb6		
65	G2	DQc8	G2	DQb5		
66	H1	NC	H1	NC		
67	H2	NC	H2	NC		
68	H3	NC	H3	NC		
69	J1	DQd8	J1	DQb4		
70	K1	DQd7	K1	DQb3		
71	J2	DQd6	J2	NC		
72	L1	DQd5	L1	DQb2		
73	M1	DQd4	M1	DQb1		
74	K2	DQd3	N1	DQb0		
75	L2	DQd2	L2	NC		
76	M2	DQd1	M2	NC		
77	N1	DQd0	K2	NC		
78	N2	NC	N2	NC		
79	P1	NC	P1	NC		
	Ind on next					

Continued on next page

Integrated Silicon Solution, Inc.- www.issi.com Rev. D2 08/12/2019

165 BGA					
	X36		X18		
Bit #	Bump ID	Signal	Bump ID	Signal	
80	R1	MODE	R1	MODE	
81	R2	NC	R2	NC	
82	P3	A5	P3	A5	
83	R3	A4	R3	A4	
84	P2	NC	P2	NC	
85	P4	A2	P4	A2	
86	R4	A3	R4	A3	
87	N5	NC	N5	NC	
88	P6	A1	P6	A1	
89	R6	A0	R6	A0	
90	*	Int	*	Int	

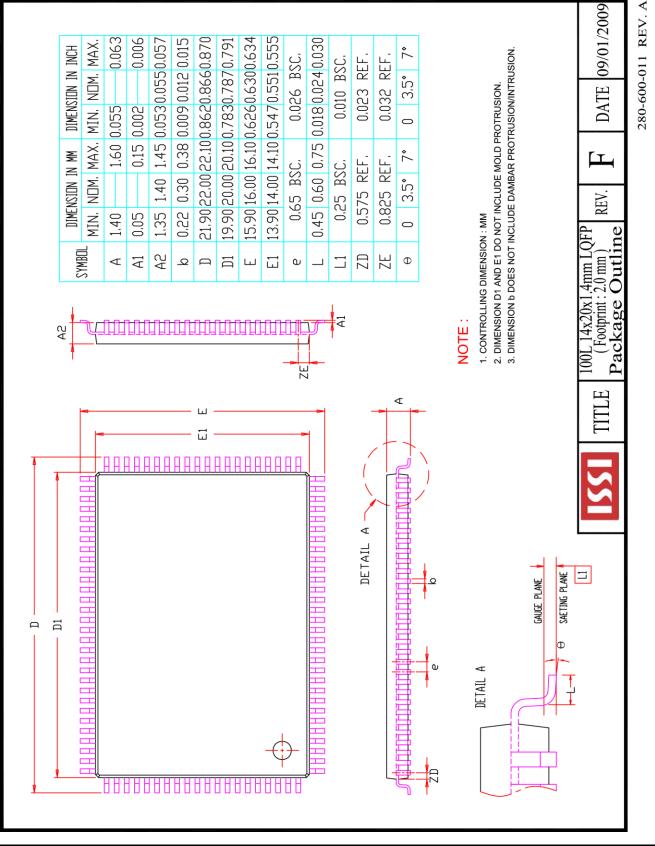
ORDERING INFORMATION

Commercial Range: 0°C to +70°C

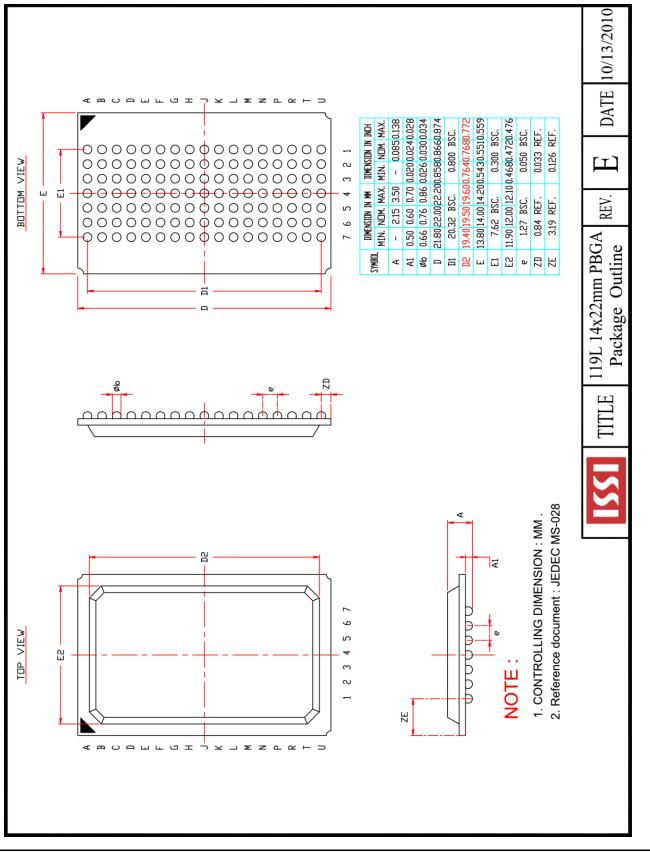
VDD	Speed	X36	X18	Package
		IS61NLP51236B-250TQ	IS61NLP102418B-250TQ	100 QFP
		IS61NLP51236B-250B3	IS61NLP102418B-250B3	165 BGA
	250MHz	IS61NLP51236B-250B2	IS61NLP102418B-250B2	119 BGA
	230101112	IS61NLP51236B-250TQL	IS61NLP102418B-250TQL	100 QFP, Lead-free
		IS61NLP51236B-250B3L	IS61NLP102418B-250B3L	165 BGA, Lead-free
VDD=3.3V, VDDQ=2.5V/3.3V		IS61NLP51236B-250B2L	IS61NLP102418B-250B2L	119 BGA, Lead-free
VDD-5.3V, VDDQ-2.3V/3.3V		IS61NLP51236B-200TQ	IS61NLP102418B-200TQ	100 QFP
		IS61NLP51236B-200B3	IS61NLP102418B-200B3	165 BGA
	200MHz	IS61NLP51236B-200B2 IS61NLP102418B-200B2		119 BGA
		IS61NLP51236B-200TQL	IS61NLP102418B-200TQL	100 QFP, Lead-free
		IS61NLP51236B-200B3L	IS61NLP102418B-200B3L	165 BGA, Lead-free
		IS61NLP51236B-200B2L	IS61NLP102418B-200B2L	119 BGA, Lead-free
	250MHz *Please contact ISSI Marketing		ase contact ISSI Marketing	
		IS61NVP51236B-200TQ	IS61NVP102418B-200TQ	100 QFP
VDD=2.5V, VDDQ=2.5V	0000411	IS61NVP51236B-200B3	IS61NVP102418B-200B3	165 BGA
	200MHz	IS61NVP51236B-200TQL	IS61NVP102418B-200TQL	100 QFP, Lead-free
		IS61NVP51236B-200B3L	IS61NVP102418B-200B3L	165 BGA, Lead-free
	250MHz	*Ple	ase contact ISSI Marketing	
Vdd=1.8V, Vddq=1.8V	200MHz	*Plea	ase contact ISSI Marketing	

Industrial Range: -40°C to +85°C

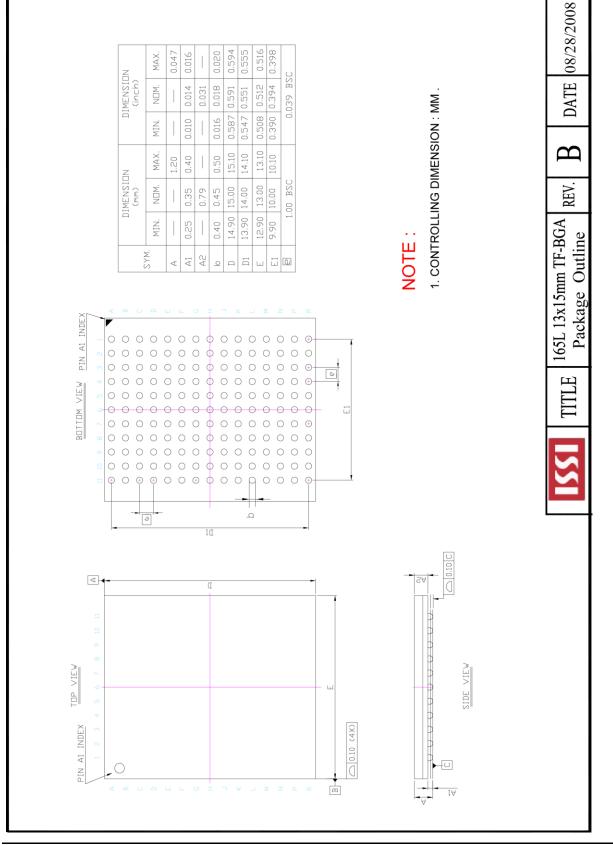
Vdd	Speed	X36	X18	Package
		IS61NLP51236B-250TQI	IS61NLP102418B-250TQI	100 QFP
		IS61NLP51236B-250B3I	IS61NLP102418B-250B3I	165 BGA
	250MHz	IS61NLP51236B-250B2I	IS61NLP102418B-250B2I	119 BGA
	200101112	IS61NLP51236B-250TQLI	IS61NLP102418B-250TQLI	100 QFP, Lead-free
		IS61NLP51236B-250B3LI	IS61NLP102418B-250B3LI	165 BGA, Lead-free
VDD=3.3V, VDDQ=2.5V/3.3V		IS61NLP51236B-250B2LI	IS61NLP102418B-250B2LI	119 BGA, Lead-free
VDD-3.3V, VDDQ-2.3V/3.3V		IS61NLP51236B-200TQI	IS61NLP102418B-200TQI	100 QFP
		IS61NLP51236B-200B3I	IS61NLP102418B-200B3I	165 BGA
	200MHz	IS61NLP51236B-200B2I	IS61NLP102418B-200B2I	119 BGA
		IS61NLP51236B-200TQLI	IS61NLP102418B-200TQLI	100 QFP, Lead-free
		IS61NLP51236B-200B3LI	IS61NLP102418B-200B3LI	165 BGA, Lead-free
		IS61NLP51236B-200B2LI	IS61NLP102418B-200B2LI	119 BGA, Lead-free
	250MHz *Please contact ISSI Marketing			
		IS61NVP51236B-200TQI	IS61NVP102418B-200TQI	100 QFP
Vdd=2.5V, Vddq=2.5V	200141-	IS61NVP51236B-200B3I	IS61NVP102418B-200B3I	165 BGA
	200MHz	IS61NVP51236B-200TQLI	IS61NVP102418B-200TQLI	100 QFP, Lead-free
		IS61NVP51236B-200B3LI	IS61NVP102418B-200B3LI	165 BGA, Lead-free
\/1 @\/_\/1 @\/	250MHz	*Plea	ase contact ISSI Marketing	
Vdd=1.8V, Vddq=1.8V	200MHz	*Plea	ase contact ISSI Marketing	


ORDERING INFORMATION

Automotive (A3) Range: -40°C to +125°C


VDD	Speed	X36	Package
	250MHz 200MHz	IS64NLP51236B-250TQLA3	100 QFP, Lead-free
		IS64NLP51236B-250B3LA3	165 BGA, Lead-free
V22V/V2EV//22V/		IS64NLP51236B-250B2LA3	119 BGA, Lead-free
VDD=3.3V, VDDQ=2.3V/3.3V		IS64NLP51236B-200TQLA3	100 QFP, Lead-free
		IS64NLP51236B-200B3LA3	165 BGA, Lead-free
		IS64NLP51236B-200B2LA3	119 BGA, Lead-free

*For all other voltages and options in automotive grade, please contact ISSI.


Integrated Silicon Solution, Inc.- www.issi.com Rev. D2 08/12/2019

Integrated Silicon Solution, Inc.- www.issi.com Rev. D2 08/12/2019

Integrated Silicon Solution, Inc.- www.issi.com Rev. D2 08/12/2019