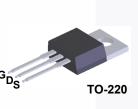
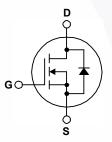


FCP190N60_GF102 N-Channel SuperFET[®] II MOSFET

600 V, 20.2 A, 199 m Ω

Features


- 650 V @ T_J = 150°C
- Typ. R_{DS(on)} = 170 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 57 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 160 pF)
- 100% Avalanche Tested
- RoHS Compliant


Application

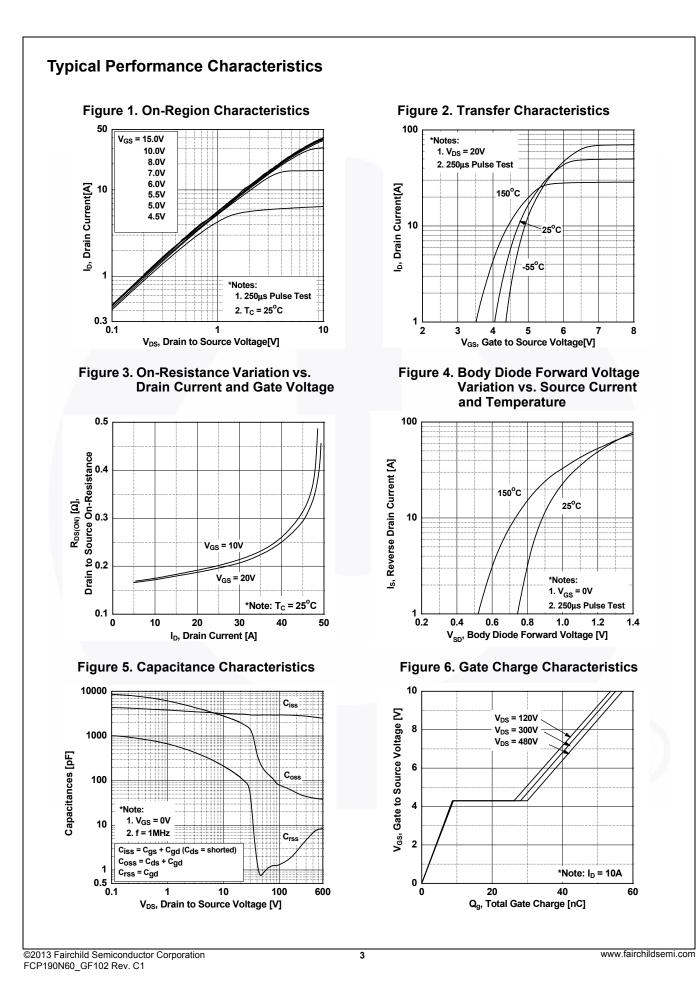
- LCD / LED / PDP TV Lighting
- Solar Inverter
- AC-DC Power Supply

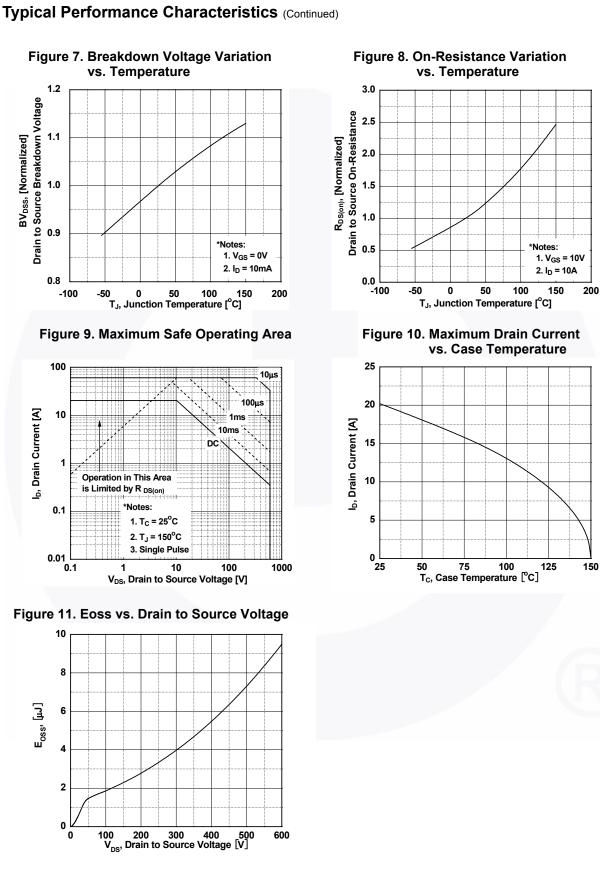
Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

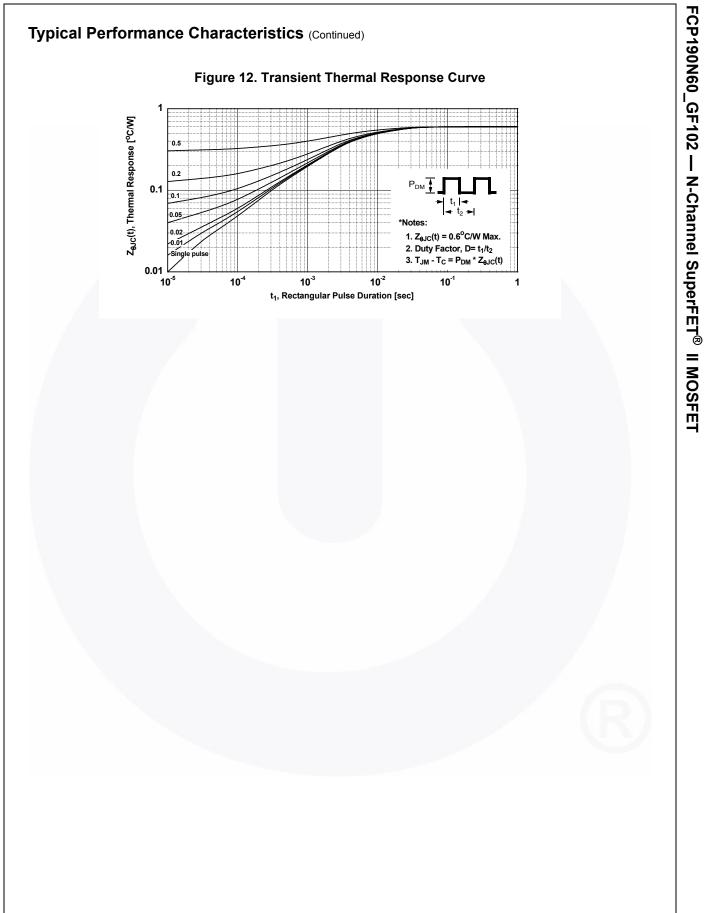
Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

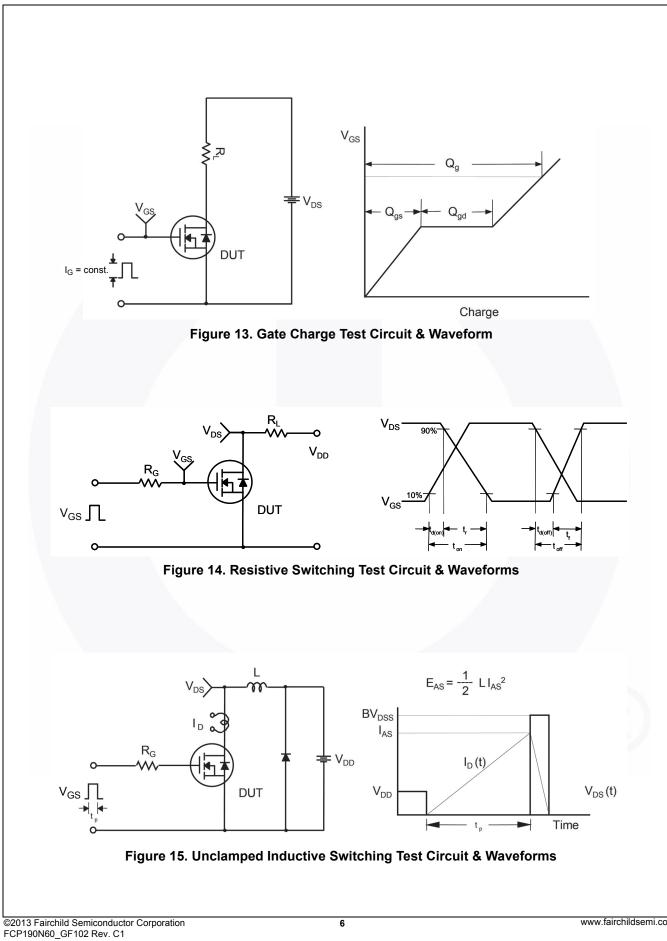
Symbol		Parameter			Unit	
V _{DSS}	Drain to Source Voltage			600	V	
		- DC	- DC - AC (f > 1 Hz)			
V _{GSS}	Gate to Source Voltage	- AC			V	
	Drain Gurrant	- Continuous (T _C = 25 ^o C)		20.2	•	
D	Drain Current	- Continuous (T _C = 100 ^o C)		12.7	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	60.6	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		400	mJ		
I _{AR}	Avalanche Current		(Note 1)	4.0	А	
E _{AR}	Repetitive Avalanche Energy (Note 1)		2.1	mJ		
dv/dt	MOSFET dv/dt			100	V/ns	
	Peak Diode Recovery dv/dt (Note 3)			20		
P _D	Dower Discinction	(T _C = 25 ^o C)		208	W	
	Power Dissipation	- Derate Above 25°C		1.67	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TI	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C		

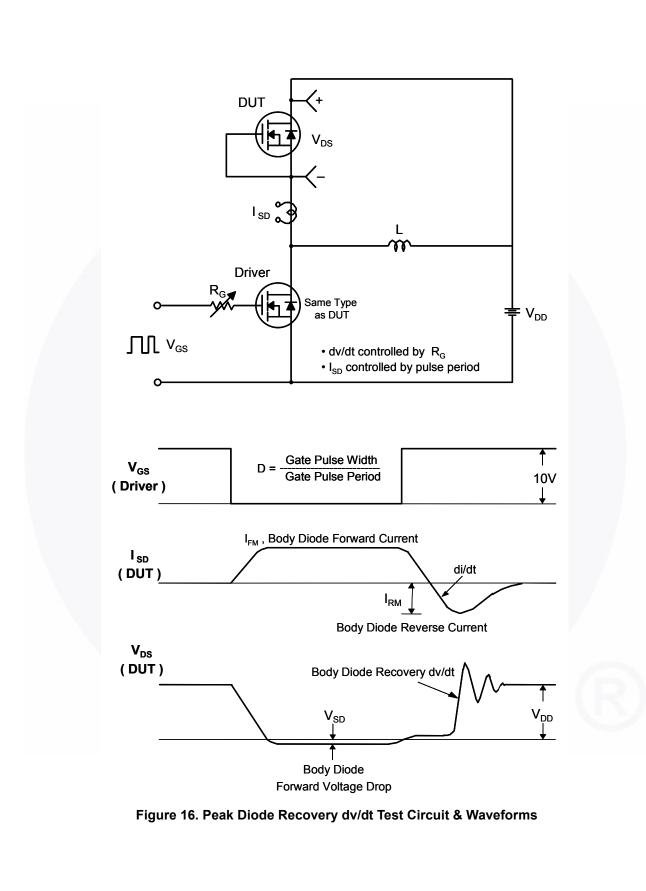

Thermal Characteristics

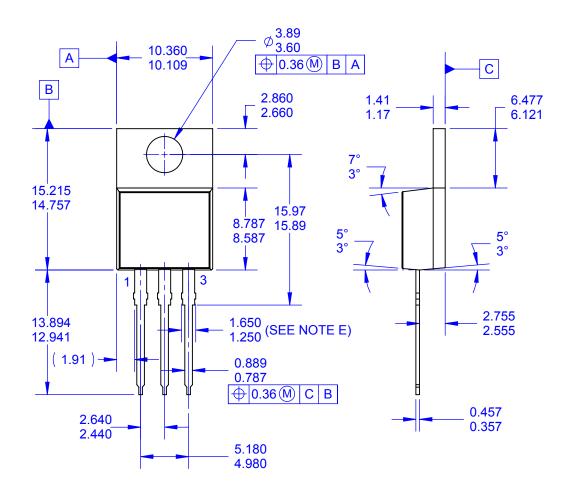

Symbol	Parameter	FCP190N60_GF102	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.6	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/W	

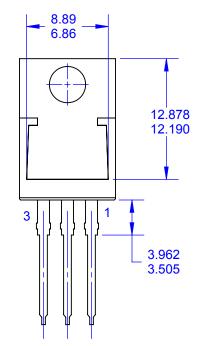
FCP190N60_
GF102 — N-
-Channel Su
buperFET [®] I
II MOSFET

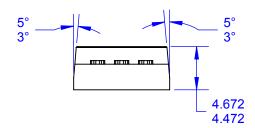

FCP190N60_	nber	Top Mark	Package	Packing Method	Reel Size	-	Tape Width	Qu	antity	
	_GF102	FCP190N60 GF102	TO-220	Tube	N/A		N/A	50	50 units	
Electrica	I Chara	acteristics T _C = 25°	C unless	otherwise noted.						
Symbol		Parameter		Test Conditions		Min.	Тур.	Max.	Unit	
Off Charact	teristics	S								
			V	/ _{GS} = 0 V, I _D = 10 mA, T _J = 2	25°C	600	-	-		
BV _{DSS}	Drain to Source Breakdown Voltage			$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 10 \text{ mA}, \text{ T}_{J} = 150^{\circ}\text{C}$		650	-	-	V	
ΔΒV _{DSS} / ΔΤ _J	Breakdown Voltage Temperature Coefficient			$I_D = 10 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C}$		-	0.67	-	V/ºC	
BV _{DS}	Drain to Source Avalanche Breakdown Voltage		down v	V _{GS} = 0 V, I _D = 20 A		-	700	-	V	
	Zero Gate Voltage Drain Current			/ _{DS} = 480 V, V _{GS} = 0 V		-	-	1	μA	
DSS				V_{DS} = 480 V, T_{C} = 125°C		-	-	10	μΑ	
I _{GSS}	Gate to	Body Leakage Current	V	V _{GS} = ±20 V, V _{DS} = 0 V		-	-	±100	nA	
On Charact	teristics	5								
V _{GS(th)}	Gate Th	reshold Voltage	V	′ _{GS} = V _{DS} , I _D = 250 μA		2.5	-	3.5	V	
R _{DS(on)}	-	rain to Source On Resista		r _{GS} = 10 V, I _D = 10 A		-	0.17	0.199	Ω	
9FS	Forward	Transconductance		r _{DS} = 20 V, I _D = 10 A		-	21	-	S	
Dynamic C	haracte	ristics								
C _{iss}		apacitance				- 1	2220	2950	pF	
C _{oss}	-	Capacitance		$V_{\rm DS} = 25 \text{ V}, \text{ V}_{\rm GS} = 0 \text{ V},$		-	1630	2165	pF	
C _{rss}	Reverse	Transfer Capacitance	T	= 1 MHz		-	85	128	pF	
C _{oss}	Output 0	Capacitance	V	/ _{DS} = 380 V, V _{GS} = 0 V, f = 1	MHz	-	42	-	pF	
C _{oss(eff.)}	Effective	e Output Capacitance	V	$V_{\rm DS}$ = 0 V to 480 V, $V_{\rm GS}$ = 0	V	-	160	-	pF	
Q _{g(tot)}	Total Ga	te Charge at 10V	V	/ _{DS} = 380 V, I _D = 10 A,		-	57	74	nC	
Q _{gs}	Gate to	Source Gate Charge	V	/ _{GS} = 10 V		-	9	-	nC	
Q _{gd}	Gate to	Drain "Miller" Charge			(Note 4)	-	21	-	nC	
ESR	Equivale	ent Series Resistance	f	= 1 MHz		-	1	-	Ω	
Switching	Charact	teristics								
t _{d(on)}	Turn-On	Delay Time				-	20	50	ns	
t _r	Turn-On	Rise Time	V	/ _{DD} = 380 V, I _D = 10 A,		-	10	30	ns	
	Turn-Off	Delay Time	V	V_{GS} = 10 V, R_g = 4.7 Ω		-	64	138	ns	
		Fall Time			(Note 4)	-	5	20	ns	
t _{d(off)} t _f	Turn-Off									
t _{d(off)} t _f		le Characteristics								
t _{d(off)} t _f Drain-Sour	ce Dioc	le Characteristics	urce Diod	e Forward Current		-	-	20.2	Α	
t _{d(off)} t _f Drain-Sour I _S	ce Dioc Maximur					-	-	20.2 60.6	A A	
t _{d(off)} t _f Drain-Sour	rce Dioc Maximur Maximur	m Continuous Drain to Sou	Diode Fo							
t _{d(off)} t _f Drain-Sour Is I _{SM}	Ce Dioc Maximur Maximur Drain to	m Continuous Drain to Sou m Pulsed Drain to Source	Diode For	rward Current				60.6	А	


Downloaded from Arrow.com.


©2013 Fairchild Semiconductor Corporation FCP190N60_GF102 Rev. C1




Downloaded from Arrow.com.


FCP190N60_GF102 — N-Channel SuperFET[®] II MOSFET

FCP190N60_GF102 — N-Channel SuperFET[®] II MOSFET

NOTES:

- A. PACKAGE REFERENCE: JEDEC TO220 **VARIATION AB**
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.
- D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- E. MAX WIDTH FOR F102 DEVICE = 1.35mm. F. DRAWING FILE NAME: TO220T03REV4.
- G. FAIRCHILD SEMICONDUCTOR.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.