Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to Ground lead. (Tambient=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vds	Maximum drain to source voltage	-0.3	36	V
Vds cont	Maximum continuous drain to source voltage	-	28	V
Vin	Maximum input voltage	-0.3	6	V
Isd cont.	Max diode continuous current (limited by thermal dissipation)	—	1.5	А
Pd	Maximum power dissipation (internally limited by thermal protection) Rth=60°C/W IPS1041L 1" sqr. footprint		2	W
	Rth=100°C/W IPS1042G std. footprint		1.25	
	Electrostatic discharge voltage (Human body) C=100pF, R=1500 Ω			
	Between drain and source	—	4	
ESD	Other combinations		3	kV
LOD	Electrostatic discharge voltage (Machine Model) C=200pF,R=0Ω			ΓV
	Between drain and source	_	0.5	
	Other combinations		0.3	
Tj max.	Max. storage & operating temperature junction temperature	-40	150	°C
Tsoldering	Lead soldering temperature (10 seconds)		300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient IPS1041L SOT-223 std. footprint	100	_	
Rth2	Thermal resistance junction to ambient IPS1041L SOT-223 1" sqr. footprint	60	_	
Rth1	Thermal resistance junction to ambient IPS1041R D-Pak std. footprint		_	
Rth2	Thermal resistance junction to case IPS1041R D-Pak	6	_	°C/W
Rth1	Thermal resistance junction to ambient IPS1042G SO-8 std. Footprint	100		0/00
	1 die active	100		
Rth1	Thermal resistance junction to ambient IPS1042G SO-8 std. footprint	130		
NUT	2 die active	130		

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
VIH	High level input voltage	4.5	5.5	V
VIL	Low level input voltage	0	0.5	v
	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V Rth=60°C/W IPS1041L 1" sqr. Footprint		1.95	
lds	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V Rth=50°C/W IPS1041R 1" sqr. Footprint	_	2.2	А
	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V Rth=100°C/W IPS1042G 1" sqr. Footprint - 1 die active	_	1.5	A
	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V Rth=130°C/W IPS1042G 1" sqr. Footprint - 2 die active		0.7	
Rin	Recommended resistor in series with IN pin to generate a diagnostic	0.5	10	kΩ
Max L	Max. recommended load inductance (including line inductance) (1)		20	μH
Max. F	Max. frequency		2000	Hz
Max. t rise	Max. input rising time	_	1	μs

(1) Higher inductance is possible if maximum load current is limited - see figure 11

Static Electrical Characteristics

Ti=25°C, Vcc=14V (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance Tj=25°C	—	80	100	mΩ	Vin=5V. Ids=3A
	ON state resistance Tj=150°C	—	135	175	1115.2	VIII=3V, IUS=3A
ldss1	Drain to source leakage current	_	0.1	5	μA	Vcc=14V, Tj=25°C
ldss2	Drain to source leakage current	—	0.2	10	μΑ	Vcc=28V, Tj=25°C
V clamp1	Drain to source clamp voltage 1	36	38			Id=10mA
V clamp2	Drain to source clamp voltage 2	—	39	42	V	ld=1A
Vin clamp	IN to source pin clamp voltage	5.5	6.5	7.5	v	lin=1mA
Vth	Input threshold voltage	—	1.7			Id=10mA

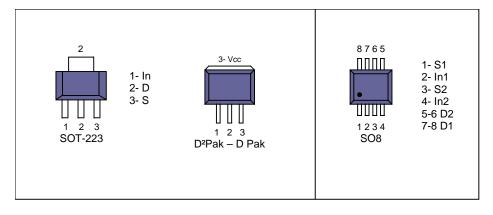
Switching Electrical Characteristics Vcc=14V, Resistive load=5Ω, Rinput=0Ω, Vin=5V, Tj=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time to 20%	3	10	23		
Tr	Rise time 20% to 80%	2	7	20		See figure 2
Tdoff	Turn-off delay time to 80%	15	40	150	μs	See ligule 2
Tf	Fall time 80% to 20%	4	10	20		
Eon + Eoff	Turn on and off energy	_	0.2	_	mJ	

Protection Characteristics

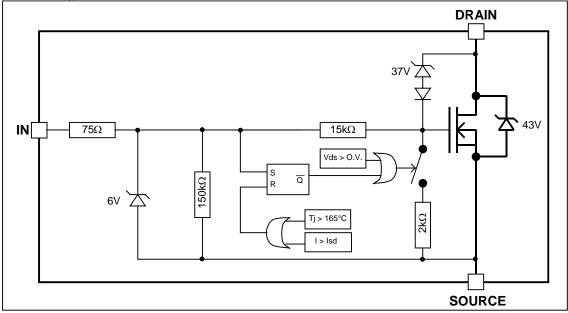
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tsd	Over temperature threshold	150(2)	165		°C	See figure 1
lsd	Over current threshold	3	4.5	6	А	See figure 1
OV	Over voltage protection (not active when the device is ON)	34	37	-	V	
Vreset	IN protection reset threshold	—	1.7	_	V	
Treset	Time to reset protection	15(2)	50	200	μs	Vin=0V, Tj=25°C

(2) Guaranteed by design

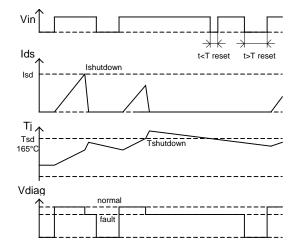

Diagnostic

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
lin, on	ON state IN positive current	15	32	70		Vin=5V
lin, off	OFF state IN positive current (after protection latched)	150	230	350	μA	Vin=5V

International


IPS1041(L)(R)PbF / IPS1042GPbF

Lead Assignments


Functional Block Diagram

All values are typical

International

IPS1041(L)(R)PbF / IPS1042GPbF

All curves are typical values. Operating in the shaded area is not recommended.

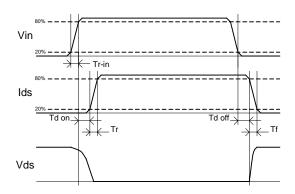


Figure 2 – IN rise time & switching definitions

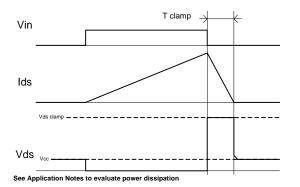


Figure 3 – Active clamp waveforms

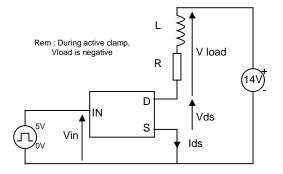


Figure 4 – Active clamp test circuit

International

IPS1041(L)(R)PbF / IPS1042GPbF

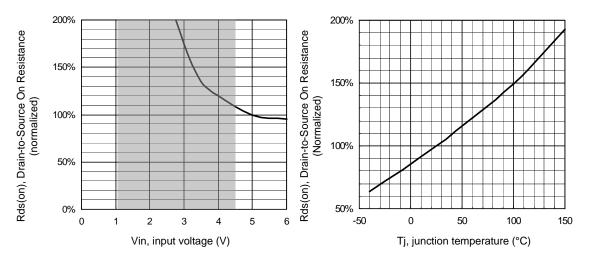
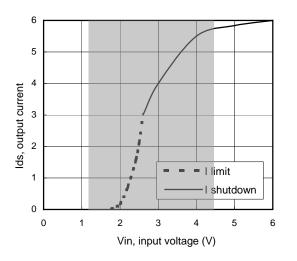
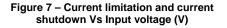
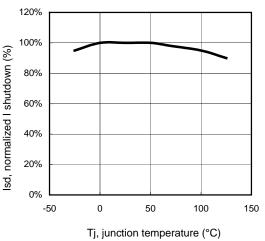
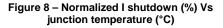
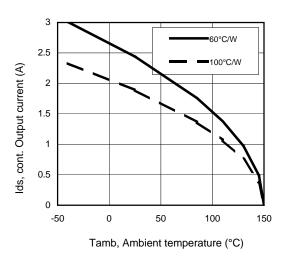
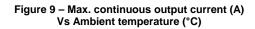
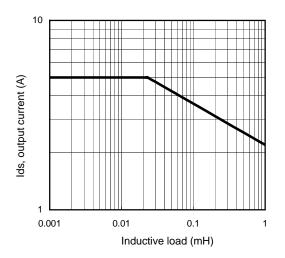
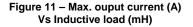



Figure 5 – Normalized Rds(on) (%) Vs Input voltage (V)

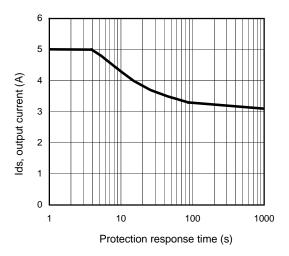
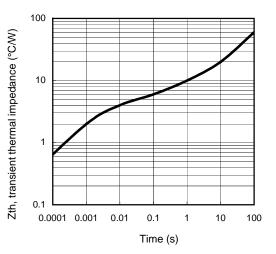
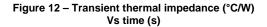
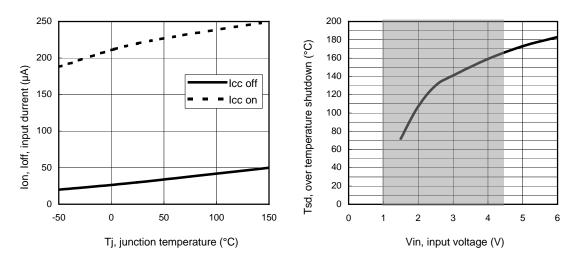





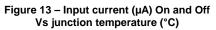

Figure 6 - Normalized Rds(on) (%) Vs Tj (°C)

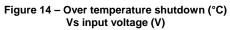




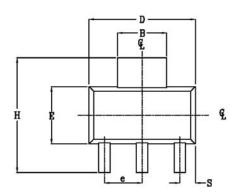
International

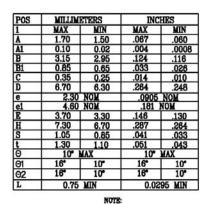





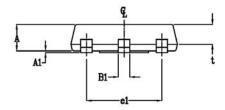

Figure 10 – Ids (A) Vs over temperature protection response time (s) / IPS1041L



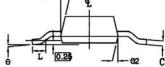
International **IOR** Rectifier

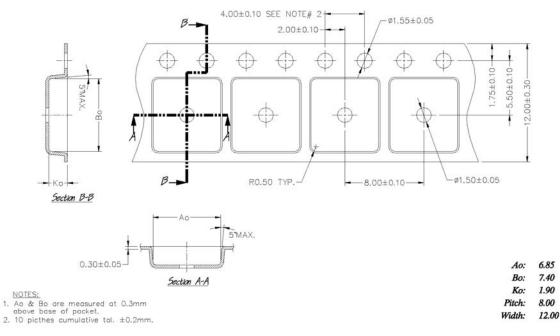






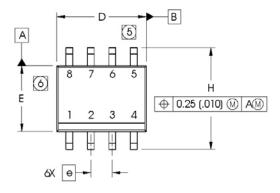
International

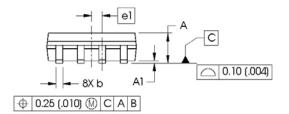

Case Outline - SOT-223 - Automotive Q100 PbF MSL2 qualified


NOTE: 1. PACKAGE OUTLINE EXCLUSIVE OF ANY MOLD FLASHES DIMENSION. 2. PACKAGE OUTLINE EXCLUSIVE OF BURR DIMENSION.

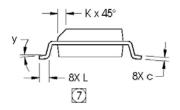
Leads and drain are plated with 100% Sn

International

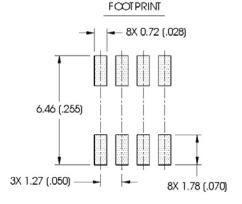

Tape & Reel - SOT-223



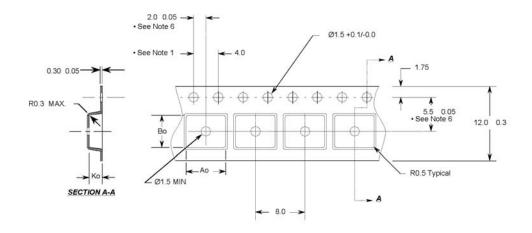
International


Case Outline - SO-8 - Automotive Q100 PbF MSL2 qualified

Dimensions are shown in millimeters (inches)


DIM	INC	HES	MILLIMETERS		
Divi	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
E	.1497	.1574	3.80	4.00	
е	.050 B/	ASIC	1.27 B	ASIC	
e1	.025 B/	ASIC	0.635	BASIC	
Н	.2284	.2440	5.80	6.20	
К	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

NOTES:


- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- [6] DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

Leads and drain are plated with 100% Sn

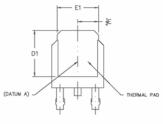
International

Tape & Reel - SO-8

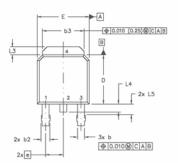
Ao = 6.4 mm

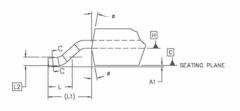
Bo = 5.2 mm

Ko = 2.1 mm

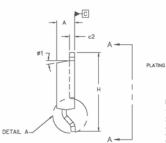

Notes:

- 1. 10 sprocket hole pitch cumulative tolerance 0.2
- 2. Camber not to exceed 1mm in 100mm
- 3. Material: Black Conductive Advantek Polystyrene
- 4. Ao and Bo measured on a plane 0.3mm above the
- bottom of the pocket
- Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- Pocket to the top surface of the carrier.
 Pocket position relative to sprocket hole measured as
- true position of pocket, not pocket hole.


- All Dimensions in Millimeters -


International **TOR** Rectifier

Case Outline - D-Pak - Automotive Q100 PbF MSL1 qualified



DIMENSIONS SYMBOL MILLIMETERS INCHES NOTES MIN MAX MAX MIN 2.18 2.30 .086 094 A1 0.13 005 ь 0.84 0.89 .025 .035 5 ь1 0.64 0.79 0.031 .025 5 b2 0.76 1.14 .030 .045 b3 4.95 5.48 .195 .215 c 0.45 0.61 .018 .024 e1 0.41 0.55 .016 .022 5 c2 .046 0.89 .018 .035 5 D 5.97 6.22 .235 .245 6 D1 5.21 .205 4 ε 6.35 6,73 250 .265 6 E1 4.32 .170 4 e 2.29 .090 BSC н 9.40 10.41 .370 .410 ι 1.40 1.78 .055 .070 L1 2.74 REF. 108 L2 0.051 BSC .020 BSC L3 0.89 1.27 .035 .050 L4 1.02 .040 L5 1.14 1.52 .045 .060 3 ø 0* 10" 0' 10* **ø**1 or. 15' 0' 15'

NOTES:

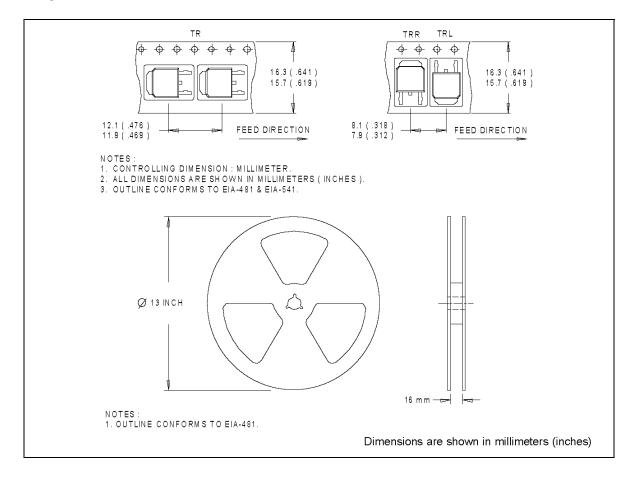
(C)

DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994. 1.0

c1

PLATING METAL

- 2.0
- 3.0


Ь1

SECTION C-C

- DMERSIONS ARE SHOWN IN INCHES [MILLIMETERS] LEAD DIMENSION UNCONTROLLED IN L5 DIMENSION DI AND EI ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD. 4.0 5.0 SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 [0.127] AND
- JOID [0.2540 FROM THE LEAD TIP. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 6.0 0.005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 7.0 OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA
- 8.0 LEADS AND DRAIN ARE PLTED WITH 100% Sn

International

Tape & Reel - D-Pak

International INTERNATIONAL IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. Dpak is MSL1 qualified. SOT223 and SO8 are MSL2 qualified. This product is designed and qualified for the Automotive [Q100] market. 12/06/2006

Downloaded from Arrow.com.