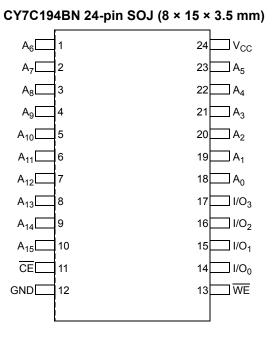


CY7C194BN

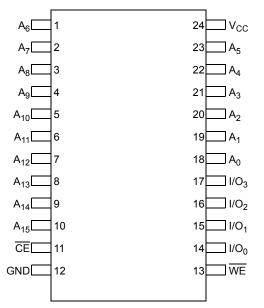
Contents

Product Portfolio	3
Pin Layout and Specification	
Pin Description	
CY7C194BN Truth Table	
Maximum Ratings	5
Operating Range	
DC Electrical Characteristics	
Capacitance	6
Thermal Resistance	
AC Test Loads	7
AC Test Conditions	
AC Electrical Characteristics	
Timing Waveforms	
5	

Ordering Information	11
Ordering Code Definitions	
Package Diagrams	12
Acronyms	13
Document Conventions	13
Units of Measure	13
Document History Page	14
Sales, Solutions, and Legal Information	15
Worldwide Sales and Design Support	15
Products	15
PSoC Solutions	15



Product Portfolio


Description		Unit
Maximum access time	15	ns
Maximum operating current	80	mA
Maximum CMOS standby current	10	mA

Pin Layout and Specification

CY7C194BN 24-pin DIP (6.6 × 31.8 × 3.5 mm)

Pin Description

Pin	Tuno	Description	CY7C	194BN
• •••	Туре	Type Description	24-pin DIP	24-pin SOJ
A _X	Input	Address inputs	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19, 20, 21, 22, 23	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19, 20, 21, 22, 23
CE	Control	Chip enable	11	11
I/O _X	Input or output	Data input/outputs	14, 15, 16, 17	14, 15, 16, 17
NC	-	No connect. pins are not internally connected to the die	-	_
V _{CC}	Supply	Power (V)	24	24
WE	Control	Write enable	13	13

CY7C194BN Truth Table

CE	WE	l/Ox	Mode	Power
Н	Х	High Z	Power-down	Standby (I _{SB})
L	Н	Data out	Read	Active (I _{CC})
L	L	Data in	Write	Active (I _{CC})

Maximum Ratings

Above which the useful life may be impaired. For user guidelines, not tested.

Parameter	Description	Value	Unit
T _{STG}	Storage temperature	-65 to +150	°C
T _{AMB}	Ambient temperature with power applied (i.e. case temperature)	-55 to +125	°C
V _{CC}	Core supply voltage relative to V _{SS}	-0.5 to +7.0	V
V _{IN} , V _{OUT}	DC voltage applied to any pin relative to V _{SS}	-0.5 to V _{CC} + 0.5	V
I _{OUT}	Output short-circuit current	20	mA
V _{ESD}	Static discharge voltage (per MIL-STD-883, Method 3015)	> 2001	V
I _{LU}	Latch-up current	> 200	mA

Operating Range

Range	Ambient Temperature (T _A)	Voltage Range (V _{CC})
Commercial	0 °C to 70 °C	5.0 V ± 10%

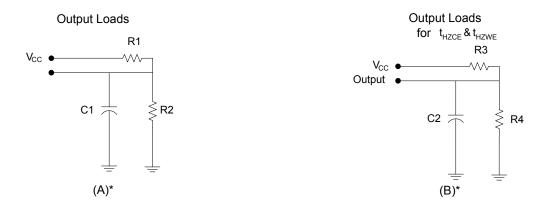
DC Electrical Characteristics

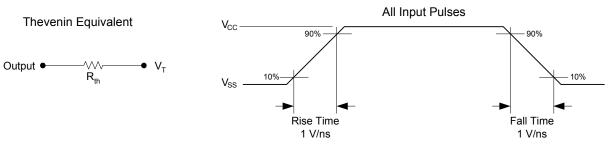
Parameter ^[1]	Description	Condition	15	15 ns	Unit
	Description	Condition	Min	Max	
V _{IH}	Input HIGH voltage		2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW voltage		-0.3	0.8	V
V _{OH}	Output HIGH voltage	V_{CC} = Min, I_{OH} = -4.0 mA	2.4	-	V
V _{OL}	Output LOW voltage	V _{CC} = Min, I _{OL} = 8.0 mA	-	0.4	V
I _{CC}	V _{CC} operating supply current	V_{CC} = Max, I_{OUT} = 0 mA, f = F _{MAX} = 1 / t _{RC}	-	80	mA
I _{SB1}	Automatic CE Power-down current – TTL inputs	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Max, \ \overline{CE} \geq V_{IH}, \ V_{IN} \geq V_{IH} \ or \\ V_{IN} \leq V_{IL}, \ f = F_{MAX} \end{array}$	-	30	mA
I _{SB2}	Automatic CE Power-down current – CMOS inputs	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Max, \ \overline{CE} \geq V_{CC} - 0.3 \ \text{V}, \\ V_{IN} > V_{CC} - 0.3 \ \text{V or } V_{IN} \leq 0.3 \ \text{V}, \\ f = 0, \ Commercial \end{array}$	-	10	mA
I _{OZ}	Output leakage current	$GND \le V_I \le V_{CC}$, output disabled	-5	+5	μA
I _{IX}	Input load current	$GND \le V_I \le V_{CC}$	-5	+5	μA

Capacitance

Parameter ^[2]	Description	Conditions	Мах	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz, V _{CC} = 5.0 V	7	pF
C _{OUT}	Output capacitance		10	-

Thermal Resistance


Parameter ^[2, 3]	Description	Conditions	CY7C	194BN	Unit
	Description	Conditions	24-pin DIP	24-pin SOJ	
Θ_{JA}	Thermal resistance (junction to ambient)	Still Air, soldered on a 3 x 4.5 square inches, two-layer printed circuit	75.69	84.15	°C/W
Θ ^{JC}	Thermal resistance (junction to case)	board	33.80	37.56	

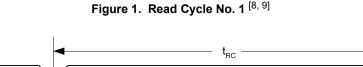

Notes

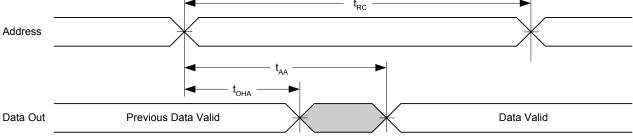
- V_{IL}(min) = -2.0 V for pulse durations of less than 20 ns.
 Tested initially and after any design or process change that may affect these parameters
 Test Conditions assume a transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V.

AC Test Loads

* including scope and jig capacitance

AC Test Conditions

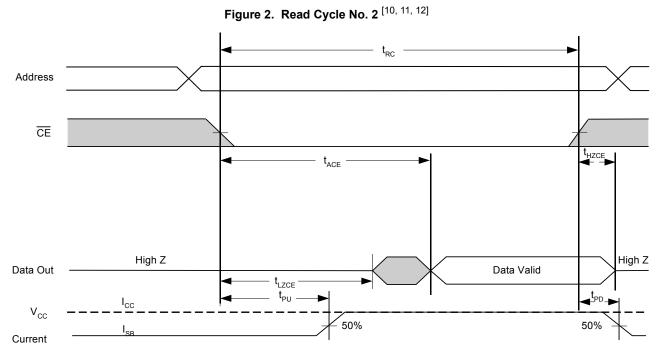

Parameter	Description	Nom	Unit
C1	Capacitor 1	30	pF
C2	Capacitor 2	5	
R1	Resistor 1	480	Ω
R2	Resistor 2	255	
R3	Resistor 3	480	
R4	Resistor 4	255	
R _{TH}	Resistor Thevenin	167	
V _{TH}	Voltage Thevenin	1.73	V

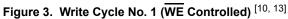


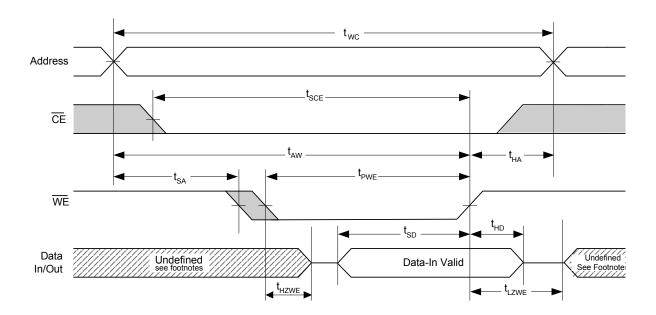
AC Electrical Characteristics

Parameter [4, 5, 6, 7]	Description	15 ns		Unit
Parameter	Description	Min	Max	Unit
t _{RC}	Read cycle time	15	-	ns
t _{AA}	Address to data valid	-	15	ns
t _{OHA}	Data hold from address change	3	-	ns
t _{ACE}	CE to data valid	-	15	ns
t _{LZCE}	CE to Low Z	3	_	ns
t _{HZCE}	CE to High Z	_	7	ns
t _{PU}	CE to Power-up	0	-	ns
t _{PD}	CE to Power-down	_	15	ns
t _{WC}	Write cycle time	15	-	ns
t _{SCE}	CE to write end	10	-	ns
t _{AW}	Address set-up to write end	10	_	ns
t _{HA}	Address hold from write end	0	-	ns
t _{SA}	Address set-up to write start	0	-	ns
t _{PWE}	WE pulse width	9	-	ns
t _{SD}	Data set-up to write end	8	_	ns
t _{HD}	Data hold from write end	0	-	ns
t _{HZWE}	WE LOW to High Z	_	7	ns
t _{LZWE}	WE HIGH to Low Z	3	_	ns

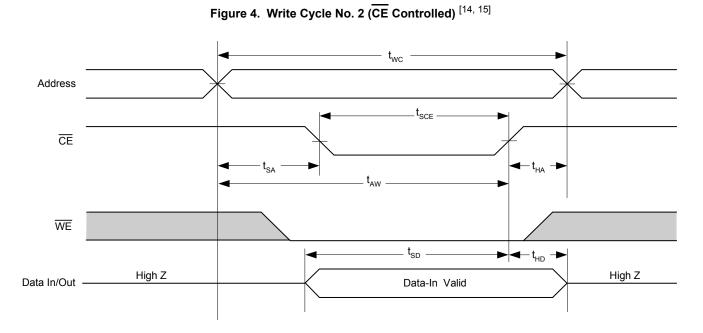
Timing Waveforms




Notes


- Notes
 Tested initially and after any design or process change that may affect these parameters
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 t_{HZCE}, t_{HZWE} are specified as in part (b) of the A/C Test Loads. Transitions are measured ± 200 mV from steady state voltage.
 Device is continuously selected. CE = V_{IL}.
 WE is HIGH for Read Cycle.

Timing Waveforms (continued)



Notes

- 10. Tested initially and after any design or process change that may affect these parameters
 11. WE is HIGH in read cycle.
 12. Address valid prior to or coincident with CE transition LOW.
 13. The minimum write cycle time is the sum of t_{HZWE} and t_{SD}.

Timing Waveforms (continued)

Notes 14. This cycle is CE controlled. 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Ordering Information

Speed (ns)	Ordering Code Packag Diagram		Package Type	Power Option	Operating Range
15	CY7C194BN-15PC	51-85013	24-pin DIP (6.6 × 31.8 × 3.5 mm)	Standard	Commercial
	CY7C194BN-15VC	51-85030	24-pin SOJ (8 × 15 × 3.5 mm)	Standard	Commercial

Please contact local sales representative regarding availability of these parts.

Ordering Code Definitions

Package Diagrams

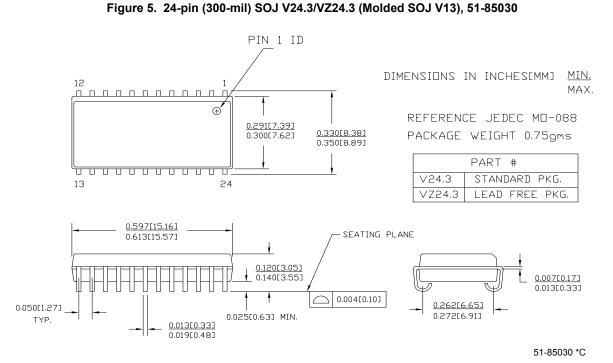
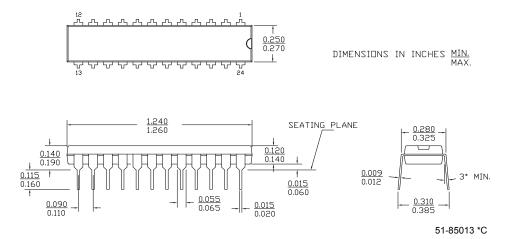



Figure 6. 24-pin PDIP (1.260 × 0.270 × 0.140 Inches) P24.3, 51-85013

Acronyms

Acronym	Description	
CE	chip enable	
CMOS complementary metal oxide semiconductor		
DIP dual in-line package		
ESD	ESD electrostatic discharge	
I/O	input/output	
SOJ	small outline J-lead	
SRAM	static random access memory	
TTL	transistor-transistor logic	
WE	write enable	

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	Mega Hertz
μA	micro Amperes
mA	milli Amperes
mm	milli meter
ns	nano seconds
Ω	ohms
%	percent
pF	pico Farad
V	Volts
W	Watts

Document History Page

Document Title: CY7C194BN, 256 Kb (64 K × 4) Static RAM Document Number: 001-06446						
REV.	ECN No.	Issue Date	Orig. of Change	Description of Change		
**	424111	See ECN	NXR	New Data Sheet		
*A	2892510	03/18/2010	VKN	Removed 25ns speed bin Updated Ordering Information table Updated Package Diagram Added Sales, Solutions, and Legal Information		
*B	3108898	12/13/2010	AJU	Added Ordering Code Definitions.		
*C	3219087	04/18/2011	PRAS	Updated as per template Added TOC Added Acronyms and Units of Measure.		
*D	3271782	06/02/2011	PRAS	Updated General Description (Removed "For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines."). Updated in new template.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2006-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-06446 Rev. *D

Revised June 2, 2011

Page 15 of 15

All products and company names mentioned in this document may be the trademarks of their respective holders.