

2. Pin Configurations

Pin Name	Function
A0 - A14	Addresses
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
I/O0 - I/O7	Data Inputs/Outputs
NC	No Connect
DC	Don't Connect

2.1 28-lead TSOP Top View

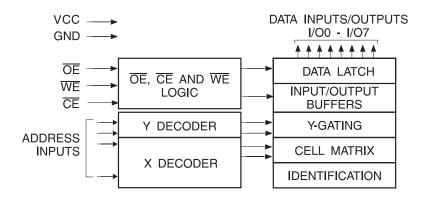
2.2 28-lead PGA Top View

4	3	1	27	26
A6	A7	A14	WE	A13
5	2	28	24	25
A5	A12	VCC	A9	A8
7	6		22	23
A3	A4		OE	A11
9	8		20	21
A1	A2		CE	A10
11	10	14	16	19
I/O0	A0	GND	I /O4	I/07
12	13	15	17	18
I/O1	I/O2	I/O3	I/O5	I/O6

2.3 32-pad LCC, 32-lead PLCC Top View

	_	D A7	□ A12	□ A14			WE			
A6 🗆	5	4	ო	N	-	32	<u>.</u>	ଳ 29	L	A8
A0 □ A5 □	6				Ű			28	F	A9
A4 🗆	7							27	Б	A11
АЗ 🗆	8							26	þ	NC
A2 🗆	9							25	þ	ŌĒ
A1 🗆	1(0						24	þ	A10
A0 🗆	1	1						23	卜	CE
NC 🗆	12	2						22	Þ	I/07
I/O0 □	1;	34	ß	9		ø	6	റ ²¹	þ	I/06
		÷	<u>-</u>	-	÷	<u>-</u>	÷-	Ň		
		10	I/02 □	GND	DC	∏03	I/04 □	I/05 □		

Note: PLCC package pins 1 and 17 are Don't Connect.


2.4 28-lead Cerdip/PDIP/Flatpack/SOIC – Top View

			_	
		\bigcirc		
A14 🗆	1		28	
A12 🗆	2		27	□ WE
A7 🗆	3		26	🗆 A13
A6 🗆	4		25	🗆 A8
A5 🗆	5		24	🗆 A9
A4 🗆	6		23	🗆 A11
A3 🗆	7		22	□ OE
A2 🗆	8		21	🗆 A10
A1 🗆	9		20	
A0 🗆	10		19	□ I/O7
I/O0 □	11		18	□ I/O6
I/O1 🗆	12		17	□ I/O5
I/O2 🗆	13		16	□ I/O4
GND 🗆	14		15	□ I/O3

AT28HC256

2

3. Block Diagram

4. Device Operation

4.1 Read

The AT28HC256 is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state when either \overline{CE} or \overline{OE} is high. This dual-line control gives designers flexibility in preventing bus contention in their system.

4.2 Byte Write

A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Once a byte write has been started it will automatically time itself to completion. Once a programming operation has been initiated and for the duration of t_{WC} , a read operation will effectively be a polling operation.

4.3 Page Write

The page write operation of the AT28HC256 allows 1 to 64 bytes of data to be written into the device during a single internal programming period. A page write operation is initiated in the same manner as a byte write; the first byte written can then be followed by 1 to 63 additional bytes. Each successive byte must be written within 150 μ s (t_{BLC}) of the previous byte. If the t_{BLC} limit is exceeded the AT28C256 will cease accepting data and commence the internal programming operation. All bytes during a page write operation must reside on the same page as defined by the state of the A6 - A14 inputs. That is, for each WE high to low transition during the page write operation, A6 - A14 must be the same.

The A0 to A5 inputs are used to specify which bytes within the page are to be written. The bytes may be loaded in any order and may be altered within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.

4.4 DATA Polling

The AT28HC256 features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complement of the written data to be presented on I/O7. Once the write cycle has been completed, true data is valid on all outputs, and the next write cycle may begin. DATA Polling may begin at anytime during the write cycle.

4.5 Toggle Bit

In addition to DATA Polling the AT28HC256 provides another method for determining the end of a write cycle. During the write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop toggling and valid data will be read. Testing the toggle bit may begin at any time during the write cycle.

4.6 Data Protection

If precautions are not taken, inadvertent writes to any 5-volt-only nonvolatile memory may occur during transition of the host system power supply. Atmel[®] has incorporated both hardware and software features that will protect the memory against inadvertent writes.

4.6.1 Hardware Protection

Hardware features protect against inadvertent writes to the AT28HC256 in the following ways: (a) V_{CC} sense – if V_{CC} is below 3.8V (typical) the write function is inhibited; (b) V_{CC} power-on delay – once V_{CC} has reached 3.8V the device will automatically time out 5 ms typical) before allowing a write; (c) write inhibit – holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits write cycles; and (d) noise filter – pulses of less than 15 ns (typical) on the \overline{WE} or \overline{CE} inputs will not initiate a write cycle.

4.6.2 Software Data Protection

A software controlled data protection feature has been implemented on the AT28HC256. When enabled, the software data protection (SDP), will prevent inadvertent writes. The SDP feature may be enabled or disabled by the user; the AT28HC256 is shipped from Atmel with SDP disabled.

SDP is enabled by the host system issuing a series of three write commands; three specific bytes of data are written to three specific addresses (refer to "Software Data Protection" algorithm). After writing the 3-byte command sequence and after t_{WC} the entire AT28HC256 will be protected against inadvertent write operations. It should be noted, that once protected the host may still perform a byte or page write to the AT28HC256. This is done by preceding the data to be written by the same 3-byte command sequence.

Once set, SDP will remain active unless the disable command sequence is issued. Power transitions do not disable SDP and SDP will protect the AT28HC256 during power-up and power-down conditions. All command sequences must conform to the page write timing specifications. It should also be noted that the data in the enable and disable command sequences is not written to the device and the memory addresses used in the sequence may be written with data in either a byte or page write operation.

After setting SDP, any attempt to write to the device without the three byte command sequence will start the internal write timers. No data will be written to the device; however, for the duration of t_{WC} , read operations will effectively be polling operations.

4.7 Device Identification

An extra 64 bytes of EEPROM memory are available to the user for device identification. By raising A9 to $12V \pm 0.5V$ and using address locations 7FC0H to 7FFFH the additional bytes may be written to or read from in the same manner as the regular memory array.

4.8 Optional Chip Erase Mode

The entire device can be erased using a 6-byte software code. Please see "Software Chip Erase" application note for details.

AT28HC256

5. DC and AC Operating Range

		AT28HC256-70	AT28HC256-90	AT28HC256-12
Operating	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
Temperature (Case)	Mil.		-55°C - 125°C	-55°C - 125°C
V _{CC} Power Supply		5V ±10%	5V ±10%	5V ±10%

6. Operating Modes

Mode	CE	OE	WE	I/O
Read	V _{IL}	V _{IL}	V _{IH}	D _{OUT}
Write ⁽²⁾	V _{IL}	V _{IH}	V _{IL}	D _{IN}
Standby/Write Inhibit	V _{IH}	X ⁽¹⁾	Х	High Z
Write Inhibit	Х	Х	V _{IH}	
Write Inhibit	Х	V _{IL}	Х	
Output Disable	Х	V _{IH}	Х	High Z
Chip Erase	V _{IL}	V _H ⁽³⁾	V _{IL}	High Z

Notes: 1. X can be V_{IL} or V_{IH} .

- 2. Refer to AC programming waveforms.
- 3. $V_{H} = 12.0V \pm 0.5V$.

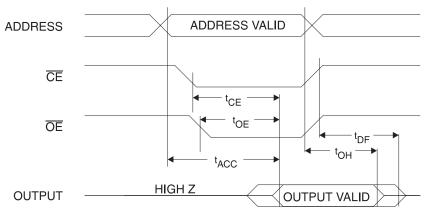
7. Absolute Maximum Ratings*

Temperature under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including NC Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to V_{CC} + 0.6V
Voltage on $\overline{\text{OE}}$ and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

8. DC Characteristics

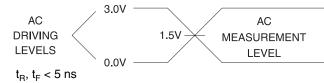
Symbol	Parameter	Condition		Min	Мах	Units
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1V$			10	μA
I _{LO}	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}			10	μA
			AT28HC256-90, -12		3	mA
I _{SB1}	V _{CC} Standby Current TTL	$\overline{CE} = 2.0V$ to V_{CC}	AT28HC256-70		60	mA
I _{SB2}	V _{CC} Standby Current CMOS	$\overline{CE} = V_{CC} - 0.3V$ to V_{CC}	AT28HC256-90, -12		300	μA
I _{CC}	V _{CC} Active Current	f = 5 MHz; I _{OUT} = 0 mA			80	mA
V _{IL}	Input Low Voltage				0.8	V
V _{IH}	Input High Voltage			2.0		V
V _{OL}	Output Low Voltage	I _{OL} = 6.0 mA			0.45	V
V _{OH}	Output High Voltage	I _{OH} = -4 mA		2.4		V



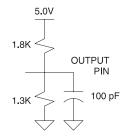
9. AC Read Characteristics

		AT28HC256-70		AT28C256-90		AT28HC256-12		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
t _{ACC}	Address to Output Delay		70		90		120	ns
t _{CE} ⁽¹⁾	CE to Output Delay		70		90		120	ns
t _{OE} ⁽²⁾	OE to Output Delay	0	35	0	40	0	50	ns
t _{DF} ⁽³⁾⁽⁴⁾	\overline{CE} or \overline{OE} to Output Float	0	35	0	40	0	50	ns
t _{он}	Output Hold from OE, CE or Address, whichever occurred first	0		0		0		ns

10. AC Read Waveforms⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾


- Notes: 1. \overline{CE} may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} .
 - OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC}.
 - 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first (C_L = 5 pF).
 - 4. This parameter is characterized and is not 100% tested.

AT28HC256


6

AT28HC256

11. Input Test Waveforms and Measurement Level

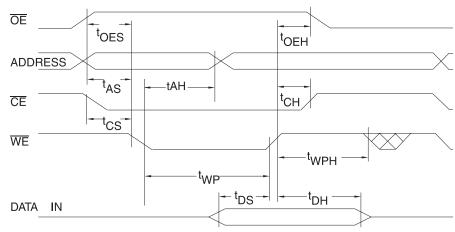
12. Output Test Load

13. Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

Symbol	Тур	Мах	Units	Conditions
C _{IN}	4	6	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	$V_{OUT} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.

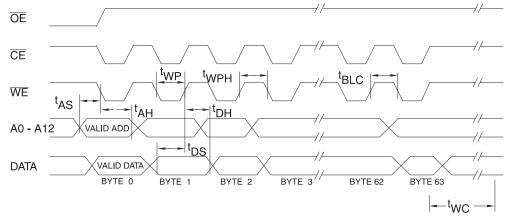

14. AC Write Characteristics

Symbol	Parameter	Min	Max	Units
t _{AS} , t _{OES}	Address, OE Setup Time	0		ns
t _{AH}	Address Hold Time	50		ns
t _{cs}	Chip Select Setup Time	0		ns
t _{CH}	Chip Select Hold Time	0		ns
t _{WP}	Write Pulse Width (\overline{WE} or \overline{CE})	100		ns
t _{DS}	Data Setup Time	50		ns
t _{DH} , t _{OEH}	Data, OE Hold Time	0		ns
t _{DV}	Time to Data Valid	NR ⁽¹⁾		

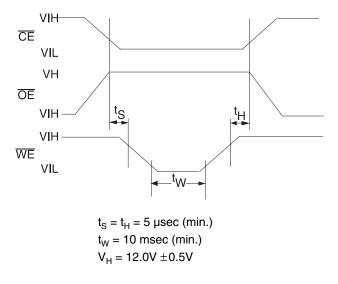
Note: 1. NR = No Restriction.

15. AC Write Waveforms

15.1 WE Controlled

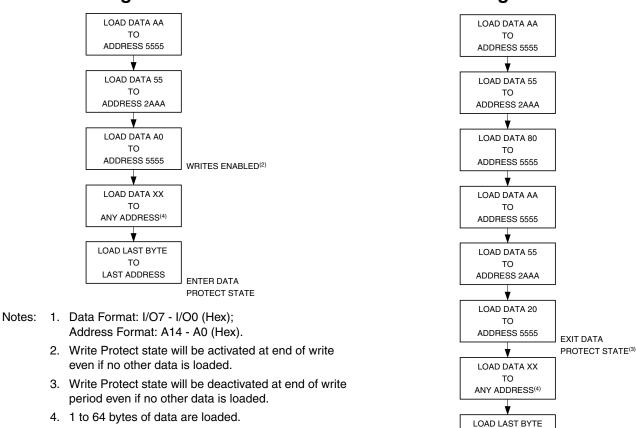

15.2 CE Controlled

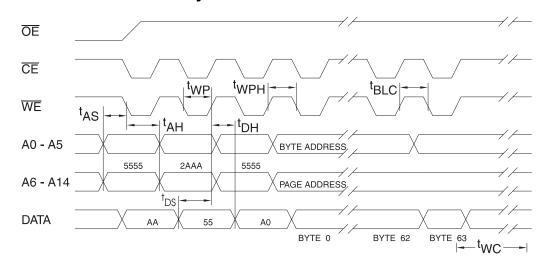
Symbol Parameter Min Тур Max Units AT28HC256 5 10 ms Write Cycle Time (option available) t_{WC} AT28HC256F 2 3 ms Address Setup Time 0 t_{AS} ns Address Hold Time 50 t_{AH} ns t_{DS} Data Setup Time 50 ns Data Hold Time 0 ns t_{DH} Write Pulse Width 100 ns t_{WP} Byte Load Cycle Time 150 μs t_{BLC} Write Pulse Width High 50 t_{WPH} ns


16. Page Mode Write Characteristics

17. Page Mode Write Waveforms⁽¹⁾⁽²⁾

Notes: 1. A6 through A14 must specify the same page address during each high to low transition of WE (or CE).
2. OE must be high only when WE and CE are both low.


18. Chip Erase Waveforms



19. Software Data Protection Enable Algorithm⁽¹⁾

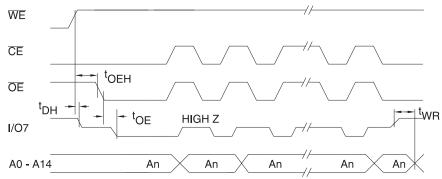
21. Software Protected Write Cycle Waveforms⁽¹⁾⁽²⁾

- Notes: 1. A6 through A14 must specify the same page address during each high to low transition of WE (or CE) after the software code has been entered.
 - 2. $\overline{\text{OE}}$ must be high only when $\overline{\text{WE}}$ and $\overline{\text{CE}}$ are both low.

10 AT28HC256

20. Software Data Protection Disable Algorithm⁽¹⁾

TO LAST ADDRESS

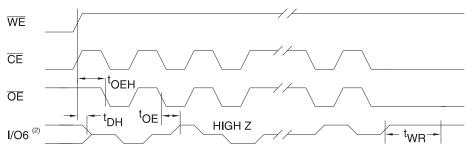

22. Data Polling Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	0			ns
t _{OEH}	OE Hold Time	0			ns
t _{OE}	OE to Output Delay ⁽²⁾				ns
t _{WR}	Write Recovery Time	0			ns

Notes: 1. These parameters are characterized and not 100% tested.

2. See "AC Read Characteristics" on page 6.

23. Data Polling Waveforms

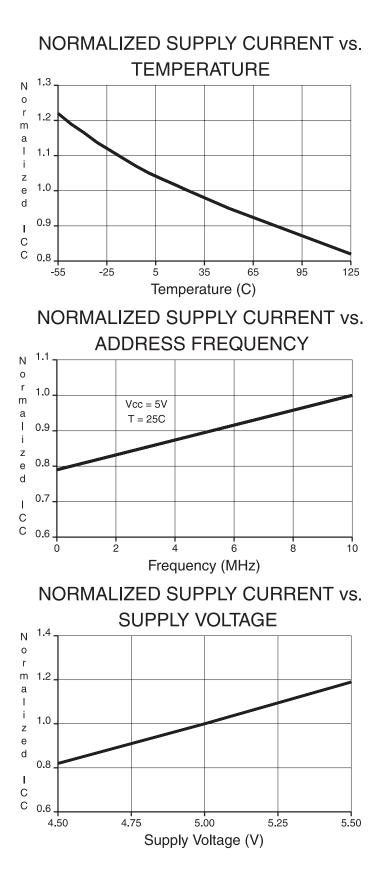

24. Toggle Bit Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
t _{DH}	Data Hold Time	10			ns
t _{OEH}	OE Hold Time	10			ns
t _{OE}	OE to Output Delay ⁽²⁾				ns
t _{OEHP}	OE High Pulse	150			ns
t _{wR}	Write Recovery Time	0			ns
lotes: 1.	These parameters are characterized and not 100% tested.		1	1	1

1. These parameters are characterized and not 100% tested.

2. See "AC Read Characteristics" on page 6.

25. Toggle Bit Waveforms


Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit.

- 2. Beginning and ending state of I/O6 will vary.
- 3. Any address location may be used but the address should not vary.

26. Normalized I_{CC} Graphs

27. Ordering Information⁽¹⁾

27.1 Standard Package

t _{ACC}	I _{CC} (mA)				
(ns)	Active	Standby	Ordering Code	Package	Operation Range
70	80	0.3	AT28HC256(E,F)-70JI AT28HC256(E,F)-70PI AT28HC256(E,F)-70SI AT28HC256(E,F)-70TI	32J 28P6 28S 28T	Industrial
90	80	0.3	AT28HC256(E,F)-90JI AT28HC256(E,F)-90PI AT28HC256(E,F)-90SI AT28HC256(E,F)-90SI AT28HC256(E,F)-90TI	32J 28P6 28S 28T	(-40° C to 85° C)
30	00	0.5	AT28HC256(E,F)-90DM/883 AT28HC256(E,F)-90FM/883 AT28HC256(E,F)-90LM/883 AT28HC256(E,F)-90UM/883	28D6 28F 32L 28U	Military/883C Class B, Fully Compliant (-55° C to 125° C)
120	80	0.3	AT28HC256(E,F)-12JI AT28HC256(E,F)-12PI AT28HC256(E,F)-12SI AT28HC256(E,F)-12TI	32J 28P6 28S 28T	Industrial (-40° C to 85° C)
120			AT28HC256(E,F)-12DM/883 AT28HC256(E,F)-12FM/883 AT28HC256(E,F)-12LM/883 AT28HC256(E,F)-12UM/883	28D6 28F 32L 28U	Military/883C Class B, Fully Compliant (-55°C to 125°C)

	Package Type				
28D6	28-lead, 0.600" Wide, Non-windowed, Ceramic Dual Inline Package (Cerdip)				
28F	28-lead, Non-windowed, Ceramic Bottom-brazed Flat Package (Flatpack)				
32J	32-lead, Plastic J-leaded Chip Carrier (PLCC)				
32L	32-pad, Non-windowed, Ceramic Leadless Chip Carrier (LCC)				
28P6	28-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)				
28S	28-lead, 0.300" Wide Plastic Gull Wing Small Outline (SOIC)				
28T	28-lead, Plastic Thin Small Outline Package (TSOP)				
28U	28-pin, Ceramic Pin Grid Array (PGA)				
	Options				
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 10 ms				
E	High Endurance Option: Endurance = 100K Write Cycles				
F	Fast Write Option: Write Time = 3 ms				

t _{ACC}	I _{CC} (mA)					
(ns)	Active	Standby	Ordering Code	Package	Operation Range	
	80	0.3	5962-88634 03 UX 5962-88634 03 XX 5962-88634 03 YX 5962-88634 03 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)	
90	80 0.3 5962-88634 5962-88634 5962-88634	5962-88634 04 UX 5962-88634 04 XX 5962-88634 04 YX 5962-88634 04 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55° C to 125° C)		
100	80	0.3	5962-88634 01 UX 5962-88634 01 XX 5962-88634 01 YX 5962-88634 01 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55° C to 125° C)	
120	80	0.3	5962-88634 02 UX 5962-88634 02 XX 5962-88634 02 YX 5962-88634 02 ZX	28U 28D6 32L 28F	Military/883C Class B, Fully Compliant (-55°C to 125°C)	

27.1 Standard Package (Continued)

Note: 1. See "Valid Part Numbers" on page 16.

	Package Type				
28D6	28-lead, 0.600" Wide, Non-windowed, Ceramic Dual Inline Package (Cerdip)				
28F	28-lead, Non-windowed, Ceramic Bottom-brazed Flat Package (Flatpack)				
32J	32-lead, Plastic J-leaded Chip Carrier (PLCC)				
32L	32-pad, Non-windowed, Ceramic Leadless Chip Carrier (LCC)				
28P6	28-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)				
28S	28-lead, 0.300" Wide Plastic Gull Wing Small Outline (SOIC)				
28T	28-lead, Plastic Thin Small Outline Package (TSOP)				
28U	28-pin, Ceramic Pin Grid Array (PGA)				
	Options				
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 10 ms				
E	High Endurance Option: Endurance = 100K Write Cycles				
F	Fast Write Option: Write Time = 3 ms				

27.2	Green	Package	Option	(Pb/Halide-free)
------	-------	---------	--------	------------------

t _{ACC}	I _{CC} (mA)		I _{CC} (mA)			
(ns)	Active	Standby	Ordering Code	Package	Operation Range	
			AT28HC256(E, F)-70JU	32J		
70	80	0.3	AT28HC256(E, F)-70SU	28S		
			AT28HC256(E, F)-70TU	28T		
			AT28HC256(E, F)-90JU	32J	Industrial	
90	80	0.3	AT28HC256(E, F)-90SU	28S	(-40° C to 85° C)	
			AT28HC256(E, F)-90TU	28T	(-40 C 10 85 C)	
			AT28HC256(E, F)-12JU	32J		
120	80	0.3	AT28HC256(E, F)-12SU	28S		
			AT28HC256(E, F)-12TU	28T		

Package Type				
32J	32-lead, Plastic J-leaded Chip Carrier (PLCC)			
28S	28-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)			
28T	28-lead, Plastic Thin Small Outline Package (TSOP)			

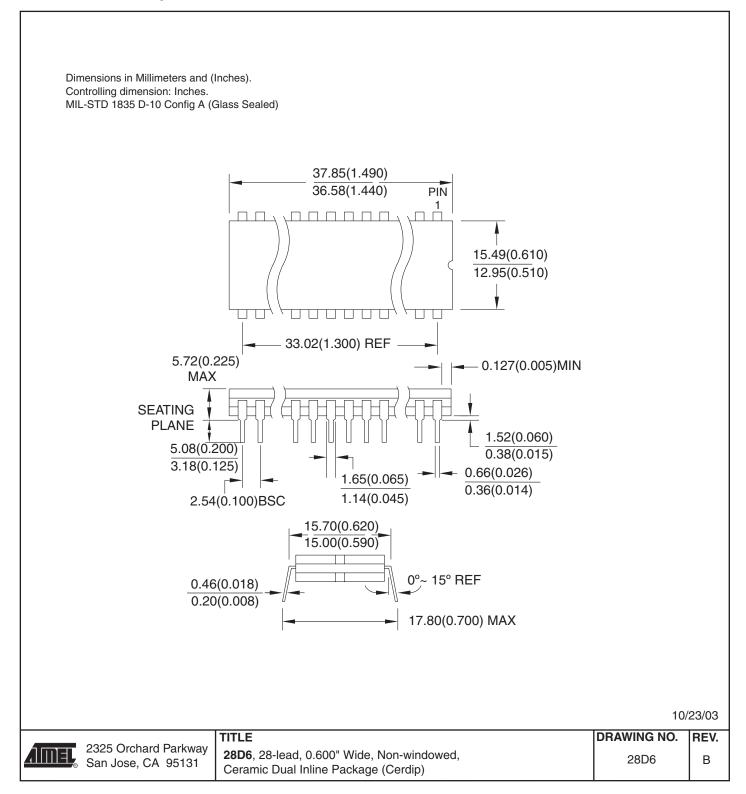
Options				
Blank	Blank Standard Device: Endurance = 10K Write Cycles; Write Time = 10 ms			
F	Fast Write Option: Write Time = 3 ms			

28. Ordering Information Note

Previous datasheets included the low power suffixes L, LE and LF on the AT28HC256 for 120 ns and 90 ns speeds. The low power parameters are now standard; therefore, the L, LE and LF suffixes are no longer required.

29. Valid Part Numbers

The following table lists standard Atmel products that can be ordered:

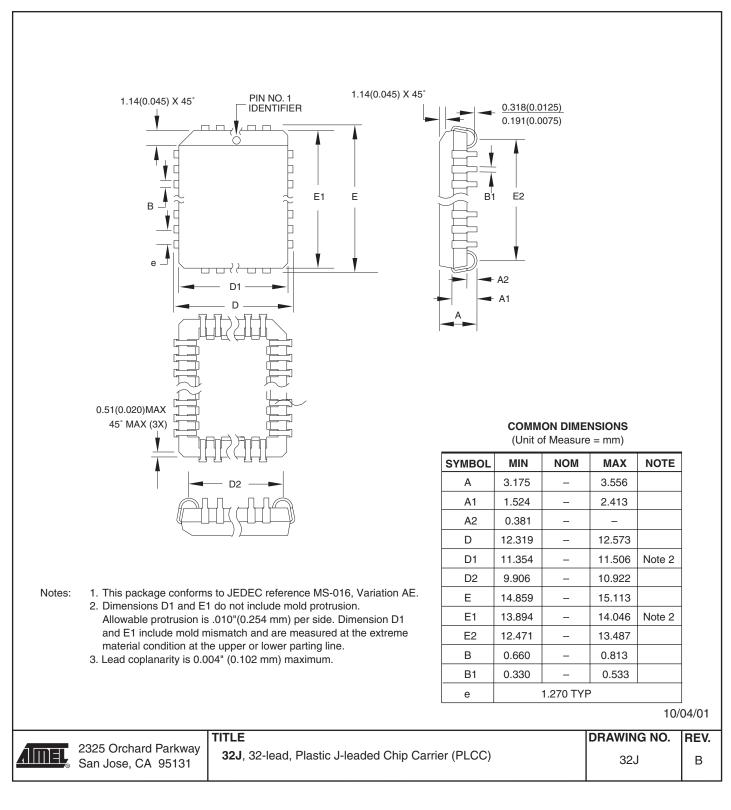

Device Numbers	Speed	Package and Temperature Combinations
AT28HC256	70	JI, JU, PI, PU, SI, SU, TI, TU
AT28HC256 90 JI, JU, PI, SI, SU, TI, TU, DM/883, FM/883, LM/883, UM/883		JI, JU, PI, SI, SU, TI, TU, DM/883, FM/883, LM/883, UM/883
AT28HC256E	90	JI, JU, PI, PU, SI, SU, TI, TU, DM/883, FM/883, LM/883, UM/883
AT28HC256F	90	JI, JU, PI, SU, TI, TU, DM/883, FM/883, LM/883, UM/883
AT28HC256	12	JI, JU, PI, SU, TI, TU, DM/883, FM/883, LM/883, UM/883
AT28HC256E	12	JI, JU, PI, PU, SI, SU, TI, TU, DM/883, FM/883, LM/883, UM/883
AT28HC256F	12	JI, JU, PI, SU, TI, TU, DM/883, FM/883, LM/883, UM/883

30. Die Products

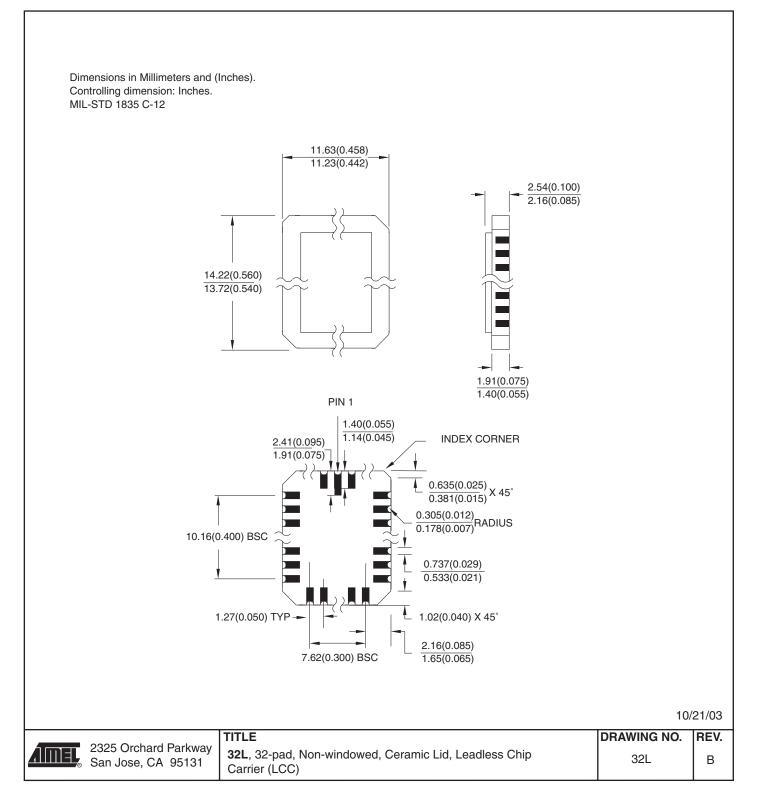
Reference Section: Parallel EEPROM Die Products

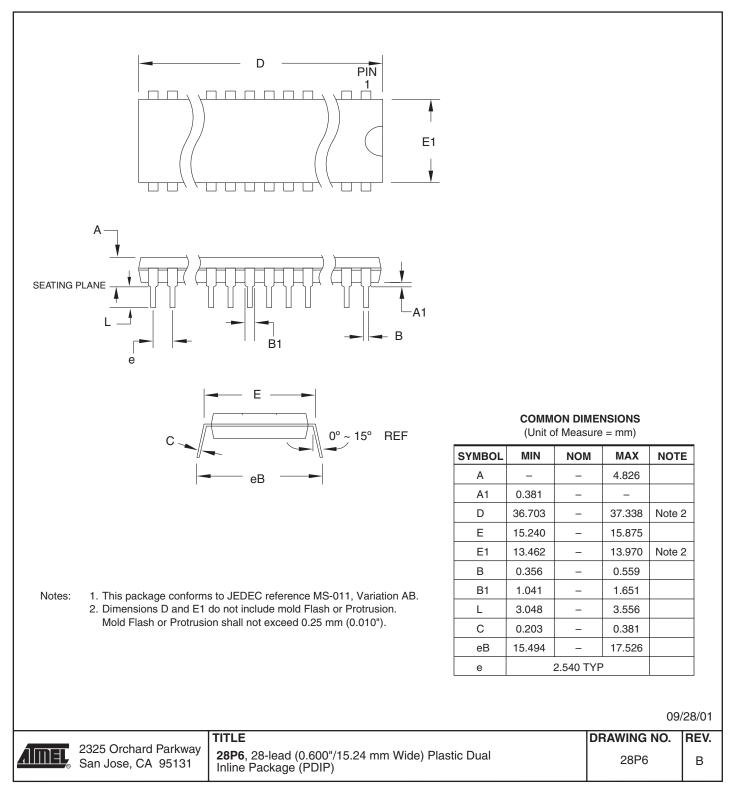
31. Packaging Information

31.1 28D6 - Cerdip



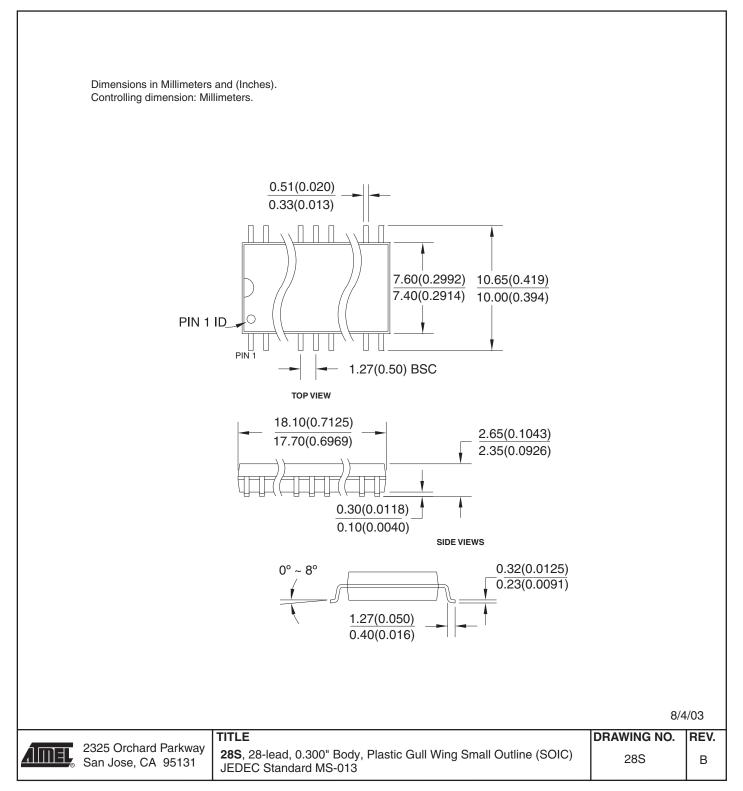
31.2 28F - Flatpack


31.3 32J - PLCC



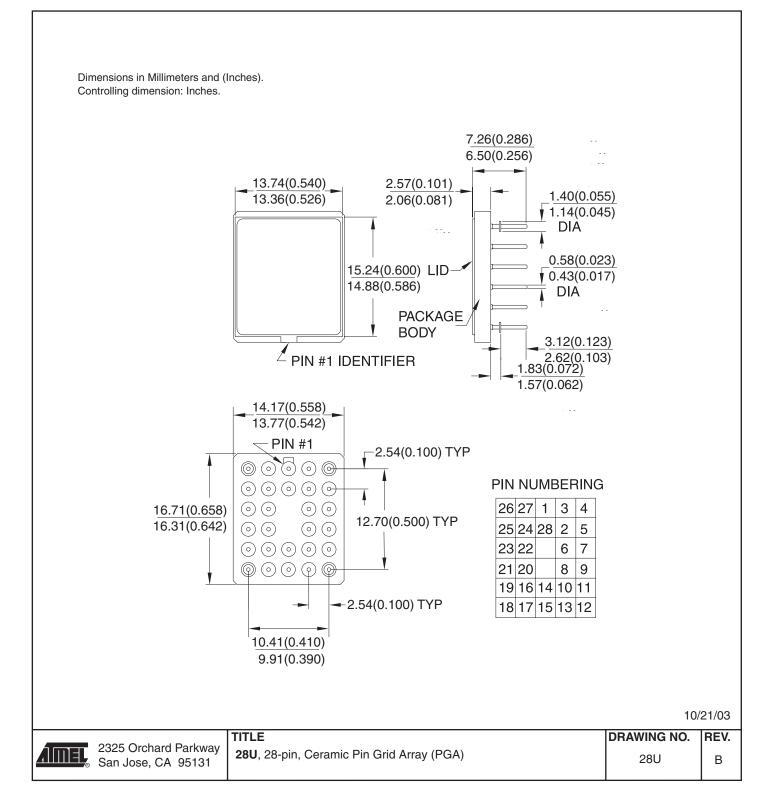
31.4 32L - LCC

AT28HC256


31.5 28P6 - PDIP

31.6 28S - SOIC

AT28HC256


31.7 28T – TSOP

31.8 28U - PGA

²⁴ AT28HC256

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com *Technical Support* p_eeprom@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.