TABLE OF CONTENTS

Features	. 1
Applications	. 1
Functional Block Diagram	. 1
General Description	. 1
Product Highlights	. 1
Revision History	. 2
Specifications	. 3
Dual-Supply Operation	. 3
Single-Supply Operation	. 4

REVISION HISTORY

2/2017—Rev. A to Rev. B	
Deleted B Version The second s	nroughout
Changes to Features Section, Applications Section, and	d Product
Highlights Section	1
Added Note 2 to Table 1; Renumbered Sequentially	3
Added Note 2 to Table 2; Renumbered Sequentially	4
Added Note 2 to Table 3; Renumbered Sequentially	5
Added Note 1 to Table 4; Renumbered Sequentially	6
Changes to Figure 3 and Table 6	7
Updated Outline Dimensions	14
Changes to Ordering Guide	14

11/2009—Rev. 0 to Rev. A

Changes to Table 4	6
Added Table 5; Renumbered Sequentially	7
Changes to Table 6	7
Update Outline Dimensions	14
Changes to Ordering Guide	14
6 6	

2/2003—Revision 0: Initial Version

SPECIFICATIONS

DUAL-SUPPLY OPERATION

 V_{DD} = +5 V, V_{SS} = -5 V, GND = 0 V, T_A = -40°C to +125°C, unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{ss} to V _{DD}	V	$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance, R _{on}	52			Ωtyp	$V_s = \pm 4.5 \text{ V}, I_s = 1 \text{ mA}; \text{ see Figure 20}$
	75	90	100	Ωmax	$V_{s} = \pm 4.5 V$, $I_{s} = 1 mA$; see Figure 20
On-Resistance Match	0.8			Ωtyp	$V_{s} = +3.5 V$, $I_{s} = 1 mA$
Between Channels, ΔR_{ON}					
	1.3	1.8	2	Ωmax	$V_{s} = +3.5 \text{ V}, I_{s} = 1 \text{ mA}$
On-Resistance Flatness, R _{FLAT(ON)}	9			Ωtyp	$V_{DD} = +5 V$, $V_{SS} = -5 V$, $V_{S} = \pm 3 V$, $I_{S} = 1 mA$
	12	13	14	Ωmax	$V_{DD} = +5 V, V_{SS} = -5 V, V_{S} = \pm 3 V, I_{S} = 1 mA$
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, \text{ V}_{SS} = -5.5 \text{ V}$
Source Off Leakage, I _{S(OFF)}	±0.005			nA typ	$V_{\rm D} = \pm 4.5 \text{ V}, V_{\rm S} = \mp 4.5 \text{ V}; \text{ see Figure 21}$
	±0.2		±5	nA max	$V_{\rm D} = \pm 4.5 \text{ V}, V_{\rm S} = \mp 4.5 \text{ V}; \text{ see Figure 21}$
Drain Off Leakage, I _{D(OFF)}	±0.005			nA typ	$V_{\rm D} = \pm 4.5 \text{ V}, V_{\rm S} = \pm 4.5 \text{ V}; \text{ see Figure 22}$
	±0.2		±5	nA max	$V_{\rm D} = \pm 4.5$ V, $V_{\rm S} = \mp 4.5$ V; see Figure 22
			ΞЭ		
Channel On Leakage, $I_{D(ON)}$, $I_{S(ON)}$	±0.005			nA typ	$V_D = V_S = \pm 4.5$ V; see Figure 23
	±0.2		±5	nA max	$V_D = V_S = \pm 4.5$ V; see Figure 23
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±1	μA max	$V_{IN} = V_{INL}$ or V_{INH}
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{transition}	60			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 24
	90	110	130	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 24
t _{on} (EN)	70			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
	95	120	135	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
t _{off} (EN)	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
	40	45	50	ns max	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_5 = 3 V$; see Figure 26
Break-Before-Make Time Delay, t _{BBM}	40			ns typ	$R_{\rm H} = 300 \Omega, C_{\rm H} = 35 \text{pF}, V_{\rm S1} = V_{\rm S2} = 3 \text{V}; \text{see Figure 25}$
, · · · · · · · · · · · · · · · · · · ·			10	ns min	$R_{\rm H} = 300 \Omega, C_{\rm H} = 35 \text{pF}, V_{\rm S1} = V_{\rm S2} = 3 \text{V}; \text{ see Figure 25}$
Charge Injection	2			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 27
5 ,	4			pC max	$V_{s} = 0 V, R_{s} = 0 \Omega, C_{L} = 1 nF;$ see Figure 27
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Total Harmonic Distortion, THD + N	0.025			% typ	$R_{\rm L} = 600 \Omega, 2 V p-p, f = 20 Hz to 20 Hz$
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
-3 dB Bandwidth	580			MHz typ	$R_{L} = 50 \Omega$, $C_{L} = 5 pF$; see Figure 29
C _{S(OFF)}	4			pF typ	f = 1 MHz
	7			pF typ	f = 1 MHz
C _{D(OFF)} C _{D(ON)} , C _{S(ON)}	12			pF typ	f = 1 MHz
POWER REQUIREMENTS ²	12			אי יא	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
	0.01			μA typ	$v_{DD} = +3.5 \text{ v}, v_{SS} = -3.5 \text{ v}$ Digital inputs = 0 V or 5.5 V
I _{DD}	0.01		1	μΑ typ μΑ max	Digital inputs = 0 V or 5.5 V
	0.01		1	•	Digital inputs = $0 \text{ V or } 5.5 \text{ V}$ Digital inputs = $0 \text{ V or } 5.5 \text{ V}$
I _{SS}	0.01		1	μA typ	
			1	μA max	Digital inputs = 0 V or 5.5 V

¹ Guaranteed by design; not subject to production test. ² The device is fully specified at a ±5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (±2 V to ±6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{INL}, V_{INH}, and switching times. The optimal power-up sequence for the device is: ground, V_{DD}, V_{SS}, and then the digital inputs, before applying the analog input signal.

SINGLE-SUPPLY OPERATION

 V_{DD} = 5 V, V_{SS} = 0 V, GND = 0 V, T_A = -40°C to +125°C, unless otherwise noted.

Table 2.

Parameter	+25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V _{DD}	V	$V_{DD} = 4.5 V, V_{SS} = 0 V$
On Resistance, R _{on}	85			Ωtyp	$V_{s} = 0 V$ to 4.5 V, $I_{s} = 1 mA$; see Figure 20
	150	160	200	Ωmax	$V_s = 0 V$ to 4.5 V, $I_s = 1 mA$; see Figure 20
On-Resistance Match	4.5			Ωtyp	$V_s = +3.5 V, I_s = 1 mA$
Between Channels, ΔR_{ON}					
	8	9	10	Ωmax	$V_{s} = +3.5 \text{ V}, I_{s} = 1 \text{ mA}$
On-Resistance Flatness, R _{FLAT(ON)}	13	14	16	Ωtyp	$V_{DD} = 5 V$, $V_{SS} = 0 V$, $V_{S} = 1.5 V$ to $4 V$, $I_{S} = 1 mA$
LEAKAGE CURRENTS					$V_{DD} = 5.5 V$
Source Off Leakage, I _{S(OFF)}	±0.005			nA typ	$V_{s} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 21}$
	±0.2		±5	nA max	$V_{s} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 21}$
Drain Off Leakage, I _{D(OFF)}	±0.005			nA typ	$V_{s} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 22}$
	±0.2		±5	nA max	$V_{s} = 1 \text{ V}/4.5 \text{ V}, V_{D} = 4.5 \text{ V}/1 \text{ V}; \text{ see Figure 22}$
Channel On Leakage, $I_{D(ON)}$, $I_{S(ON)}$	±0.005			nA typ	$V_s = V_D = 1$ V or 4.5 V; see Figure 23
	±0.2		±5	nA max	$V_s = V_D = 1$ V or 4.5 V; see Figure 23
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±1	μA max	$V_{IN} = V_{INL}$ or V_{INH}
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t _{TRANSITION}	100			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 24
	150	190	220	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 24
t _{on} (EN)	100			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
	150	190	220	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
t _{off} (EN)	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; see Figure 26
	35	45	50	ns max	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_5 = 3 V$; see Figure 26
Break-Before-Make Time Delay, t _{BBM}	90			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3 V$; see Figure 25
, · · · · · · · · · · · · · · · · · · ·			10	ns min	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_{S1} = V_{S2} = 3 V$; see Figure 25
Charge Injection	0.5			pC typ	$V_{\rm S} = 2.5 \text{ V}, \text{ R}_{\rm S} = 0 \Omega, \text{ C}_{\rm L} = 1 \text{ nF}; \text{ see Figure 27}$
5 ,	1			pC max	$V_{s} = 2.5 V, R_{s} = 0 \Omega, C_{1} = 1 nF$; see Figure 27
Off Isolation	-90			dB typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$, $f = 1 MHz$; see Figure 28
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
–3 dB Bandwidth	520			MHz typ	$R_1 = 50 \Omega$, $C_1 = 5 pF$; see Figure 29
C _{S(OFF)}	5			pF typ	f = 1 MHz
C _{D(OFF)}	8			pF typ	f = 1 MHz
$C_{D(ON)}, C_{S(ON)}$	12			pF typ	f = 1 MHz
POWER REQUIREMENTS ²					V _{DD} = 5.5 V
I _{DD}	0.01			μA typ	Digital inputs = $0 \text{ V} \text{ or } 5.5 \text{ V}$
			1	µA max	Digital inputs = 0 V or 5.5 V

¹ Guaranteed by design; not subject to production test.

² The device is fully specified at a ±5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (± 2 V to ± 6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{INL}, V_{INH}, and switching times. The optimal power-up sequence for the device is: ground, V_{DD}, V_{SS}, and then the digital inputs, before applying the analog input signal.

Data Sheet

V_{DD} = 2.7 V to 3.6 V, V_{SS} = 0 V, GND = 0 V, T_A = -40°C to +125°C, unless otherwise noted.

Table 3.

Parameter	+25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V _{DD}	V	$V_{DD} = 2.7 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance, R _{on}	185			Ωtyp	$V_s = 0 V$ to 2.7 V, $I_s = 0.1 mA$; see Figure 20
	300	350	400	Ωmax	$V_{s} = 0 V$ to 2.7 V, $I_{s} = 0.1 mA$; see Figure 20
On-Resistance Match	2			Ωtyp	$V_s = +1.5 V, I_s = 0.1 mA$
Between Channels, ΔR_{ON}					
	4.5	6	7	Ωmax	$V_s = +1.5 V$, $I_s = 0.1 mA$
LEAKAGE CURRENTS					$V_{DD} = 3.3 V$
Source Off Leakage, I _{S(OFF)}	±0.005			nA typ	$V_{s} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V}; \text{ see Figure 21}$
	±0.2		±5	nA max	$V_{s} = 1 V/3 V$, $V_{D} = 3 V/1 V$; see Figure 21
Drain Off Leakage, I _{D(OFF)}	±0.005			nA typ	$V_{s} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V}; \text{ see Figure 22}$
	±0.2		±5	nA max	$V_{s} = 1 \text{ V/3 V}, V_{D} = 3 \text{ V/1 V}; \text{ see Figure 22}$
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.005			nA typ	$V_{\rm S} = V_{\rm D} = 1$ V or 3 V; see Figure 23
	±0.2		±5	nA max	$V_s = V_D = 1$ V or 3 V; see Figure 23
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.5	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±1	µA max	$V_{\rm IN} = V_{\rm INI}$ or $V_{\rm INH}$
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ¹				1. 21	
t _{TRANSITION}	170			ns typ	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_s = 1.5 V$; see Figure 24
The second se	300	370	400	ns max	$R_1 = 300 \Omega, C_1 = 35 \text{ pF}, V_s = 1.5 \text{ V}; \text{ see Figure 24}$
t _{on} (EN)	200			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 26
-011 ()	310	380	420	ns max	$R_{\rm I} = 300 \Omega, C_{\rm I} = 35 \text{pF}, V_{\rm S} = 1.5 \text{V}; \text{see Figure 26}$
t _{off} (EN)	30	500	120	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 26 $R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 1.5 V$; see Figure 26
COFF (LIV)	40	55	75	ns max	$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_5 = 1.5 V$; see Figure 26
Break-Before-Make Time Delay, t _{RRM}	180	55	75		$R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_{51} = V_{52} = 1.5 V$; see Figure 25 $R_1 = 300 \Omega$, $C_1 = 35 pF$, $V_{51} = V_{52} = 1.5 V$; see Figure 25
bleak-berore-make fille belay, t _{BBM}	100		10	ns typ	$R_1 = 300 \Omega_2 C_1 = 35 \text{ pr}, v_{S1} = v_{S2} = 1.5 \text{ v}$, see Figure 25 $R_1 = 300 \Omega_2 C_1 = 35 \text{ pr}, V_{S1} = V_{S2} = 1.5 \text{ V}$; see Figure 25
Charge Injection	1		10	ns min	$R_L = 500 \Omega_2$, $C_L = 55 \text{ pr}$, $v_{S1} = v_{S2} = 1.5 \text{ v}$; see Figure 25 $V_S = 1.5 \text{ V}$, $R_S = 0 \Omega$, $C_I = 1 \text{ nF}$; see Figure 27
Charge Injection	1			pC typ	
Off lashering				pC max	$V_s = 1.5 V, R_s = 0 \Omega, C_L = 1 nF;$ see Figure 27
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 28
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 30
–3 dB Bandwidth	500			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 29
C _{S(OFF)}	5			pF typ	f = 1 MHz
C _{D(OFF)}	8			pF typ	f = 1 MHz
$C_{D(ON)}, C_{S(ON)}$	12			pF typ	f = 1 MHz
POWER REQUIREMENTS ²					V _{DD} = 3.3 V
I _{DD}	0.01			μA typ	Digital inputs = 0 V or 3.3 V
			1	μA max	Digital inputs = 0 V or 3.3 V

¹ Guaranteed by design; not subject to production test.

² The device is fully specified at \pm 5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (\pm 2 V to \pm 6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{NL}, V_{INH}, and switching times. The optimal power-up sequence for the device is: ground, V_{DD}, V_{SS}, and then the digital inputs, before applying the analog input signal.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 4.

Parameter	Rating
V_{DD} to V_{SS}^{1}	13 V
V _{DD} to GND	–0.3 V to +13 V
V _{ss} to GND	+0.3 V to -6.5 V
Analog Inputs ²	$V_{SS} - 0.3 V$ to $V_{DD} + 0.3 V$
Digital Inputs ²	GND – 0.3 V to V _{DD} + 0.3 V or 10 mA, whichever occurs first
Peak Current, S or D	40 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D	20 mA
Operating Temperature Range	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
θ_{JA} Thermal Impedance	
16-Lead TSSOP	150.4°C/W
16-Lead LFCSP, 4-Layer Board	70°C/W
Lead Soldering	
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature (<20 sec)	220°C
(Pb-Free) Soldering	
Reflow, Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	20 sec to 40 sec
ESD	4 kV

¹ The device is fully specified at a ±5 V dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies (±2 V to ±6 V, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, V_{INL} , V_{INH} , and switching times. The optimal power-up sequence for the device is: ground, V_{DD} , V_{SS} , and then the digital inputs, before applying the analog input signal.

² Overvoltages at Ax, EN, S, or D are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

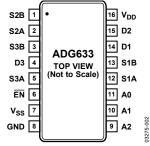
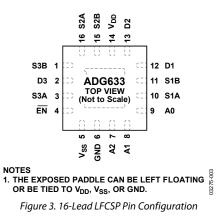



Figure 2. 16-Lead TSSOP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.				
TSSOP	TSSOP LFCSP		Description	
1	15	S2B	Source Terminal of Multiplexer 2. Can be an input or output.	
2	16	S2A	Source Terminal of Multiplexer 2. Can be an input or output.	
3	1	S3B	Source Terminal of Multiplexer 3. Can be an input or output.	
4	2	D3	Drain Terminal of Multiplexer 3. Can be an input or output.	
5	3	S3A	Source Terminal of Multiplexer 3. Can be an input or output.	
6	4	EN	Digital Control Input. Disables all multiplexers when set high.	
7	5	Vss	Most Negative Power Supply Terminal. Tie this pin to GND when using the device with single-supply voltages.	
8	6	GND	Ground (0 V) Reference.	
9	7	A2	Digital Control Input.	
10	8	A1	Digital Control Input.	
11	9	A0	Digital Control Input.	
12	10	S1A	Source Terminal of Multiplexer 1. Can be an input or output.	
13	11	S1B	Source Terminal of Multiplexer 1. Can be an input or output.	
14	12	D1	Drain Terminal of Multiplexer 1. Can be an input or output.	
15	13	D2	Drain Terminal of Multiplexer 2. Can be an input or output.	
16	14	V _{DD}	Most Positive Power Supply Terminal.	
Not applicable	EP	EP	Exposed Paddle. The exposed paddle can be left floating or be tied to V_{DD} , V_{SS} , or GND.	

Table 6.	ADG633	Truth	Table
----------	--------	-------	-------

				Switch Condition					
A2	A1	A0	EN	Switch S1A/D1	Switch S1B/D1	Switch S2A/D2	Switch S2B/D2	Switch S3A/D3	Switch S3B/D3
X ¹	X1	X ¹	1	Off	Off	Off	Off	Off	Off
0	0	0	0	On	Off	On	Off	On	Off
0	0	1	0	Off	On	On	Off	On	Off
0	1	0	0	On	Off	Off	On	On	Off
0	1	1	0	Off	On	Off	On	On	Off
1	0	0	0	On	Off	On	Off	Off	On
1	0	1	0	Off	On	On	Off	Off	On
1	1	0	0	On	Off	Off	On	Off	On
1	1	1	0	Off	On	Off	On	Off	On

 $^{\scriptscriptstyle 1}$ X means the logic state does not matter; it can be either 0 or 1.

TYPICAL PERFORMANCE CHARACTERISTICS

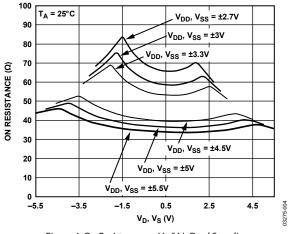
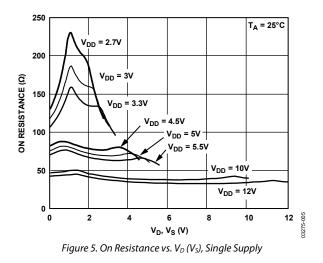



Figure 4. On Resistance vs. V_D (V_s), Dual Supplies

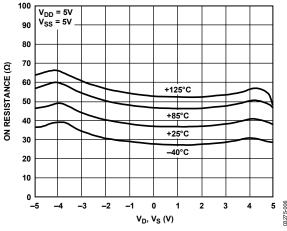


Figure 6. On Resistance vs. V_D (V_s) for Various Temperatures, Dual Supplies

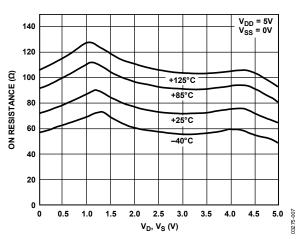


Figure 7. On Resistance vs. $V_{\text{D}}\left(V_{\text{S}}\right)$ for Various Temperatures, Single Supply

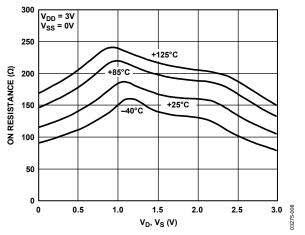


Figure 8. On Resistance vs. V_D (V_s) for Various Temperatures, Single Supply

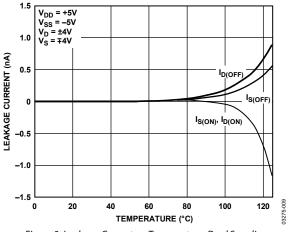


Figure 9. Leakage Current vs. Temperature, Dual Supplies

Data Sheet

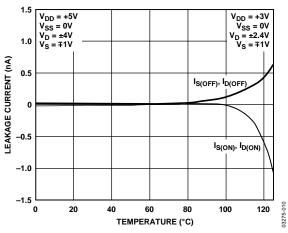
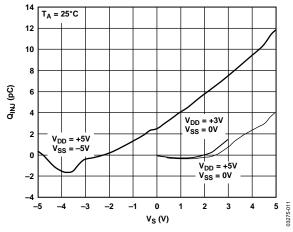
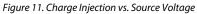




Figure 10. Leakage Current vs. Temperature, Single Supply

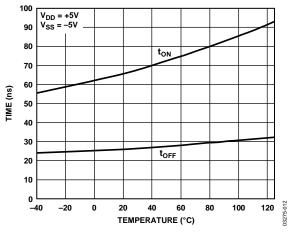
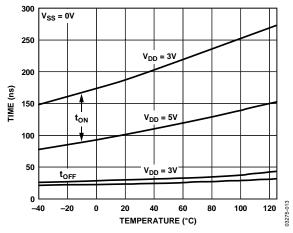
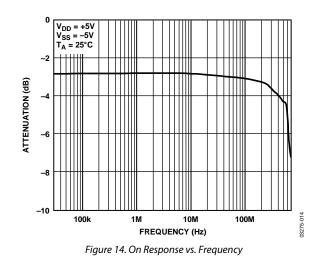




Figure 12. t_{ON}/t_{OFF} Times vs. Temperature, Dual Supplies

ADG633

Figure 13. t_{ON}/t_{OFF} Times vs. Temperature, Single Supply

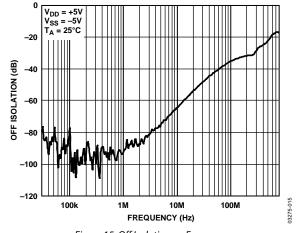
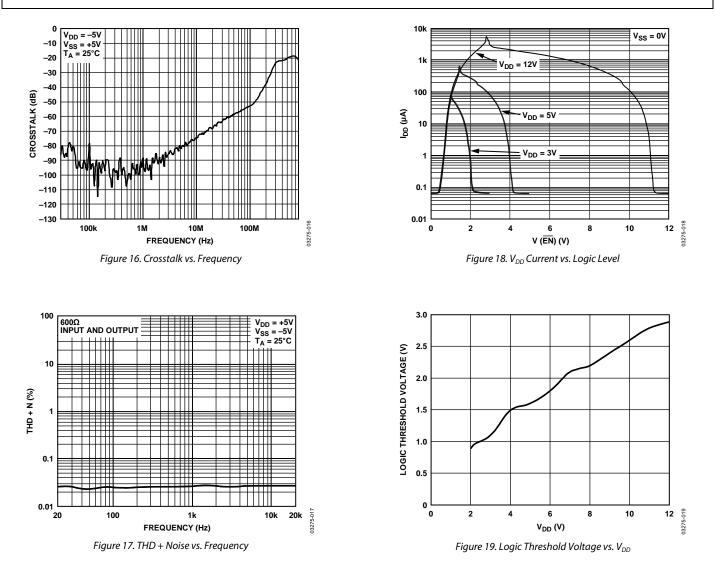



Figure 15. Off Isolation vs. Frequency

Rev. B | Page 9 of 16

ADG633

\mathbf{V}_{DD}

Most positive power supply potential.

V_{ss}

Most negative power supply potential.

I_{DD}

Positive supply current.

Iss

Negative supply current.

GND

Ground (0 V) reference.

S

Source terminal. Can be an input or output.

D

Drain terminal. Can be an input or output.

A_x

Logic control input.

EN

Active low digital input. When $\overline{\text{EN}}$ is high, the device is disabled and all switches are off. When $\overline{\text{EN}}$ is low, the Ax logic inputs determine the on switches.

$\mathbf{V}_{\mathrm{D}}, \mathbf{V}_{\mathrm{S}}$

Analog voltage on Terminal D and Terminal S.

R_{on}

Ohmic resistance between Terminal D and Terminal S.

$\Delta R_{\rm ON}$

On-resistance match between any two channels, that is, $R_{ONMAX} - R_{ONMIN}$.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

I_{S(OFF)}

Source leakage current with the switch off.

 $I_{D(OFF)}$ Drain leakage current with the switch off.

$I_{D(ON)},\,I_{S(ON)}$ Channel leakage current with the switch on.

V_{INL} Maximum input voltage for Logic 0. Minimum input voltage for Logic 1.

I_{INL}, I_{INH} Input current of the digital input.

C_{S(OFF)}

Off switch source capacitance. Measured with reference to ground.

 $C_{D(OFF)}$ Off switch drain capacitance. Measured with reference to ground.

 $C_{\text{D(ON)}}, C_{\text{S(ON)}}$ On switch capacitance. Measured with reference to ground.

C_{IN} Digital input capacitance.

t_{ON} (\overline{EN})

Delay between applying the digital control input and the output switching on (see Figure 26).

 t_{OFF} (\overline{EN}) Delay between applying the digital control input and the output switching off (see Figure 26).

t_{BBM}

On time, measured between 80% points of both switches when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

ADG633

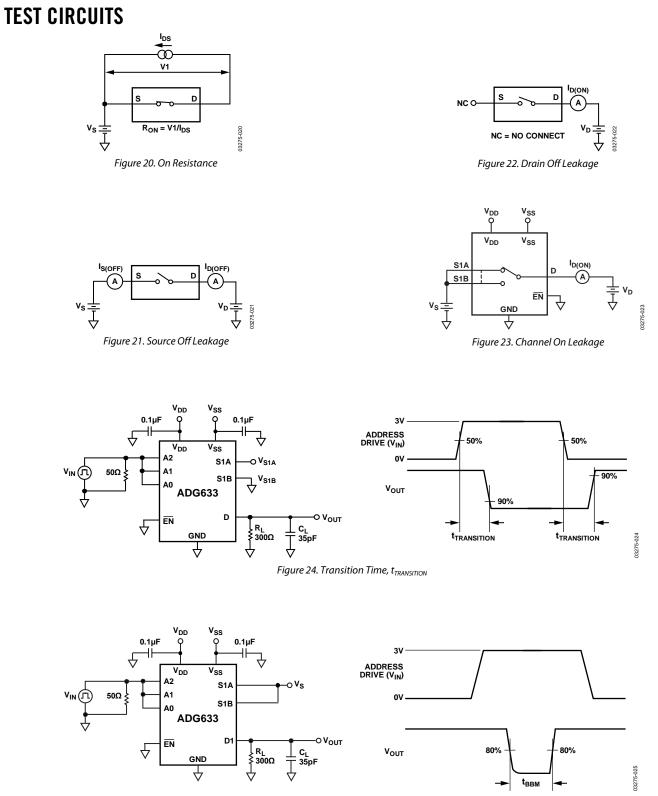
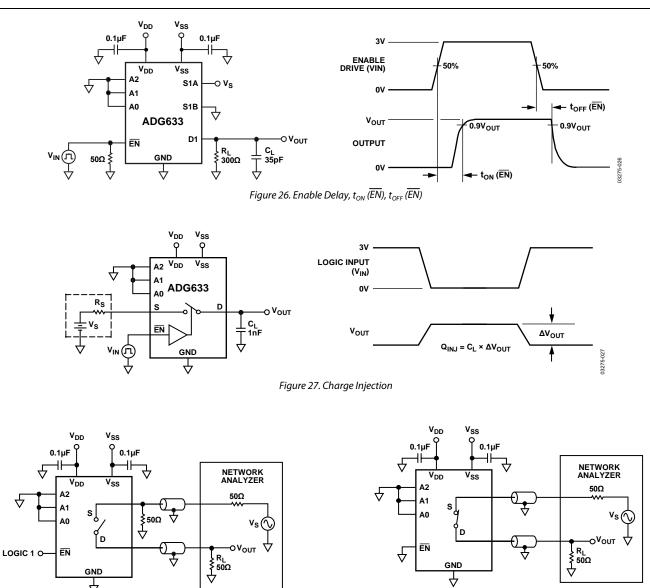
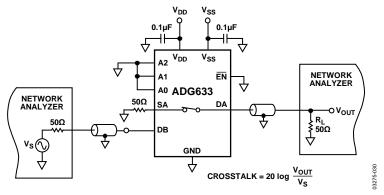



Figure 25. Break-Before-Make Delay, t_{BBM}


Data Sheet

Ą

INSERTION LOSS = 20 log $\frac{V_{OUT} \text{ WITH SWITCH}}{V_{OUT} \text{ WITHOUT SWITCH}}$

Figure 29. Bandwidth

V_{OUT} V_S 03275-028

OFF ISOLATION = 20 log

Figure 28. Off Isolation

Figure 30. Channel-to-Channel Crosstalk

Rev. B | Page 13 of 16

OUTLINE DIMENSIONS

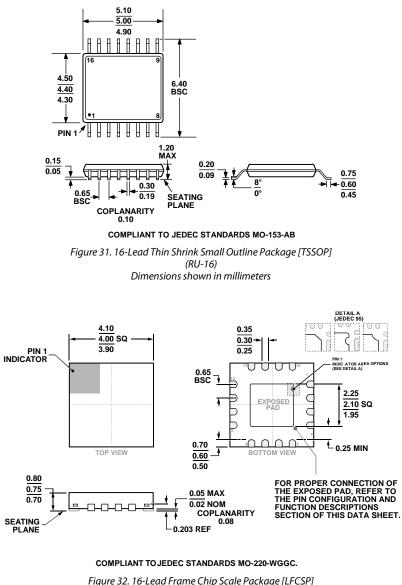


Figure 32. 16-Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-23) Dimensions shown in millimeters 04-15-2016

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG633YRU	–40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRU-REEL7	–40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRUZ	–40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRUZ-REEL7	–40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YCPZ	–40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG633YCPZ-REEL7	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23

 1 Z = RoHS Compliant Part.

NOTES

ADG633

NOTES

©2003–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D03275-0-2/17(B)

www.analog.com