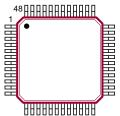
Ordering Information

	Package Options								
Device	48-Lead LQFP 7.00x7.00mm body 1.60mm height (max) 0.50mm pitch	28-Lead PLCC .453x.453in body .180in height (max) .050in pitch	(P						
HV2201	HV2201FG-G	HV2201PJ-G							

Absolute Maximum Ratings

Parameter	Value
V _{DD} logic supply	-0.5V to +7.0V
V_{PP} - V_{NN} differential supply	220V
V _{PP} positive supply	-0.5V to V _{NN} +200V
V _{NN} negative supply	+0.5V to -200V
Logic input voltage	-0.5V to V _{DD} +0.3V
Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0A
Storage temperature	-65°C to 150°C
Power dissipation:	
48-Lead LQFP	1.0W
28-Lead PLCC	1.2W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.


Operating Conditions

Sym	Parameter	Value
V _{DD}	Logic power supply voltage	3.0V to 5.5V
V _{PP}	Positive high voltage supply	40V to V _{NN} +200V
V _{NN}	Negative high voltage supply	-40V to -160V
V _{IH}	High level input voltage	$0.9V_{DD}$ to V_{DD}
V _{IL}	Low-level input voltage	0V to 0.1V _{DD}
V _{SIG}	Analog signal voltage peak-to-peak	V _{NN} +10V to V _{PP} -10V
T _A	Operating free air temperature	0°C to 70°C

Notes:

- Power up/down sequence is arbtrary except GND must be powered-up first and powered-down last.
- 2. V_{SIG} must be $V_{NN} \le V_{SIG} \le V_{PP}$ or floating during power up/down transition.
- 3. Rise and fall times of power supplies $V_{\rm DD}$, $V_{\rm PP}$ and $V_{\rm NN}$ should not be less than 1.0msec.

Pin Configuration

48-Lead LQFP (FG) (top view)

28-Lead PLCC (PJ) (top view)

Product Marking

YY = Year Sealed WW = Week Sealed

L = Lot Number C = Country of Origin*

A = Assembler ID*
____ = "Green" Packaging

*May be part of top marking

Package may or may not include the following marks: Si or 🌎

48-Lead LQFP (FG)

YY = Year Sealed WW = Week Sealed

L = Lot Number

A = Assembler ID C = Country of Origin*

= "Green" Packaging

*May be part of top marking

Package may or may not include the following marks: Si or

28-Lead PLCC (PJ)

⁻G indicates the part is RoHS compliant (Green)

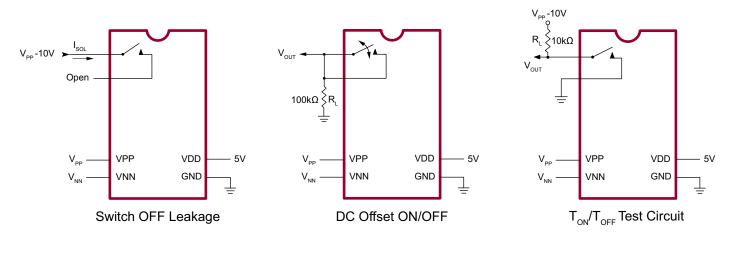
DC Electrical Characteristics

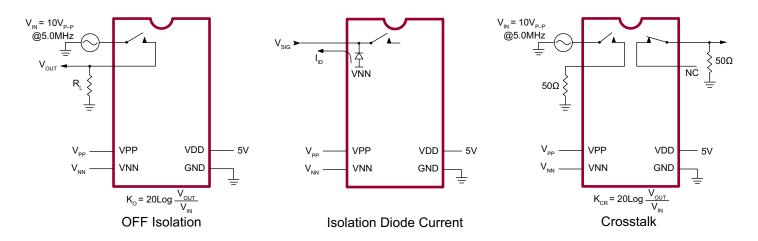
(Over operating conditions unless otherwise specified)

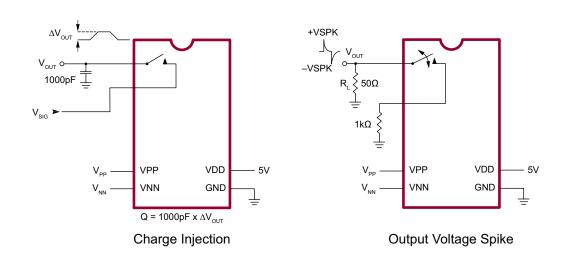
		0 °	С		+25°C		+70)°C		0 1111		
Sym	Parameter	Min	Max	Min	Тур	Max	Min	Max	Units	Conditions		
		-	30	-	26	38	-	48		$I_{SIG} = 5.0 \text{mA}$ $V_{PP} = +40 \text{V}$		
		-	25	-	22	27	-	32		$I_{SIG} = 200 \text{mA}$ $V_{NN}^{11} = -160 \text{V}$		
R _{ons}	Small signal switch on-resistance	-	25	-	22	27	-	30	Ω	$I_{SIG} = 5.0 \text{mA}$ $V_{PP} = +100 \text{V}$		
ONS	Cinali digital diffici di redictante	-	18	-	18	24	-	27		$I_{SIG} = 200 \text{mA}$ $V_{NN} = -100 \text{V}$		
		-	23	-	20	25	-	30	_	$I_{SIG} = 5.0 \text{mA}$ $V_{PP} = +160 \text{V}$		
	One all airms at a with the are manifestance	-	22	-	16	25	-	27		$I_{SIG} = 200 \text{mA}$ $V_{NN} = -40 \text{V}$		
ΔR_{ons}	Small signal switch on-resistance matching	-	20	-	5.0	20	-	20	%	$I_{SIG} = 5.0 \text{mA}, V_{PP} = +100 \text{V}, V_{NN} = -100 \text{V}$		
$R_{\scriptscriptstyleONL}$	Large signal switch on-resistance	-	-	-	15	-	-	-	Ω	$V_{SIG} = V_{PP} - 10V, I_{SIG} = 1.0A$		
I_{SOL}	Switch off leakage per switch	-	5.0	-	1.0	10	-	15	μA	$V_{SIG} = V_{PP} -10V, V_{NN} +10V$		
V	DC offset switch off	-	300	-	100	300	-	300	mV	100kΩ load		
V _{os}	DC offset switch on	-	500	-	100	500	-	500	mV	1001(32 1000		
I _{PPQ}	Quiescent V _{PP} supply current	-	-	-	10	50	-	-	μA	All switches off		
I _{NNQ}	Quiescent V _{NN} supply current	-	-	-	-10	-50	-	-	μΑ	All switches off		
I_{PPQ}	Quiescent V _{PP} supply current	-	-	-	10	50	-	-	μA	All switches on, $I_{\rm SW}$ = 5.0mA		
I _{NNQ}	Quiescent V _{NN} supply current	-	-	-	-10	-50	-	-	μA	All switches on, I _{SW} = 5.0mA		
I _{sw}	Switch output peak current	-	3.0	-	3.0	2.0	-	2.0	Α	V _{SIG} duty cycly < 0.1%		
$f_{\rm SW}$	Output switching frequency	-	-	-	-	50	-	-	kHz	Duty cycle = 50%		
		-	4.0	-	-	5.0	-	5.5		$V_{PP} = +40V$ $V_{NN} = -160V$ All output switches are		
l _{PP}	Average V _{PP} supply current	-	3.5	-	-	3.5	-	3.5	mA	$V_{PP} = +100V$ turning on and off at		
		-	3.5	-	-	3.5	-	4.0		$V_{PP} = +160V$ $V_{NN} = -40V$ 50kHz with no load		
		-	4.5	-	-	5.0	-	5.5		$V_{PP} = +40V$ $V_{NN} = -160V$ All output switches are		
I _{NN}	Average V _{NN} supply curent	-	3.5	-	-	3.5	-	3.5	mA	$V_{PP} = +100V$ turning on and off at		
		-	3.5	-	-	3.5	-	4.0		$V_{PP} = +160V$		
I _{DD}	Average V _{DD} supply current	-	4.0	-	-	4.0	-	4.0	mA	$f_{CLK} = 5MHz, V_{DD} = 5.0V$		
I _{DDQ}	Quiescent V _{DD} supply current	-	10	-	-	10	-	10	μA	All logic inputs are static		
I _{SOR}	Data out source current	0.45	-	0.45	0.70	-	0.40	-	mA	V _{OUT} = V _{DD} -0.7V		
ISINK	Data out sink current	0.45	-	0.45	0.70	-	0.40	-	mA	V _{OUT} = 0.7V		
C _{IN}	Logic input capacitance	-	10	-	-	10	-	10	pF			

AC Electrical Characteristics (Over recommended operating conditions: V_{DD} = 5.0V, t_R = $t_F \le 5$ ns, 50% duty cycle, C_{LOAD} = 20pF, unless otherwise specified)

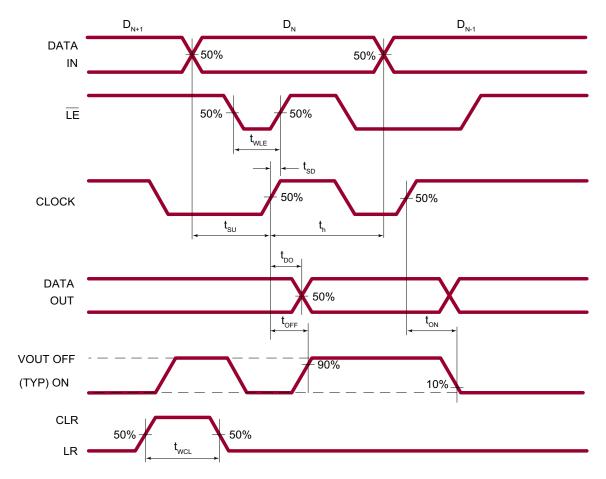
		00	C		+25°C		+70	0°C			
Sym	Parameter	Min	Max	Min	Тур	Max	Min	Max	Units	Conditions	
t _{sd}	Set up time before LE rises	25	-	25	-	-	25	-	ns		
	T	56	-	-	56	-	56	-		V _{DD} = 3.0V	
t _{WLE}	Time width of LE	12	-	-	12	-	12	-	ns	V _{DD} = 5.0V	
1	Olaska dalam timas ta data ant	-	120	-	95	140	-	167		V _{DD} = 3.0V	
t _{DO}	Clock delay time to data out	-	58	-	40	69	-	85	ns	V _{DD} = 5.0V	
t _{wcL}	Time width of CL	55	-	55	_	-	55	-	ns		
4	Cat up time data to alcak	39	-	47	30	-	58	-		V _{DD} = 3.0V	
t _{su}	Set up time data to clock	16	-	21	10	-	26	-	ns	V _{DD} = 5.0V	
t _H	Hold time data from clock	2	-	2	-	-	2	-	ns	V _{DD} = 3.0 or 5.0V	
f	Clock froquency	-	-	-	8	-	-	-	MHz	V _{DD} = 3.0V	
f _{CLK}	Clock frequency	-	-	-	20	-	-	-	IVITZ	V _{DD} = 5.0V	
t _R , t _F	Clock rise and fall times	-	50		-	50	-	50	ns		
t _{on}	Turn on time	-	5.0	-	-	5.0	-	5.0	μs	$V_{SIG} = V_{PP} - 10V, R_{LOAD} = 10k\Omega$	
t _{OFF}	Turn off time	-	5.0	-	-	5.0	-	5.0	μs	$V_{SIG} = V_{PP} - 10V$, $R_{LOAD} = 10k\Omega$	
		-	20	-	-	20	-	20		$V_{PP} = +40V, V_{NN} = -160V$	
dv/dt	Maximun V _{SIG} slew rate	-	20	-	-	20	-	20	V/ns	V _{PP} = +100V, V _{NN} = -100V	
		-	20	-	-	20	-	20		V _{PP} = +160V, V _{NN} = -40V	
14	Off includion	-30	-	-30	-33	-	-30	-	40	f = 5.0MHz, 1.0kΩ/15pF load	
K _o	Off isolation	-58	-	-58	-	-	-58	-	dB	f = 5.0MHz, 50Ω load	
K _{CR}	Switch crosstalk	-60	-	-60	-70	-	-60	-	dB	f = 5.0MHz, 50Ω load	
I _{ID}	Output switch isolation diode current	-	300	-	-	300	-	300	mA	300ns pulse width, 2.0% duty cycle	
C _{SG(OFF)}	Off capacitance SW to GND	5.0	17	5.0	12	17	5.0	17	pF	0V, f = 1.0MHz	
C _{SG(ON)}	On capacitance SW to GND	25	50	25	38	50	25	50	pF	0V, f = 1.0MHz	
+V _{SPK}		-	-	-	-	150	-	-		$V_{PP} = +40V, V_{NN} = -160V,$	
-V _{SPK}		-	-	-	-	150	-	-		$R_{LOAD} = 50\Omega$	
+V _{SPK}	Output voltage spike	-	-	-	-	150	-	-	mV	V _{PP} = +100V, V _{NN} = -100V,	
-V _{SPK}	Output voitage spike	-	-	-	-	150	-	-	IIIV	$R_{LOAD}^{T} = 50\Omega$	
+V _{SPK}		-	-	-	-	150	-	-		$V_{PP} = +160V, V_{NN} = -40V,$	
-V _{SPK}		-	-	-	-	150	-	-		$R_{LOAD} = 50\Omega$	
		-	-	-	820	-	-	-		$V_{PP} = +40V, V_{NN} = -160V, V_{SIG} = 0V$	
QC	Charge injection	-	-	-	600	-	-	-	pC	$V_{PP} = +100V, V_{NN} = -100V,$ $V_{SIG} = 0V$	
		-	-	-	350	-	-	-		$V_{PP} = +160V, V_{NN} = -40V,$ $V_{SIG} = 0V$	


Truth Table


D0	D1	D2	D3	D4	D5	D6	D7	LE	CLR	SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	Off							
Н								L	L	On							
	L							L	L		Off						
	Н							L	L		On						
		Ш						L	L			Off					
		Н						L	L			On					
			L					L	L				Off				
			Н					L	L				On				
				L				L	L					Off			
				Н				L	L					On			
					L			L	L						Off		
					Н			L	L						On		
						L		L	L							Off	
						Н		L	L							On	
							L	L	L								Off
							Н	L	L								On
Х	Х	Х	Х	Х	Х	Х	Х	Н	L	Hold Previous State							
Х	Х	Х	Х	Х	Х	Х	Х	Х	Н			,	All Swite	ches Of	f		

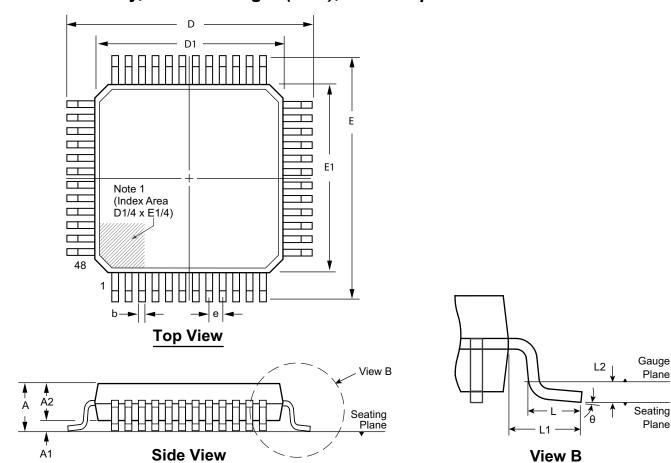

Notes:

- 1.
- The eight switches operate independently.
 Serial data is clocked in on the L to H transition of the CLK.
- The switches go to a state retaining their present condition at the rising edge of LE. When LE is low the shift register data flow through the latch.
- D_{OUT} is high when data in the shift register 7 is high. Shift register clocking has no effect on the switch states if LE is high. The CLR clear input overrides all other inputs.


Test Circuits

Typical Waveforms

Pin Configuration 48-Lead LQFP - (FG)


	`	,				
Pin#	Pin Name	Pin#	Pin Name			
1	SW5	25	VNN			
2	NC	26	NC			
3	SW4	27	NC			
4	NC	28	GND			
5	SW4	29	VDD			
6	NC	30	NC			
7	NC	31	NC			
8	SW3	32	NC			
9	NC	33	DIN			
10	SW3	34	CLK			
11	NC	35	ĪĒ			
12	SW2	36	CLR			
13	NC	37	DOUT			
14	SW2	38	NC			
15	NC	39	SW7			
16	SW1	40	NC			
17	NC	41	SW7			
18	SW1	42	NC			
19	NC	43	SW6			
20	SW0	44	NC			
21	NC	45	SW6			
22	SW0	46	NC			
23	NC	47	SW5			
24	VPP	48	NC			

Pin Configuration 28-Lead PLCC (PJ)

Pin#	Pin Name	Pin#	Pin Name		
1	SW3	15	NC		
2	SW3	16	DIN		
3	SW2	17	CLK		
4	SW2	18	ĪĒ		
5	SW1	19	CLR		
6	SW1	20	DOUT		
7	SW0	21	SW7		
8	SW0	22	SW7		
9	NC	23	SW6		
10	VPP	24	SW6		
11	NC	25	SW5		
12	VNN	26	SW5		
13	GND	27	SW4		
14	VDD	28	SW4		

48-Lead LQFP Package Outline (FG)

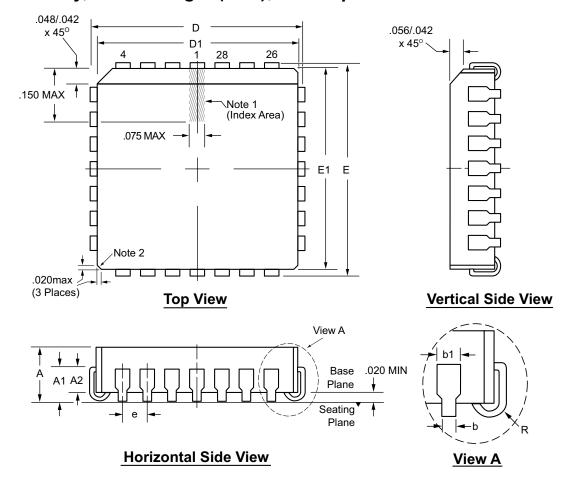
7.00x7.00mm body, 1.60mm height (max), 0.50mm pitch

Note:

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	D1	E	E1	е	L	L1	L2	θ
	MIN	1.40*	0.05	1.35	0.17	8.80*	6.80*	8.80*	6.80*	0.45 0.50 BSC 0.60			0 °	
Dimension (mm)	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00		0.60	1.00 REF	0.25 BSC	3.5°
()	MAX	1.60	0.15	1.45	0.27	9.20*	7.20*	9.20*	7.20*		0.75			7 °

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.


* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.

Supertex Doc. #: DSPD-48LQFPFG Version, D041309.

28-Lead PLCC Package Outline (PJ)

.453x.453in. body, .180in. height (max), .050in. pitch

Notes:

- A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- 2. Actual shape of this feature may vary.

Symbo	l	Α	A1	A2	b	b1	D	D1	E	E1	е	R
Dimension (inches)	MIN	.165	.090	.062	.013	.026	.485	.450	.485	.450		.025
	NOM	.172	.105	-	-	-	.490	.453	.490	.453	.050 BSC	.035
	MAX	.180	.120	.083	.021	.032	.495	.456	.495	.456	200	.045

JEDEC Registration MS-018, Variation AB, Issue A, June, 1993.

Drawings not to scale.

Supertex Doc. #: DSPD-28PLCCPJ, Version B031111.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2011 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited

Downloaded from Arrow.com.