Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	_					
	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	200	_	_	V	VGS = 0V, ID = 1.0mA
ΔBVDSS/ΔTJ	Temperature Coefficient of Breakdown Voltage	-	0.29	_	V/°C	Reference to 25°C, I _D = 1.0mA
RDS(on)	Static Drain-to-Source On-State Resistance	_	_	0.18	Ω	VGS = 10V, ID = 10.2A (4)
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	V _{DS} = V _{GS} , I _D = 250μA
9fs	Forward Transconductance	6.1	_	_	S (7)	V _{DS} > 15V, I _{DS} = 10.2A ④
IDSS	Zero Gate Voltage Drain Current		_	25		V _{DS} = 160V ,V _{GS} =0V
		_	_	250	μΑ	V _{DS} = 160V,
						V _G S = 0V, T _J = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	I IIA	V _{GS} = -20V
Qg	Total Gate Charge		_	60		VGS =10V, ID = 16A
Qgs	Gate-to-Source Charge	_	_	10.6	nC	V _{DS} = 50V
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	_	37.6		
td(on)	Turn-On Delay Time	_	_	20		V _{DD} = 100V, I _D = 16A,
tr	Rise Time	_	_	152		$R_G = 9.1\Omega$
^t d(off)	Turn-Off Delay Time		_	58	ns	
tf	Fall Time	_	_	67		
LS+LD	Total Inductance	_	6.8	_	nΗ	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
C _{iss}	Input Capacitance	_	1300	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance		400	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	130	-		

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)		_	_	16	۸	
ISM	Pulse Source Current (Body Diode) ①		_	_	64	Α	
VSD	Diode Forward Voltage		_	_	1.5	V	$T_j = 25$ °C, $I_S = 16A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		_	_	500	nS	Tj = 25°C, IF = 16A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge		_	_	5.3	μC	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by L _S + L _D .					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{th} JC	Junction-to-Case	_	_	1.25		
RthCS	Case-to-sink	_	0.21	_	°C/W	
R _{th} JA	Junction-to-Ambient	_	_	80		Typical socket mount

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

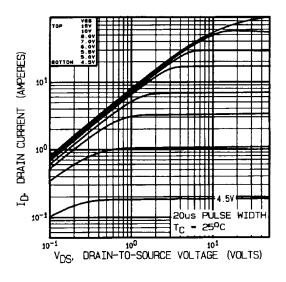


Fig 1. Typical Output Characteristics

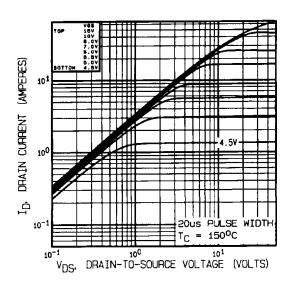


Fig 2. Typical Output Characteristics

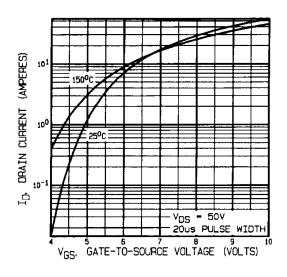
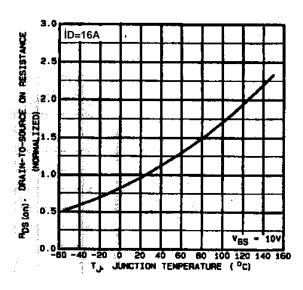
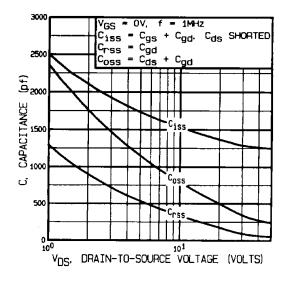
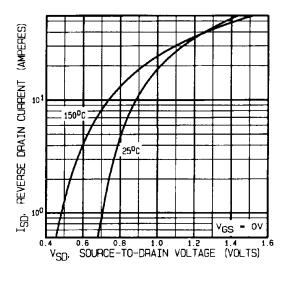
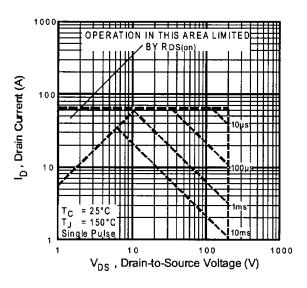




Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature


FOR TEST CIRCUIT


SEE FIGURE 13a & b

Og. TOTAL GATE CHARGE (nc)

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

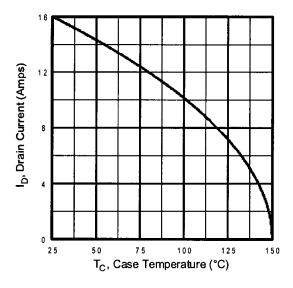


Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

4 www.irf.com

Fig 9. Maximum Drain Current Vs. Case Temperature

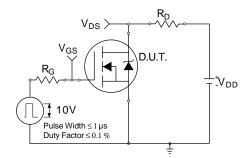


Fig 10a. Switching Time Test Circuit

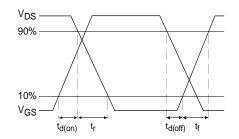


Fig 10b. Switching Time Waveforms

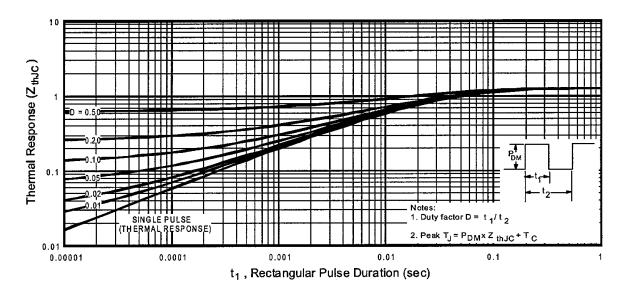


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

www.irf.com

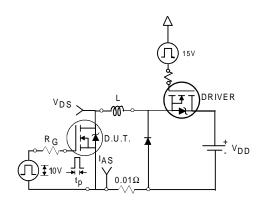


Fig 12a. Unclamped Inductive Test Circuit

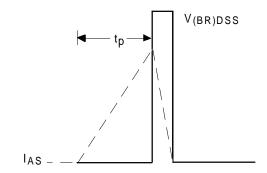


Fig 12b. Unclamped Inductive Waveforms

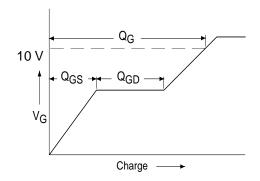


Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

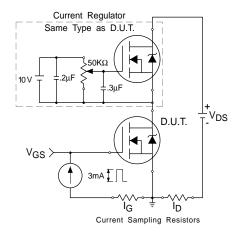
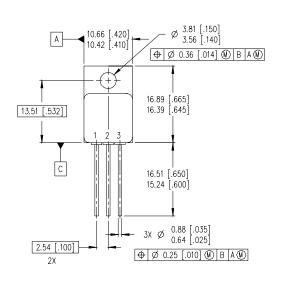
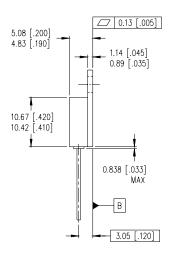


Fig 13b. Gate Charge Test Circuit

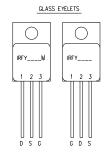



Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$ V_{DD} = 50V, starting T_J = 25°C, L= 4.5mH Peak I_L = 16A, V_{GS} = 10V

- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- ④ Pulse width ≤ 300 μ s; Duty Cycle ≤ 2%

Case Outline and Dimensions — TO-257AA



NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-257AA.

<u>LEGEND</u>
D - DRAIN
S - SOURCE

G - GATE

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 04/01