

Static @ T_J = 25°C (unless otherwise specified)

	Parameter		Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.054		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		11.1	13.9	mΩ	$V_{GS} = 10V, I_D = 31A \oplus$
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	22			S	$V_{DS} = 25V, I_{D} = 31A$
ı	Drain-to-Source Leakage Current			20		$V_{DS} = 55V, V_{GS} = 0V$
DSS				250		$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	n ^	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-200	nA	$V_{GS} = -20V$

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Total Gate Charge		29	43		I _D = 31A
Gate-to-Source Charge		7.2	11	nC	$V_{DS} = 44V$
Gate-to-Drain Charge		12	18		V _{GS} = 10V4
Turn-On Delay Time		14			$V_{DD} = 28V$
Rise Time		68			I _D = 31A
Turn-Off Delay Time		33		ns	$R_G = 15\Omega$,
Fall Time		41			V _{GS} = 10V ④
Internal Drain Inductance		4.5		لام	Between lead, 6mm (0.25in.)
Internal Source Inductance		7.5			from package and center of die contact
Input Capacitance		1420			$V_{GS} = 0V$
Output Capacitance		240			V _{DS} = 25V
Reverse Transfer Capacitance		130		F	f = 1.0MHz,See Fig.5
Output Capacitance		830		-	$V_{GS} = 0V, V_{DS} = 1.0V f = 1.0MHz$
Output Capacitance		190			$V_{GS} = 0V, V_{DS} = 44V f = 1.0MHz$
Effective Output Capacitance		300			V_{GS} = 0V, V_{DS} = 0V to 44V
	Gate-to-Source Charge Gate-to-Drain Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Output Capacitance Output Capacitance	Gate-to-Source Charge —— Gate-to-Drain Charge —— Turn-On Delay Time —— Rise Time —— Turn-Off Delay Time —— Fall Time —— Internal Drain Inductance —— Input Capacitance —— Output Capacitance —— Reverse Transfer Capacitance —— Output Capacitance ——	Gate-to-Source Charge — 7.2 Gate-to-Drain Charge — 12 Turn-On Delay Time — 14 Rise Time — 68 Turn-Off Delay Time — 33 Fall Time — 41 Internal Drain Inductance — 4.5 Internal Source Inductance — 7.5 Input Capacitance — 1420 Output Capacitance — 240 Reverse Transfer Capacitance — 130 Output Capacitance — 830 Output Capacitance — 190	Gate-to-Source Charge — 7.2 11 Gate-to-Drain Charge — 12 18 Turn-On Delay Time — 14 — Rise Time — 68 — Turn-Off Delay Time — 33 — Fall Time — 41 — Internal Drain Inductance — 4.5 — Input Capacitance — 7.5 — Input Capacitance — 240 — Reverse Transfer Capacitance — 130 — Output Capacitance — 830 — Output Capacitance — 190 —	Gate-to-Source Charge — 7.2 11 nC Gate-to-Drain Charge — 12 18 Turn-On Delay Time — 14 — Rise Time — 68 — Turn-Off Delay Time — 33 — Fall Time — 41 — Internal Drain Inductance — 4.5 — Input Capacitance Inductance — 7.5 — Input Capacitance — 1420 — Output Capacitance — 240 — Output Capacitance — 830 — Output Capacitance — 190 —

Diode Characteristics

21040 01141400011001							
	Parameter	Min.	Тур.	Max.	Units	Conditions	
	Continuous Source Current			51		MOSFET symbol	
I _S	(Body Diode)	- 31		showing the			
	Pulsed Source Current	200	Α	integral reverse			
I _{SM}	(Body Diode) ①			200		p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C, I_S = 31A, V_{GS} = 0V \oplus$	
t _{rr}	Reverse Recovery Time		23	35	ns	$T_J = 25^{\circ}C$, $I_F = 31A$, $V_{DD} = 28V$	
Q_{rr}	Reverse Recovery Charge		17	26	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrins	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig.11)
- \odot Limited by T_{Jmax_s} starting T_J = 25°C, L = 0.18mH, R_G = 25 Ω , I_{AS} = 31A, V_{GS} =10V. Part not recommended for use above this value.
- $\label{eq:local_local_local_local} \ensuremath{\Im} \quad I_{SD} \leq 31 A, \ di/dt \leq 840 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ} C.$
- 4 Pulse width \leq 1.0ms; duty cycle \leq 2%.
- C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} . $Limited by T_{Jmax}$, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- This value determined from sample failure population 100% tested to this value in production.
- This is applied to D2Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- \mathfrak{P}_{θ} is rated at T_J of approximately 90°C.

2017-09-25

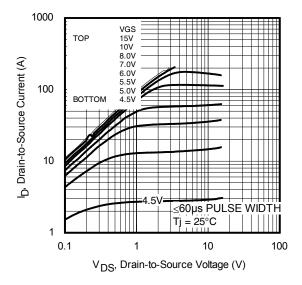


Fig. 1 Typical Output Characteristics

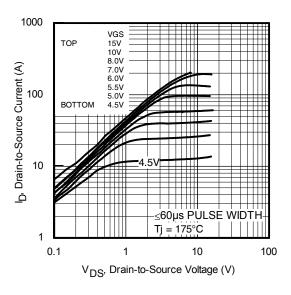


Fig. 2 Typical Output Characteristics

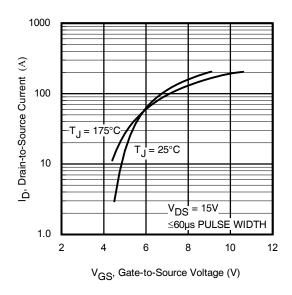


Fig. 3 Typical Transfer Characteristics

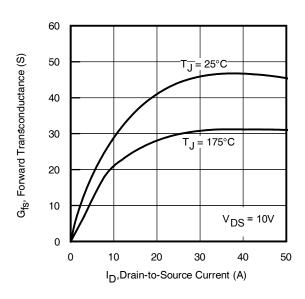


Fig. 4 Typical Forward Trans conductance vs. Drain Current

2017-09-25

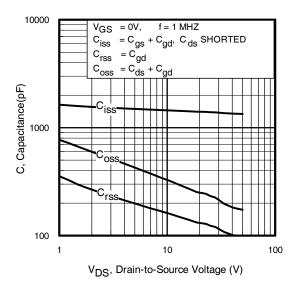


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

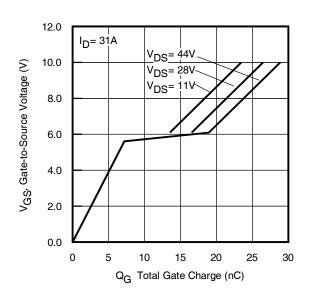
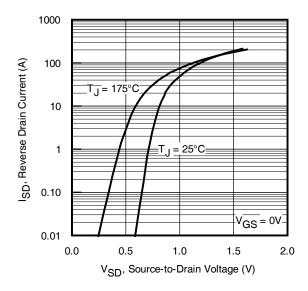



Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

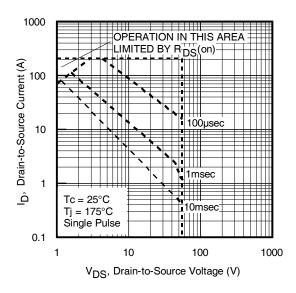
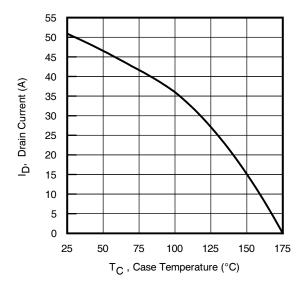
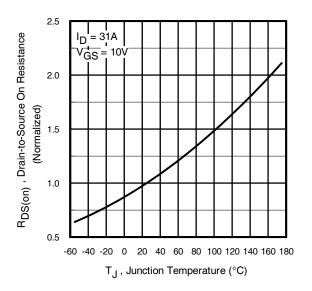




Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

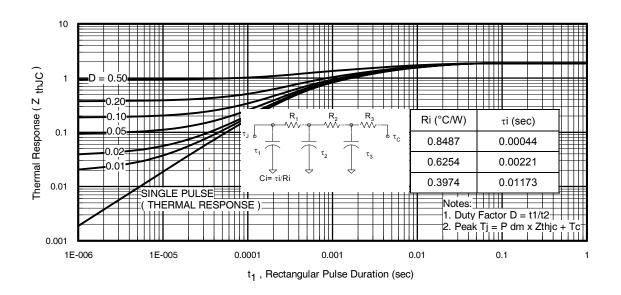


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

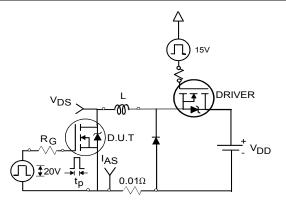


Fig 12a. Unclamped Inductive Test Circuit

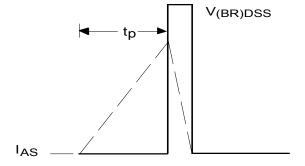


Fig 12b. Unclamped Inductive Waveforms

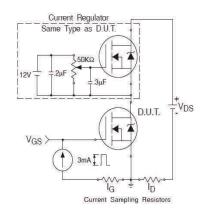


Fig 13a. Gate Charge Test Circuit

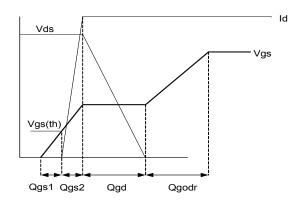


Fig 13b. Gate Charge Waveform

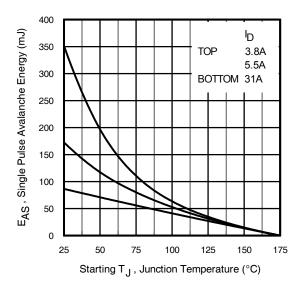


Fig 12c. Maximum Avalanche Energy vs. Drain Current

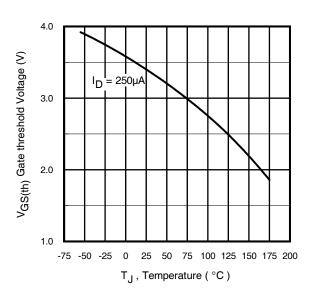


Fig 14. Threshold Voltage vs. Temperature

2017-09-25

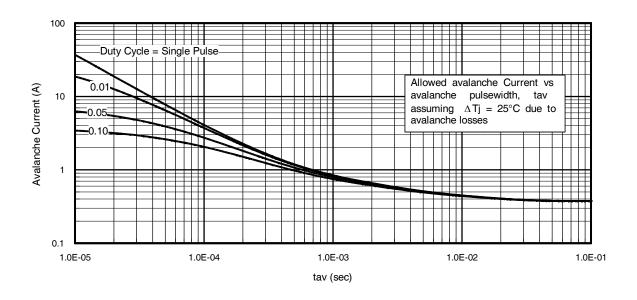
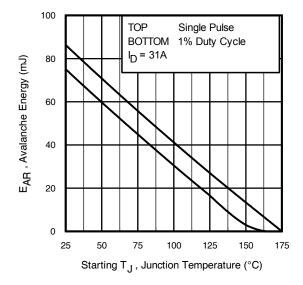



Fig 15. Avalanche Current vs. Pulse width

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. lav = Allowable avalanche current.
- ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \Delta \text{T} / \text{Z}_{\text{thJC}} \\ I_{av} &= 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{\text{th}} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

Fig 16. Maximum Avalanche Energy vs. Temperature

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

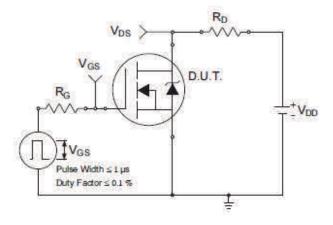


Fig 18a. Switching Time Test Circuit

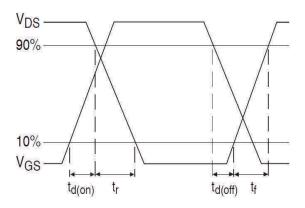
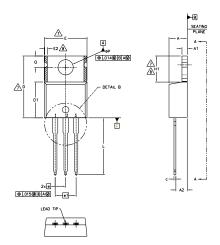
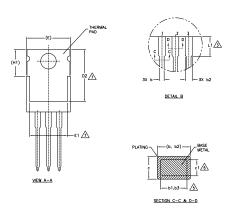




Fig 18b. Switching Time Waveforms

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

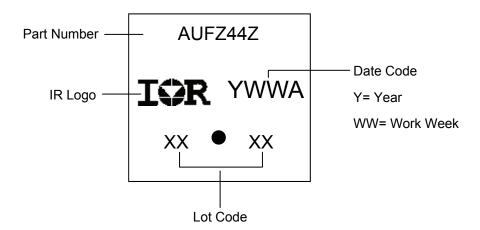
NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1
- DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.
- CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

	DIMENSIONS					
SYMBOL MILLIM		ETERS	INC			
	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	3.56	4.83	.140	.190		
A1	1,14	1.40	.045	.055		
A2	2.03	2.92	.080	.115		
b	0.38	1.01	.015	.040		
ь1	0.38	0.97	.015	.038	5	
b2	1,14	1.78	.045	.070		
b3	1,14	1.73	.045	.068	5	
С	0.36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
Ε	9.65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0.76	-	.030	8	
е	2.54 BSC		.100	BSC		
e1	5.08	BSC	.200	BSC		
H1	5.84	6.86	.230	.270	7,8	
L	12.70	14.73	.500	.580		
L1	3.56	4.06	.140	.160	3	
øΡ	3.54	4.08	.139	.161		
Q	2.54	3.42	.100	.135		
	A1 A2 b b1 b2 b3 c c1 D D1 D2 E1 E2 e e1 H1 L	MILLIM MIN. A 3.56 A1 1.14 A2 2.03 b 0.38 b1 0.38 b2 1.14 c 0.36 c1 0.36 c1 0.36 D 14.22 D1 8.38 D2 11.68 E 9.65 E1 6.86 E2 e e1 5.08 H1 5.84 L 12.70 L1 3.56 ØP 3.54	SYMBOL MILLIMETERS MIN. MAX. A 3.56 4.83 A1 1.14 1.40 A2 2.03 2.92 b 0.38 1.01 b1 0.38 0.97 b2 1.14 1.78 b3 1.14 1.78 c 0.36 0.61 c1 0.36 0.56 D 14.22 16.51 D1 8.38 9.02 D2 11.68 12.88 E 9.65 10.67 E1 6.86 8.89 E2 - 0.76 e 2.54 BSC e1 5.08 BSC H1 5.84 6.86 L 12.70 14.73 L1 3.56 4.06 6P 3.54 4.08	SYMBOL MILLIMETERS INC MIN. MAX. MIN. A 3.56 4.83 .140 A1 1.14 1.40 .045 A2 2.03 2.92 .080 b 0.38 1.01 .015 b1 0.38 0.97 .015 b2 1.14 1.78 .045 b3 1.14 1.73 .045 c 0.36 0.61 .014 c1 0.36 0.56 .014 D 14.22 16.51 .560 D1 8.38 9.02 .330 D2 11.68 12.88 .460 E 9.65 10.67 - E1 6.86 8.89 .270 E - 0.76 - e 2.54 BSC .100 5.08 BSC .200 H1 5.84 6.86	SYMBOL MILLIMETERS INCHES MIN. MAX. MIN. MAX. A 3.56 4.83 .140 .190 A1 1.14 1.40 .045 .055 A2 2.03 2.92 .080 .115 b 0.38 1.01 .015 .040 b1 0.38 0.97 .015 .038 b2 1.14 1.78 .045 .070 b3 1.14 1.73 .045 .068 c 0.36 0.61 .014 .024 c1 0.36 0.56 .014 .022 D 14.22 16.51 .560 .650 D1 8.38 9.02 .330 .355 D2 11.68 12.88 .460 .507 E 9.65 10.67 .380 .420 E1 6.86 8.89 .270 .350 E2	

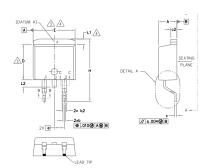
LEAD ASSIGNMENTS

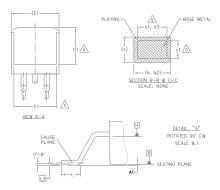
HEXFET


- 1.- GATE 2.- DRAIN 3.- SOURCE

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES


- 1.- ANODE 2.- CATHODE 3.- ANODE


TO-220AB Part Marking Information

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

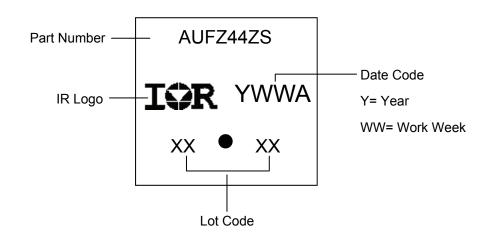
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S	DIMENSIONS					
M B	MILLIM	ETERS	INC	INCHES		
O L	MIN.	MAX.	MIN.	MAX.	NOTES	
А	4.06	4.83	.160	.190		
A1	0.00	0.254	.000	.010		
Ь	0.51	0.99	.020	.039		
ь1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
ь3	1.14	1.73	.045	.068	5	
С	0.38	0.74	.015	.029		
с1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	_	.270	_	4	
E	9.65	10.67	.380	.420	3,4	
E1	6.22	_	.245	_	4	
е	2.54	BSC	.100	BSC		
Н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	_	1.68	_	.066	4	
L2	_	1.78	_	.070		
L3	0.25	BSC	.010	BSC		

LEAD ASSIGNMENTS

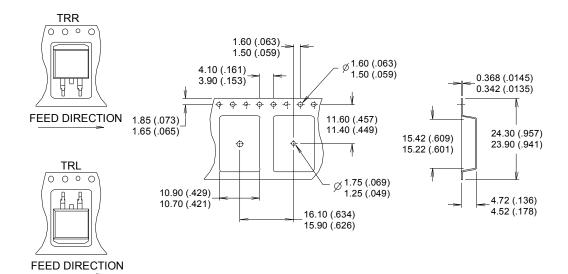
DIODES

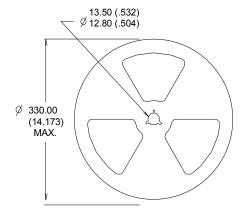
1.— ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.— CATHODE 3.— ANODE

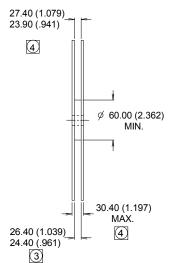

HEXFET

IGBTs, CoPACK

1.- GATE 2, 4.- DRAIN 3.- SOURCE


1.- GATE 2, 4.- COLLECTOR 3.- EMITTER


D²Pak (TO-263AB) Part Marking Information



D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

11

Qualification Information

		Automotive (per AEC-Q101)					
		Comments: This part number(s) passed Automotive qualification. Infineon's					
		Industrial and Consumer qualification level is granted by extension of the higher					
		Automotive level.					
Moisture Sensitivity Level		TO-220 Pak	N/A				
		D ² -Pak MSL1					
	Manalaina Manalal	Class M2 (+/- 200V) [†]					
	Machine Model	AEC-Q101-002					
	Llaura au Da da Mandal	Class H1A (+/- 500V) [†]					
ESD	Human Body Model	AEC-Q101-001					
	Observed Davis Madal	Class C5 (+/- 1125V) [†]					
	Charged Device Model	AEC-Q101-005					
RoHS Compliant		Yes					
		•					

[†] Highest passing voltage.

Revision History

Date	Comments				
12/4/2015	Updated datasheet with corporate template				
12/4/2013	Corrected ordering table on page 1.				
09/25/17	Corrected typo error on part marking on pages 9,10.				

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.