

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.016		V/°C	Reference to 25°C, I _D = 1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.030	Ω	V _{GS} = 4.5V, I _D = 6.5A ②	
I IDS(on)				0.045		V _{GS} = 2.5V, I _D = 5.2A ②	
V _{GS(th)}	Gate Threshold Voltage	0.60		1.2	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	
9 fs	Forward Transconductance	13			S	$V_{DS} = 10V, I_D = 6.5A$	
I	Drain-to-Source Leakage Current			1.0	μA	V _{DS} = 16V, V _{GS} = 0V	
I _{DSS}				25		$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$	
lana	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V	
I _{GSS}	Gate-to-Source Reverse Leakage			100		V _{GS} = 12V	
Qg	Total Gate Charge		15	22		$I_D = 6.5A$	
Q _{gs}	Gate-to-Source Charge		2.2	3.3	nC	$V_{DS} = 10V$	
Q_{gd}	Gate-to-Drain ("Miller") Charge		3.5	5.3		V _{GS} = 5.0V ②	
t _{d(on)}	Turn-On Delay Time		8.5			$V_{DD} = 10V$	
t _r	Rise Time		11		no	$I_{D} = 1.0A$	
t _{d(off)}	Turn-Off Delay Time		36		ns	$R_G = 6.0\Omega$	
t _f	Fall Time		16			$R_D = 10\Omega$ ②	
C _{iss}	Input Capacitance		1310			$V_{GS} = 0V$	
Coss	Output Capacitance		150		pF	$V_{DS} = 15V$	
C _{rss}	Reverse Transfer Capacitance		36			f = 1.0MHz	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current					MOSFET symbol
	(Body Diode)			2.0	2.0 A	showing the
I _{SM}	Pulsed Source Current			20	1 ^	integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.7A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		19	29	ns	T _J = 25°C, I _F = 1.7A
Q _{rr}	Reverse Recovery Charge		13	20	nC	di/dt = 100A/µs ②

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.

International Rectifier

IRLMS2002PbF

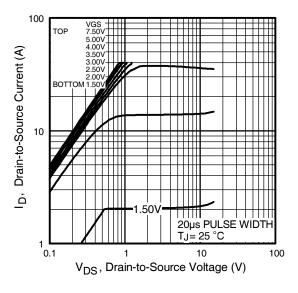


Fig 1. Typical Output Characteristics

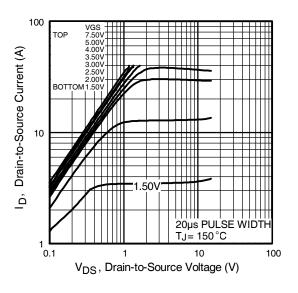


Fig 2. Typical Output Characteristics

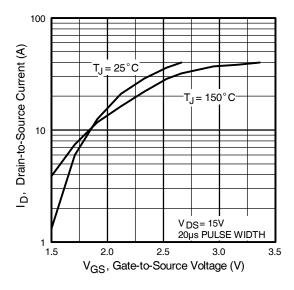
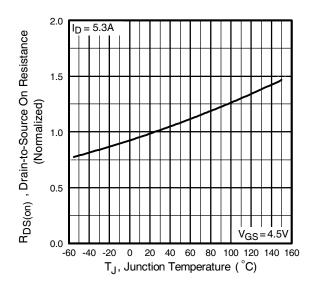
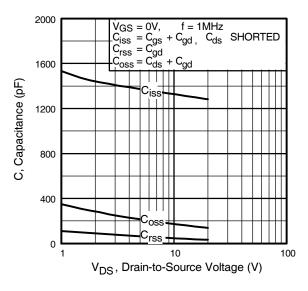




Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

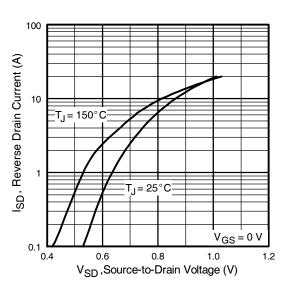
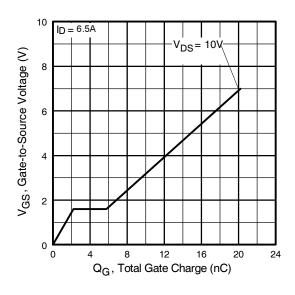



Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

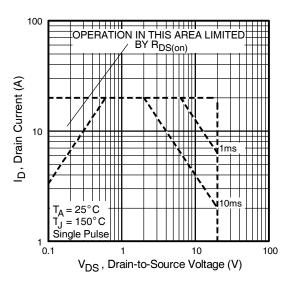
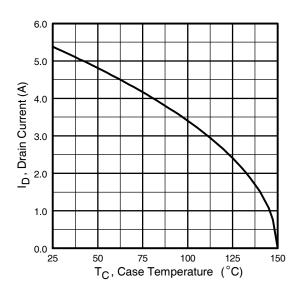
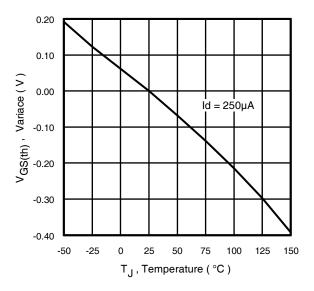




Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Typical Vgs(th) Variance Vs. Juction Temperature

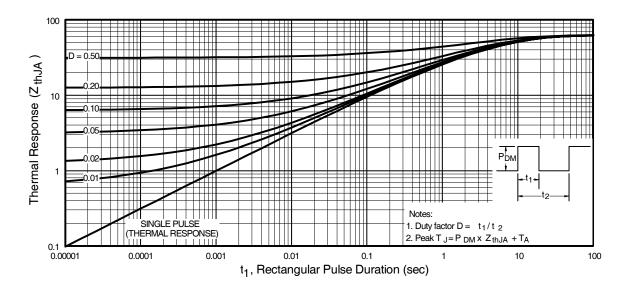
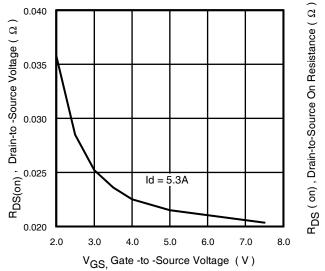
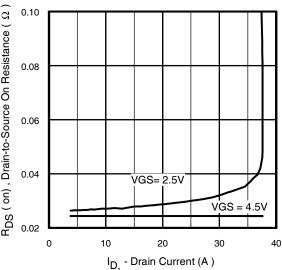




Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier

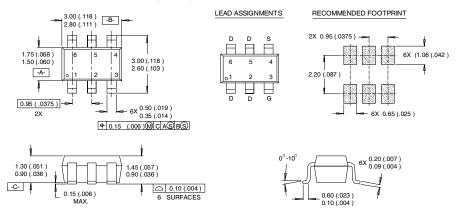
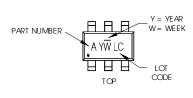

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Micro6 (SOT23 6L) Package Outline

Dimensions are shown in milimeters (inches)

- NOTES:


 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

Micro6 (SOT23 6L) Part Marking Information

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

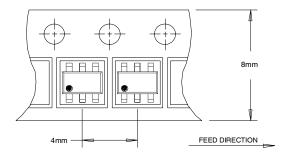
PART NUMBER CODE REFERENCE:

- A = IRLMS1902 B = IRLMS1503 C = IRLM\$6702 D = IRLM\$5703 E = IRLM\$6802 F = IRLM\$4502 G= IRLM\$2002 H = IRLMS6803
- Note: A line above the work week (as shown here) indicates Lead-Free.

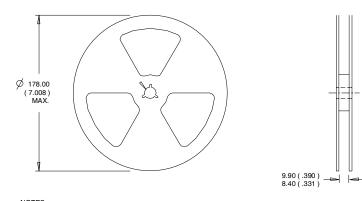
YEAR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5		
2006	6		
2007	7		
2008	8		
2009	9	7	7
2010	0	24	X
		25	Υ
		26	Z

W = (27-52) IF PRECEDED BY ALETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	Ε		
2006	F		
2007	G		
2008	Н		
2009	J	7	
2010	K	50	X
		51	Υ
		52	Z


Micro6™

International


Rectifier

Micro6 Tape & Reel Information

Dimensions are shown in milimeters (inches)

NOTES: 1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

This product has been designed and qualified for the consumer market.

Qualification Standards can be found on IR's Web site.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 01/05

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.