

Selection Guide

			7C291A-20	7C291A-25	7C291A-35 7C291AL-35	7C291A-50	Unit
Maximum Access Time		20	25	35	50	ns	
Maximum	Standard	Commercial	120	90	90	90	mA
Operating Current		Military			90		mA
	L	Commercial			60		mA

Maximum Ratings

(Above which the useful life may be impaired. For user guide lines, not tested.)	-
Storage Temperature65°C to+150°C	
Ambient Temperature with Power Applied55°C to+125°C	;
Supply Voltage to Ground Potential0.5V to+7.0V	
DC Voltage Applied to Outputs in High Z State0.5V to+7.0V	,
DC Input Voltage3.0V to +7.0V	,

Operating Range

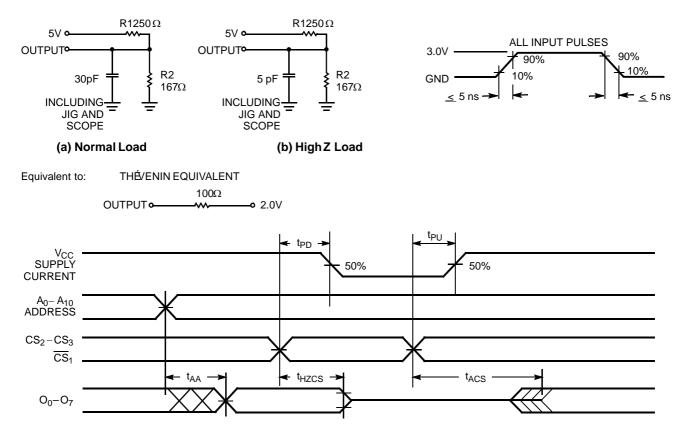
Range	Ambient Temperature	V _{cc}
Commercial	0°C to + 70°C	5V ±10%
Military ^[1]	–55°C to + 125°C	5V ±10%

				7C29	1A-20	7C291A-25		
Parameter	Description	Test Condi	Test Conditions		Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -$	-4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 1$	6.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage	Guaranteed Input HIGH Voltage for		2.0	V _{CC}	2.0	V _{CC}	V
V _{IL}	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs			0.8		0.8	V
I _{IX}	Input Load Current	$GND \leq V_{IN} \leq V_{CC}$		-10	+10	-10	+10	μΑ
V _{CD}	Input Diode Clamp Voltage			Note 3				•
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC},$ Output Disabled		-10	+10	-10	+10	μA
I _{OS}	Output Short Circuit Current ^[4]	V _{CC} = Max., V _{OUT}	= GND	-20	-90	-20	-90	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA	Com'l		120		90	mA
I _{SB}	Standby Supply Current (7C293A Only)	$\frac{V_{CC}}{CS_1} = Max.,$	Com'l		40		30	mA
V _{PP}	Programming Supply Voltage		•	12	13	12	13	V
I _{PP}	Programming Supply Current				50		50	mA
V _{IHP}	Input HIGH Programming Voltage			3.0		3.0		V
V _{ILP}	Input LOW Programming Voltage				0.4		0.4	V

Electrical Characteristics Over the Operating Range^[2,3]

- Notes
 See the last page of this specification for Group A subgroup testing information.
 See the "Introduction to CMOS PROMs" section of the Cypress Data Book for general information on testing.
 For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range^[2,3] (continued)


				7C29 ⁻	1AL-35		1A-35 1A-50	
Parameter	Description	Test Co	onditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OI}	_H =-4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OI}	_ = 16.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage	Guaranteed I HIGH Voltage	nput Logical e for All Inputs	2.0		2.0		V
V _{IL}	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs			0.8		0.8	V
I _{IX}	Input Load Current	$GND \leq V_{IN} \leq V_{IN}$	/ _{CC}	-10	+10	-10	+10	μΑ
V _{CD}	Input Diode Clamp Voltage				Not	e 3		
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC},$ Output Disabled		-10	+10	-10	+10	μA
I _{OS}	Output Short Circuit Current ^[4]	V _{CC} = Max., V	_{OUT} = GND	-20	-90	-20	-90	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max.,	Commercial		60		90	mA
		V _{IN} = 2.0V I _{OUT} = 0 mA	Military				90	
I _{SB}	Standby Supply Current	$\frac{V_{CC}}{CS_1} = Max.,$	Commercial		30		30	mA
	(7C293A Only)	$CS_1 = V_{IH}$	Military				40	
V _{PP}	Programming Supply Voltage			12	13	12	13	V
I _{PP}	Programming Supply Current				50		50	mA
V _{IHP}	Input HIGH Programming Voltage			3.0		3.0		V
V _{ILP}	Input LOW Programming Voltage				0.4		0.4	V

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

AC Test Loads and Waveforms^[3]

Switching Characteristics Over the Operating Range^[2, 3]

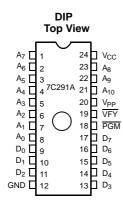
		7C29	1A-20	7C29	1A-25		1A-35 AL-35	7C29	1A-50	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{AA}	Address to Output Valid		20		25		35		50	ns
t _{HZCS1}	Chip Select Inactive to High Z		15		15		20		20	ns
t _{ACS1}	Chip Select Active to Output Valid		15		15		20		20	ns
t _{HZCS2}	Chip Select Inactive to High Z		22		27		35		45	ns
t _{ACS2}	Chip Select Active to Output Valid		22		27		35		45	ns
t _{PU}	Chip Select Active to Power-Up	0		0		0		0		ns
t _{PD}	Chip Select Inactive to Power-Down		22		27		35		45	ns

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase these PROMs. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.

The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity x exposure time) of 25 Wsec/cm2. For an ultraviolet lamp with a 12 mW/cm² power rating, the exposure time would be approximately 35 minutes.

These PROMs need to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. 7258 Wsec/cm² is the recommended maximum dosage.


Programming Information

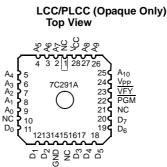
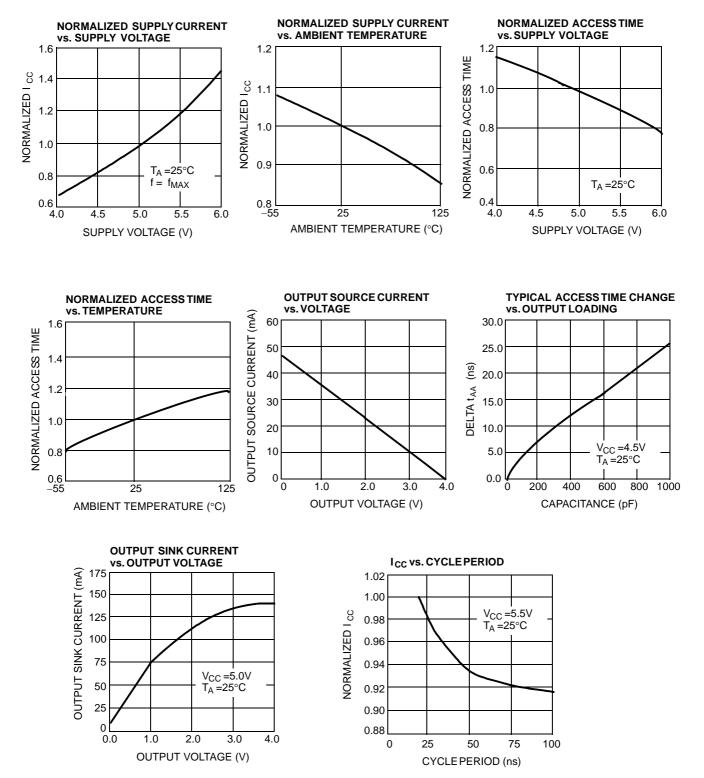

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Mode Selection

				Pin Function ^[5]		
	Read or Output Disable	A ₁₀ –A ₀	CS ₃	CS ₂	CS ₁	0 ₇ –0 ₀
Mode	Other	A ₁₀ –A ₀	PGM	VFY	V _{PP}	D ₇ –D ₀
Read		A ₁₀ -A ₀	V _{IH}	V _{IH}	V _{IL}	O ₇ -O ₀
Output Disa	able ^[6]	A ₁₀ -A ₀	Х	Х	V _{IH}	High Z
Output Disa	able	A ₁₀ -A ₀	Х	V _{IL}	Х	High Z
Output Disa	able	A ₁₀ -A ₀	VIL	Х	Х	High Z
Program		A ₁₀ -A ₀	V _{ILP}	V _{IHP}	V _{PP}	D ₇ -D ₀
Program Ve	erify	A ₁₀ -A ₀	V _{IHP}	V _{ILP}	V _{PP}	O ₇ -O ₀
Program Inl	hibit	A ₁₀ -A ₀	V _{IHP}	V _{IHP}	V _{PP}	High Z
Intelligent P	Program	A ₁₀ -A ₀	V _{ILP}	V _{IHP}	V _{PP}	D ₇ -D ₀
Blank Chec	k Zeros	A ₁₀ -A ₀	V _{IHP}	V _{ILP}	V _{PP}	Zeros

Figure 1. Programming Pinouts

Notes


5. X = "don't care" but not to exceed V_{CC} +5%.

6. The power-down mode for the CY7 $\breve{C2}$ 93A is activated by deselecting \overline{CS}_{1} .

Document #: 38-04011 Rev. *B

Typical DC and AC Characteristics

Page 7 of 13

Ordering Information

Speed (ns)	I _{CC} (mA)	Ordering Code	Package Name	Package Type	Operating Range
20	120	CY7C291A-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
25	90	CY7C291A-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C291A-25PC	P13	24-Lead (300-Mil) Molded DIP	
35	60	CY7C291AL-35JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C291AL-35PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C291AL-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	90	CY7C291A-35JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C291A-35PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C291A-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	120	CY7C291A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
50	90	CY7C291A-50PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
		CY7C291A-50WMB	W14	24-Lead (300-Mil) Windowed CerDIP	Military

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL}	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB}	1, 2, 3

SMD Cross Reference

SMD Number	Suffix	Cypress Number
5962-87650	01LX	CY7C291-50WMB
5962-87650	03LX	CY7C291-35WMB
5962-88734	023X	CY7C291A-35LMB
5962-88734	033X	CY7C291A-35LMB
5962-88734	04LX	CY7C291A-25DMB
5962-88734	043X	CY7C291A-25LMB

Switching Characteristics

Parameter	Subgroups
t _{AA}	7, 8, 9, 10, 11
t _{ACS1}	7, 8, 9, 10, 11

Package Diagrams

Figure 2. 24-Lead (300-Mil) CerDIP D14

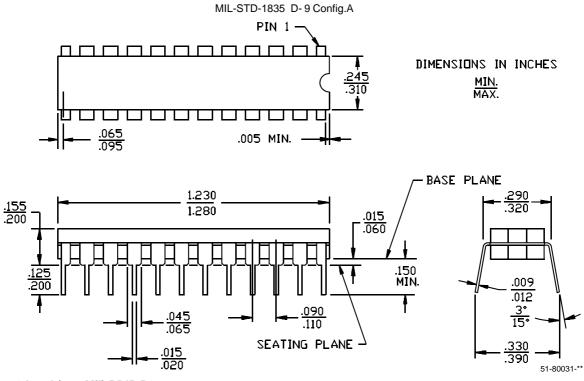
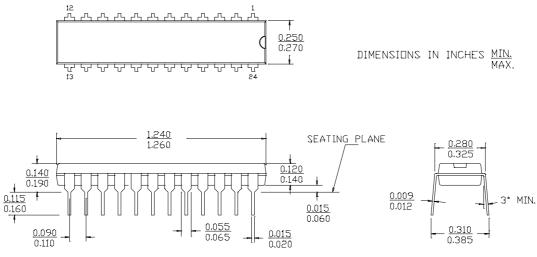
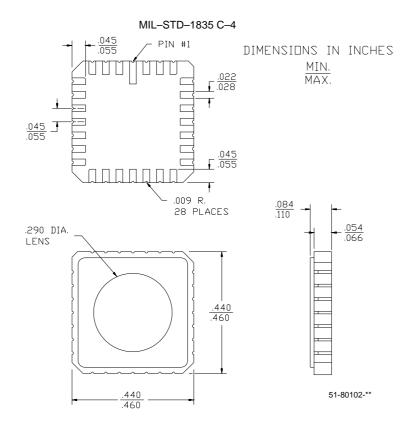



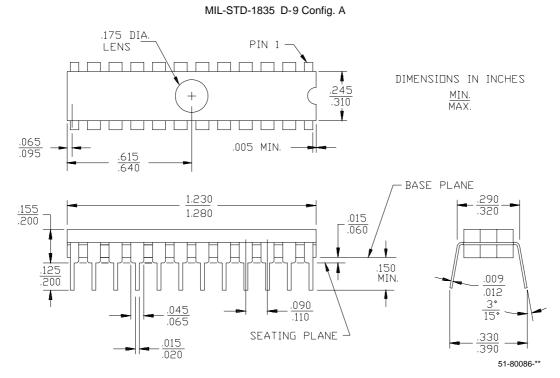
Figure 3. 24-Lead (300-Mil) PDIP P13


51-85013-*B

Document #: 38-04011 Rev. *B


Package Diagrams (continued)

Figure 4. 28-Pin Windowed Leadless Chip Carrier Q64


Package Diagrams (continued) Figure 5. 24 Lead (300 Mil) SOIC - S13

Package Diagrams (continued)

Figure 6. 24-Lead (300-Mil) Windowed CerDIP W14

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-04011 Rev. *B

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY7C291A 2K x 8 Reprogrammable PROM Document Number: 38-04011				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	114138	03/18/02	DSG	Changed from Spec number: 38-00075 to 38-04011
*A	118905	10/11/02	GBI	Updated ordering information
*В	499562	See ECN	PCI	Updated ordering information