

TRENCHSTOP[™] Series

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				L. C.
IGBT thermal resistance,	R _{thJC}		1.7	K/W
junction – case				
Thermal resistance,	R _{thJA}		62	
junction – ambient				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

Parameter	Cumb al	Conditions	Value			11
	Symbol Conditions	min.	typ.	max.	Unit	
Static Characteristic						
Collector-emitter breakdown voltage	V _{(BR)CES}	V _{GE} =0V, I _C =0.25mA	600	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE} = 15 V, I_{\rm C} = 6 A$				
		<i>T</i> _j =25°C	-	1.5	2.05	
		<i>T</i> _j =175°C	-	1.8		
Gate-emitter threshold voltage	V _{GE(th)}	<i>I</i> _C =0.18mA,	4.1	4.6	5.7	
		$V_{\rm CE} = V_{\rm GE}$				
Zero gate voltage collector current	I _{CES}	V _{CE} =600V, V _{GE} =0V				μA
		<i>T</i> _j =25°C	-	-	40	
		<i>T</i> _j =175°C	-	-	700	
Gate-emitter leakage current	I _{GES}	$V_{CE}=0V, V_{GE}=20V$	-	-	100	nA
Transconductance	g _{fs}	$V_{\rm CE} = 20 V, I_{\rm C} = 6 A$	-	3.6	-	S
Integrated gate resistor	R _{Gint}			none		Ω

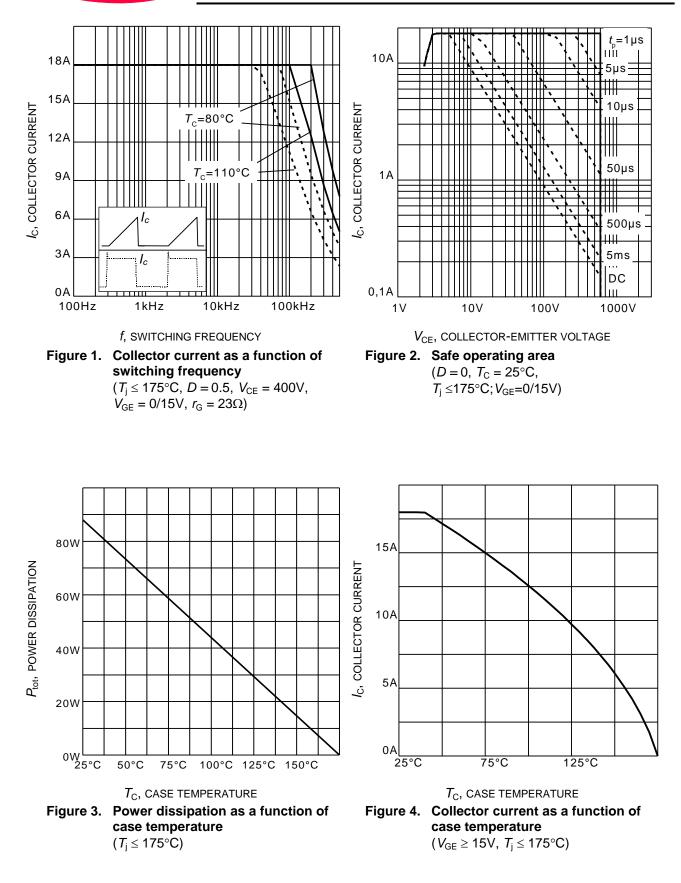
Dynamic Characteristic

Input capacitance	Ciss	V _{CE} =25V,	-	368	-	pF
Output capacitance	Coss	$V_{GE}=0V$,	-	28	-	
Reverse transfer capacitance	Crss	f=1MHz	-	11	-	
Gate charge	Q _{Gate}	$V_{\rm CC} = 480 \text{V}, \ I_{\rm C} = 6 \text{A}$	-	42	-	nC
		$V_{GE}=15V$				
Internal emitter inductance	LE		-	7	-	nH
measured 5mm (0.197 in.) from case						
Short circuit collector current ¹⁾	I _{C(SC)}	$V_{\rm GE} = 15 V, t_{\rm SC} \le 5 \mu s$ $V_{\rm CC} = 400 V,$	-	55	-	A
		$T_j = 25^{\circ}C$				

¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

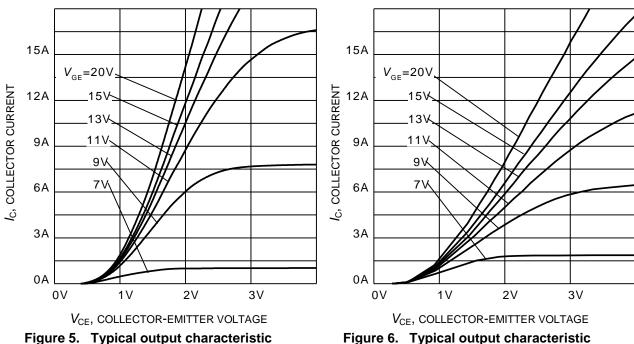
TRENCHSTOP™ Series

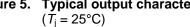
Switching Characteristic, Inductive Load, at $T_i=25$ °C

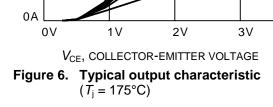

Parameter	Cymhol	Symbol Conditions	Value			11
	Symbol		min.	typ.	max.	Unit
IGBT Characteristic	·	·				
Turn-on delay time	$t_{d(on)}$	$T_{j}=25^{\circ}C,$ $V_{CC}=400V, I_{C}=6A,$ $V_{GE}=0/15V, r_{G}=23\Omega,$ $L_{\sigma}=60nH, C_{\sigma}=40pF$	-	9	-	ns
Rise time	t _r		-	6	-	
Turn-off delay time	$t_{d(off)}$		-	130	-	
Fall time	t _f		-	58	-	
Turn-on energy	Eon	L_{σ} , C_{σ} from Fig. E Energy losses include "tail" and diode reverse recovery. Diode used IDP06E60	-	0.09	-	mJ
Turn-off energy	E _{off}		-	0.11	-	7
Total switching energy	E _{ts}		-	0.2	-	

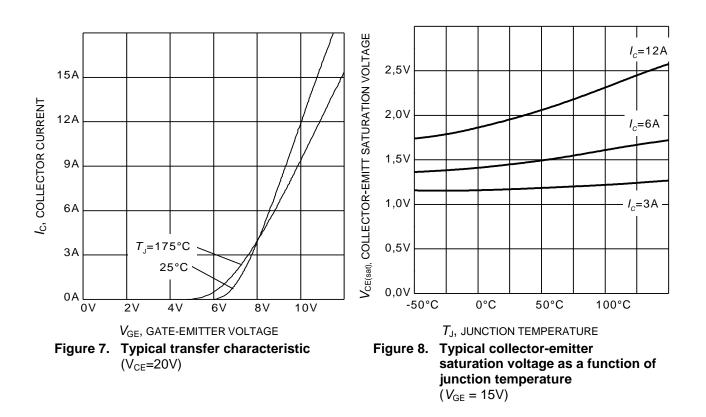
Switching Characteristic, Inductive Load, at T_j =175 °C

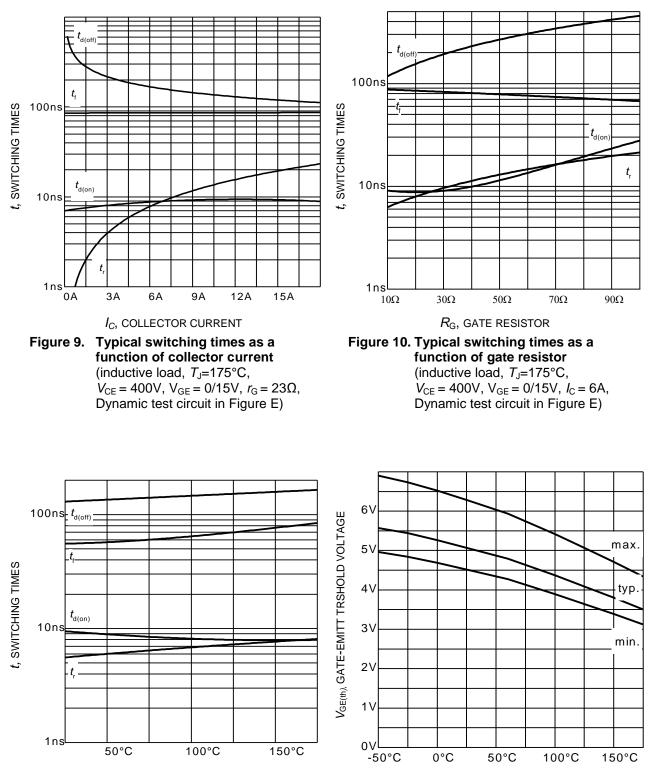
Parameter	Symbol	Conditions	Value			l Init
	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	$T_{j}=175 ^{\circ}C,$ $V_{CC}=400 ^{\circ}V, I_{C}=6 ^{\circ}A,$ $V_{GE}=0/15 ^{\circ}V, r_{G}=23 ^{\circ}\Omega$ $L_{\sigma}=60 ^{\circ}H, C_{\sigma}=40 ^{\circ}PF$ L_{σ}, C_{σ} from Fig. E Energy losses include "tail" and diode reverse recovery. Diode used IDP06E60	-	9	-	ns
Rise time	tr		-	8	-	
Turn-off delay time	$t_{d(off)}$		-	165	-	
Fall time	t _f		-	84	-	
Turn-on energy	Eon		-	0.14	-	mJ
Turn-off energy	E _{off}		-	0.18	-	
Total switching energy	E _{ts}		-	0.335	-	

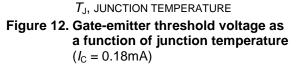












TRENCHSTOP™ Series

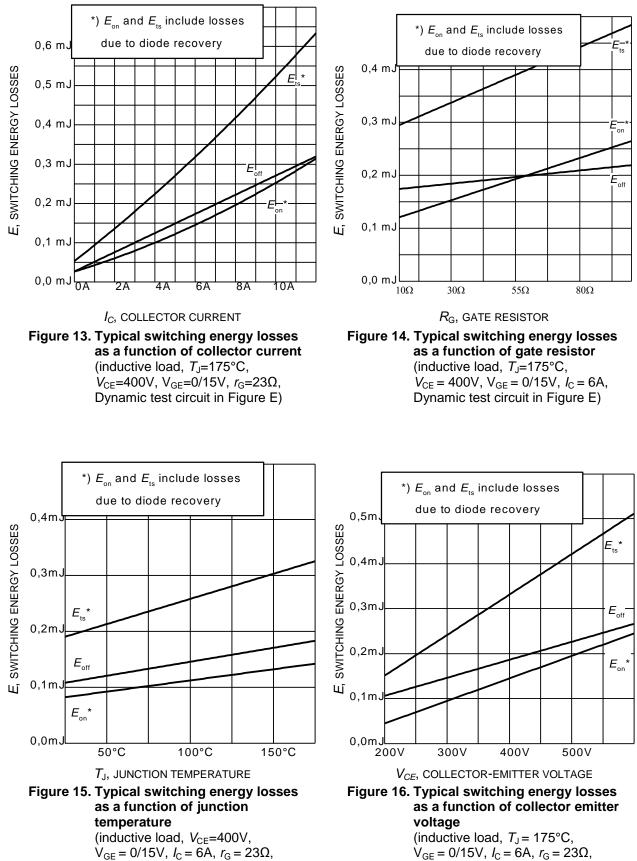
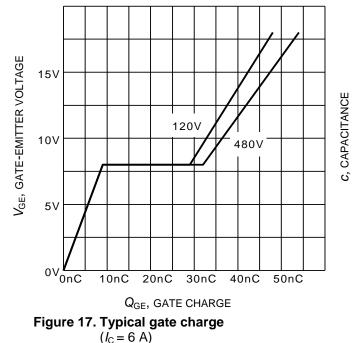

 $T_{\rm J}$, JUNCTION TEMPERATURE

Figure 11. Typical switching times as a function of junction temperature (inductive load, $V_{CE} = 400$ V, $V_{GE} = 0/15$ V, $I_C = 6$ A, $r_G = 23\Omega$, Dynamic test circuit in Figure E)

TRENCHSTOP™ Series



Dynamic test circuit in Figure E)

Dynamic test circuit in Figure E)

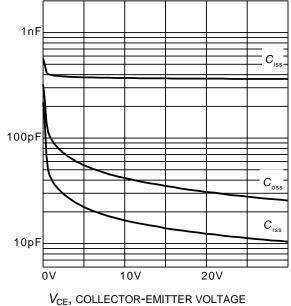
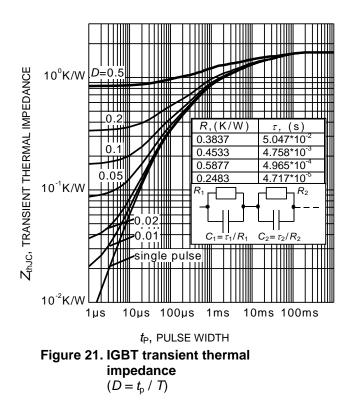
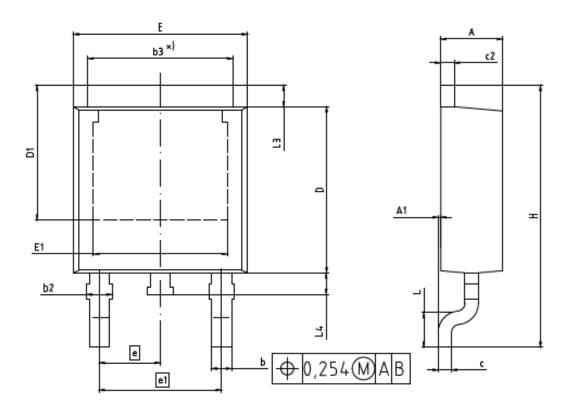
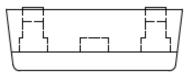
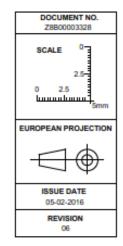



Figure 18. Typical capacitance as a function of collector-emitter voltage $(V_{GE}=0V, f = 1 \text{ MHz})$

TRENCHSTOP[™] Series

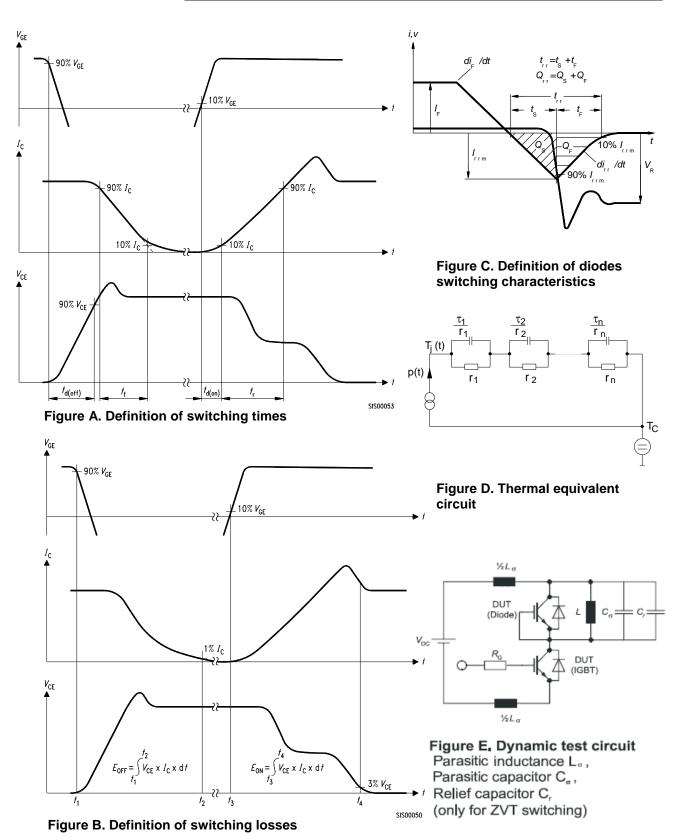



Downloaded from Arrow.com.


TRENCHSTOP™ Series

Package Drawing PG-TO252-3

NOTES: 1. ALL DIMENSIONS REFER TO JEDEC STANDARD TO-252 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.



DIM	MILLIMETERS			
Long.	MIN	MAX		
A	2.16	2.41		
A1	0.00	0.15		
b	0.64	0.89		
b2	0.65	1.15		
b3	4,95	5.50		
c	0.46	0.61		
c2	0.40	0.98		
D	5.97	6.22		
D1	5.02	5.84		
E	6.35	6.73		
E1	4.32	5.21		
e	2	29 (BSC)		
e1	4.	.57 (BSC)		
N		3		
н	9.40	10.48		
L	1.18	1.78		
L3	0.89	1.27		
L4	0.51 1.02			

IFAG IPC TD VLS

TRENCHSTOP[™] Series

IGD06N60T

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2018. All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is <u>not</u> qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

IFAG IPC TD VLS