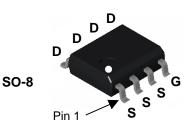
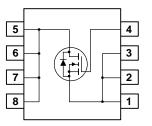
June 2003

FDS6670A

FAIRCHILD SEMICONDUCTOR

Single N-Channel, Logic Level, PowerTrench^o MOSFET


General Description

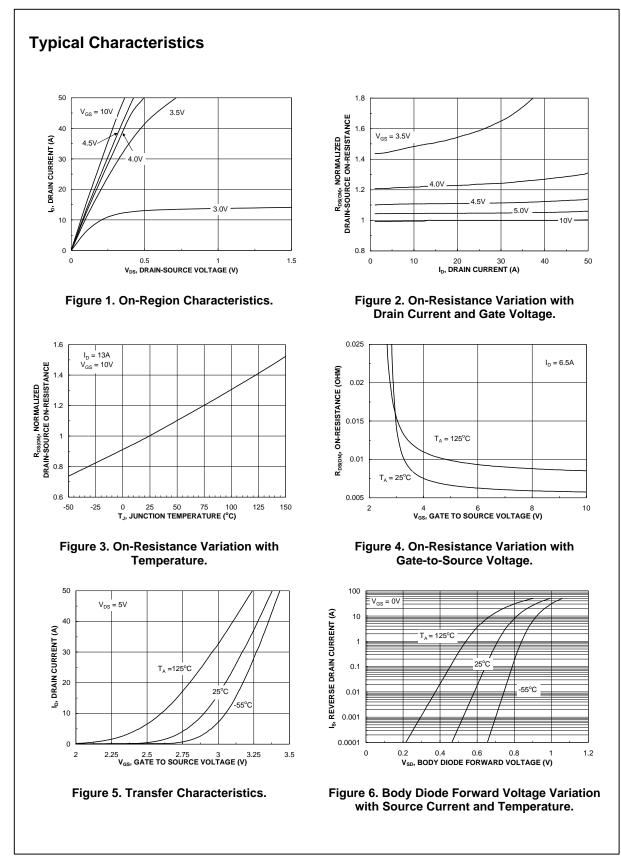

This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

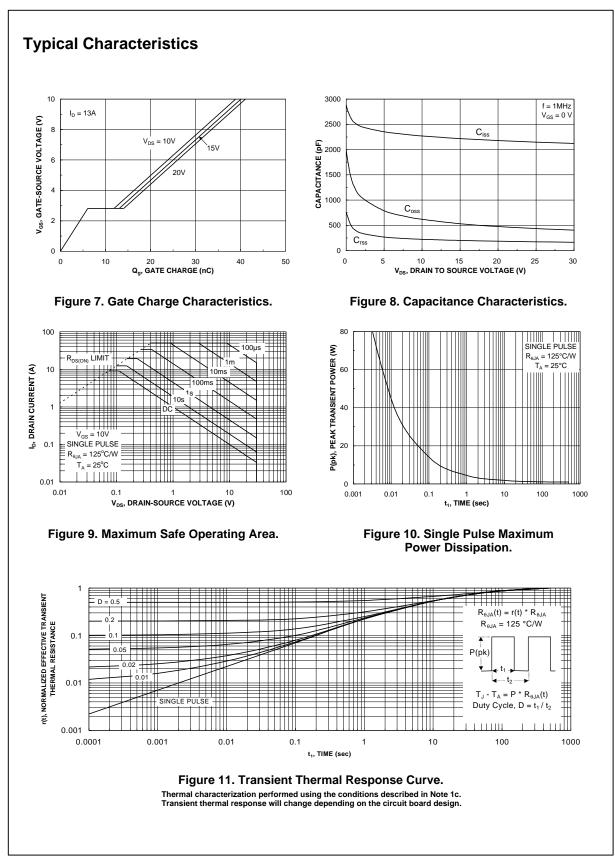
- 13 A, 30 V. $\begin{array}{l} R_{DS(ON)} = 8 \; m\Omega \; @ \; V_{GS} = 10 \; V \\ R_{DS(ON)} = 10 \; m\Omega \; @ \; V_{GS} = 4.5 \; V \end{array}$
- Fast switching speed
- Low gate charge
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted


Symbol		Parameter		Ratings	Units	
V _{DSS}	Drain-Source	ce Voltage		30	V	
V _{GSS}	Gate-Sourc	e Voltage		±20	V	
I _D	Drain Curre	nt – Continuous	(Note 1a)	13	А	
		- Pulsed		50		
P _D	Power Diss	ipation for Single Operation	(Note 1a)	2.5	W	
			(Note 1b)	1.0		
т <u>т</u>	Onersting	ad Otomore, lunation Tomore	tuna Danana	EE to 11EO	°C	
T _J , T _{STG}	Operating a	nd Storage Junction Tempera	ture Range	-55 to +150	10	
Therma	al Charac			-55 10 + 150	°C/W	
Therma R _{0JA}	al Charac Thermal Re	teristics	(Note 1a)			
	Al Charac Thermal Re Thermal Re	teristics sistance, Junction-to-Ambient	(Note 1a)	50		
Therma R _{θJA} R _{θJA} R _{θJC}	Al Charac Thermal Re Thermal Re Thermal Re	teristics esistance, Junction-to-Ambient esistance, Junction-to-Ambient	(Note 1a) (Note 1b) (Note 1)	50 125		
Therma R _{θJA} R _{θJA} R _{θJC} Packag	Al Charac Thermal Re Thermal Re Thermal Re	teristics sistance, Junction-to-Ambient sistance, Junction-to-Ambient sistance, Junction-to-Case g and Ordering Infe	(Note 1a) (Note 1b) (Note 1)	50 125		

©2003 Fairchild Semiconductor Corporation

FDS6670A


	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		26		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μA
		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			10	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 250 \ \mu A$	1	1.8	3	V
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$		-5.3		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = 10 \text{ V}, \qquad I_D = 13 \text{ A}$		6	8	mΩ
	On-Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 10.5 \text{ A}$		7.2 8.5	10 14	
1	On State Drain Current	V_{GS} = 10 V, I_D = 13 A, T_J =125°C	E0	0.0	14	•
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	50	FF		A S
g _{FS}	Forward Transconductance	$V_{DS} = 15 \text{ V}, \qquad I_D = 13 \text{ A}$		55		3
	Characteristics		-	1		1
C _{iss}	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		2220		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		535		pF
Crss	Reverse Transfer Capacitance			200		pF
R _G	Gate Resistance	V_{GS} = 15 mV, f = 1.0 MHz		1.7		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD}=10\;V,\qquad I_{D}=1\;A,$		11	19	ns
tr	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		13	24	ns
t _{d(off)}	Turn–Off Delay Time			40	64	ns
t _f	Turn–Off Fall Time			13	24	ns
Qg	Total Gate Charge	$V_{DS} = 15 V, I_D = 13 A,$		21	30	nC
Q _{gs}	Gate–Source Charge	$V_{GS} = 5 V$		6		nC
Q _{gd}	Gate-Drain Charge			7		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source	Diode Forward Current			2.1	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \ V,$ $I_{S} = 2.1 \ A \ (Note 2)$		0.7	1.2	V
Diode Reverse Recovery Time	$I_F = 13 \text{ A}, \qquad d_{iF}/d_t = 100 \text{ A}/\mu \text{s}$		31		nS	
Q _{rr}	Diode Reverse Recovery Charge			21		nC

2 Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDS6670A

FDS6670A Rev F (W)

FDS6670A

FDS6670A Rev F (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] ActiveArray [™] Bottomless [™] CoolFET [™] <i>CROSSVOLT</i> [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] FACT [™] Across the board The Power France	FACT Quiet Series [™] FAST [®] FASTr [™] FRFET [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] PC [™] ImpliedDisconnect [™] ISOPLANAR [™] d. Around the world. [™]	LittleFET TM MICROCOUPLER TM MicroFET TM MicroPak TM MICROWIRE TM MSX TM MSXPro TM OCX TM OCXPro TM OCXPro TM OPTOLOGIC [®] OPTOPLANAR TM PACMAN TM	QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] SILENT SWITCHER [®] SMART START [™] SPM [™] Stealth [™]	SuperSOT TM -6 SuperSOT TM -8 SyncFET TM TinyLogic [®] TINYOPTO TM TruTranslation TM UHC TM UltraFET [®] VCX TM
	chise™	PACMAN™ POP™	Stealth™ SuperSOT™-3	
-	•			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com