June 1999 Revised December 2013

FAIRCHILD

SEMICONDUCTOR®

74VCX245 Low Voltage Bidirectional Transceiver with 3.6V Tolerant Inputs and Outputs

General Description

The VCX245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The T/R input determines the direction of data flow. The \overline{OE} input disables both the A and B ports by placing them in a high impedance state.

The 74VCX245 is designed for low voltage (1.4V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V.

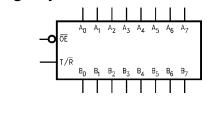
The 74VCX245 is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

- 1.4V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- Power-off high impedance inputs and outputs
- Supports Live Insertion and Withdrawal (Note 1)
- t_{PD}
- 3.5 ns max for 3.0V to 3.6V V_{CC}
- Static Drive (I_{OH}/I_{OL}) ±24 mA @ 3.0V V_{CC}
- Uses proprietary noise/EMI reduction circuitry
- Latchup performance exceeds 300 mA
- ESD performance: Human body model > 2000V
- Machine model > 200V
- Leadless DQFN Pb-Free package

Note 1: To ensure the high impedance state during power up and power down, \overline{OE}_n should be tied to V_{CC} through a pull up resistor. The minimum value of the resistor is determined by the current sourcing capability of the driver.

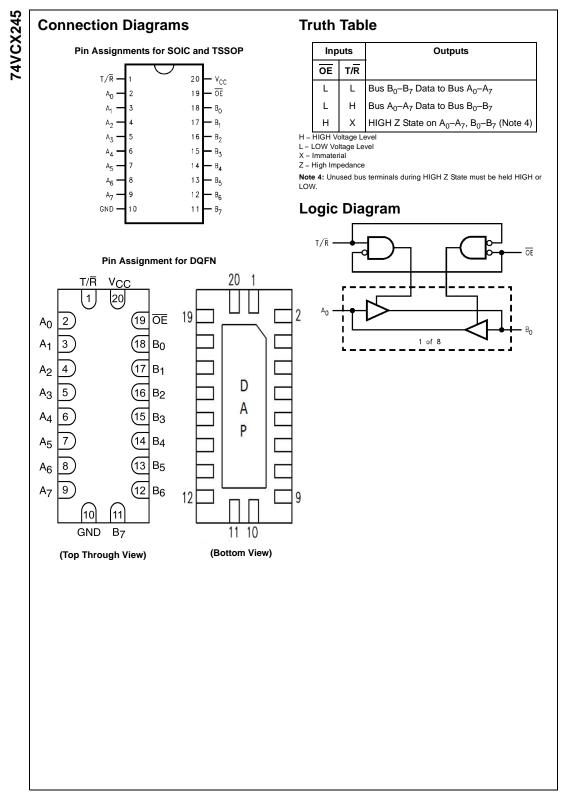
Ordering Code:


Order Number Package Number		Package Description
74VCX245WM (Note 2) M20B 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide		20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
(Note 3)		Pb-Free 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm
		20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Pb-Free package per JEDEC J-STD-020B.

Note 2: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Note 3: DQFN package available in Tape and Reel only,


Logic Symbol

Pin Descriptions

Pin Names	Description			
OE	Output Enable Input (Active LOW)			
T/R	Transmit/Receive Input			
A ₀ -A ₇	Side A Inputs or 3-STATE Outputs			
B ₀ -B ₇	Side B Inputs or 3-STATE Outputs			
DAP	No Connect			
Note: DAP (Die Attach Pad)				

© 2013 Fairchild Semiconductor Corporation DS500167

Absolute Maximum Ratings		S (Note 5)	Recommended Op
Supply Voltage (V _{CC})		-0.5V to +4.6V	Conditions (Note 7)
DC Input Voltage (VI)		-0.5V to +4.6V	Power Supply
DC Output Voltage (V _O)	1		Operating
Outputs 3-STATE		-0.5V to +4.6V	Input Voltage
Outputs Active (Note	6) -0.5	V to V _{CC} + 0.5V	Output Voltage (V _O)
DC Input Diode Current	(I _{IK}) V _I < 0V	–50 mA	Output in Active States
DC Output Diode Curre	nt (I _{OK})		Output in 3-STATE
$V_{O} < 0V$		–50 mA	Output Current in I _{OH} /I _{OL}
$V_{O} > V_{CC}$		+50 mA	V _{CC} = 3.0V to 3.6V
DC Output Source/Sink	Current		$V_{CC} = 2.3V$ to 2.7V
(I _{OH} /I _{OL})		±50 mA	$V_{CC} = 1.65V \text{ to } 2.3V$
DC V _{CC} or Ground Curr	ent	±100 mA	$V_{CC} = 1.4V$ to 1.6V
Storage Temperature (T	sтg) –	65°C to +150°C	Free Air Operating Temperatu
			Minimum Input Edge Rate (Δt/
			$V_{IN} = 0.8V$ to 2.0V. $V_{CC} = 3$

Recommended Operating Conditions (Note 7)					
Power Supply					
Operating	1.4V to 3.6V				
Input Voltage	-0.3V to 3.6V				
Output Voltage (V _O)					
Output in Active States	0V to V _{CC}				
Output in 3-STATE	0V to 3.6V				
Output Current in I _{OH} /I _{OL}					
$V_{CC} = 3.0V$ to 3.6V	±24 mA				
$V_{CC} = 2.3V$ to 2.7V	±18 mA				
$V_{CC} = 1.65V$ to 2.3V	±6 mA				
$V_{CC} = 1.4V$ to 1.6V	±2 mA				
Free Air Operating Temperature (T _A)	-40°C to +85°C				
Minimum Input Edge Rate ($\Delta t / \Delta V$)					
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V				
Note 5: The Abcolute Maximum Patings are those	values beyond which				

74VCX245

Note 5: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 6: I_O Absolute Maximum Rating must be observed.

Note 7: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		2.7 to 3.6	2.0		
			2.3 to 2.7	1.6		V
			1.65 to 2.3	$0.65 \times V_{CC}$		v
			1.4 to 1.6	$0.65 \times V_{CC}$		
V _{IL}	LOW Level Input Voltage		2.7 to 3.6		0.8	
			2.3 to 2.7		0.7	V
			1.65 to 2.3		$0.35\times V_{CC}$	v
			1.4 to 1.6		$0.35\times V_{CC}$	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2		
		I _{OH} = -12 mA	2.7	2.2		
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
		I _{OH} = -100 μA	2.3 to 2.7	V _{CC} - 0.2		
		I _{OH} = -6 mA	2.3	2.0		V
		I _{OH} = -12 mA	2.3	1.8		v
		I _{OH} = -18 mA	2.3	1.7		
		I _{OH} = -100 μA	1.65 to 2.3	V _{CC} - 0.2		
		I _{OH} = -6 mA	1.65	1.25		
		I _{OH} = -100 μA	1.4 to 1.6	V _{CC} - 0.2		
		$I_{OH} = -2 \text{ mA}$	1.4	1.05		

74VCX245

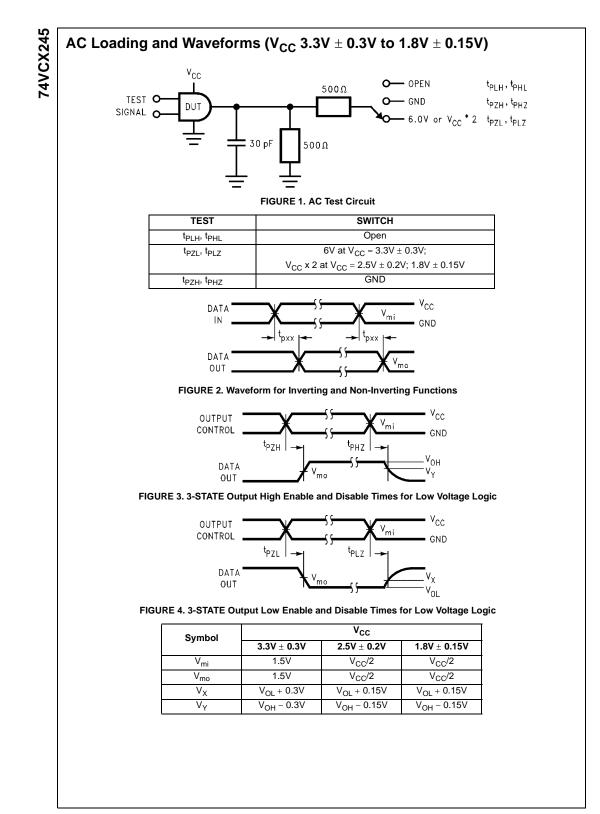
DC Electrical Characteristics (Continued)

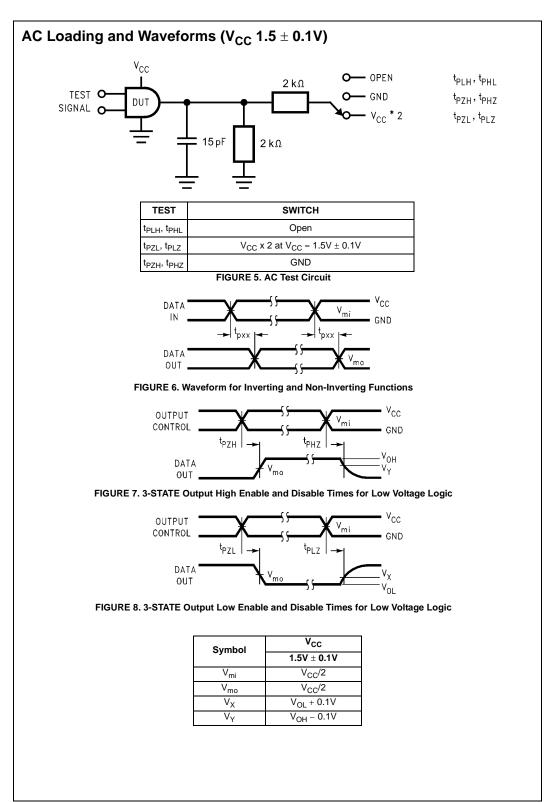
V_{CC} Symbol Parameter Conditions Min Max Units (V) LOW Level Output Voltage $I_{OL}=100\ \mu A$ 2.7 to 3.6 0.2 V_{OL} $I_{OL} = 12 \text{ mA}$ 2.7 0.4 $I_{OL} = 18 \text{ mA}$ 3.0 0.4 I_{OL} = 24 mA 3.0 0.55 $I_{OL}=100 \ \mu A$ 2.3 to 2.7 0.2 I_{OL} = 12 mA 2.3 0.4 V I_{OL} = 18 mA 2.3 0.6 $I_{OL} = 100 \ \mu A$ 1.65 to 2.3 0.2 $I_{OL} = 6 \text{ mA}$ 1.65 0.3 $I_{OL} = 100 \ \mu A$ 1.4 to 1.6 0.2 $I_{OL} = 2 \text{ mA}$ 1.4 0.35 $0 \leq V_I \leq 3.6V$ I_I Input Leakage Current 1.4 to 3.6 ±5.0 μА 3-STATE Output Leakage $0 \leq V_O \leq 3.6V$ I_{OZ} 1.4 to 3.6 ± 10 μA $V_{I} = V_{IH} \text{ or } V_{IL}$ $0 \leq \left(V_I, \ V_O\right) \leq 3.6 V$ Power-OFF Leakage Current 0 10 μΑ I_{OFF}I I_{CC} Quiescent Supply Current $V_I = V_{CC}$ or GND 1.4 to 3.6 20 μA $V_{CC} \leq$ (V_I, V_O) $\leq 3.6V$ (Note 8) 1.4 to 3.6 ±20 750 Increase in I_{CC} per Input $V_{IH} = V_{CC} - 0.6V$ 2.7 to 3.6 μА ΔI_{CC}

Note 8: Outputs disabled or 3-STATE only

AC Electrical Characteristics (Note 9)

Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^{\circ}$	C to +85°C	Units	Figure
Symbol	Falameter	Conditions	(V)	Min	Max	Units	Number
t _{PHL} , t _{PLH}	Propagation Delay	$C_L = 30 \text{ pF}, R_L = 500 \Omega$	$\textbf{3.3}\pm\textbf{0.3}$	0.6	3.5		
	A _n to B _n or B _n to A _n		2.5 ± 0.2	0.8	4.2		Figures 1, 2
			$\textbf{1.8}\pm\textbf{0.15}$	1.5	8.4	ns	., _
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	16.8		Figures 5, 6
t _{PZL} , t _{PZH}	Output Enable Time	$C_L = 30 \text{ pF}, R_L = 500 \Omega$	$\textbf{3.3}\pm\textbf{0.3}$	0.6	4.5		
			2.5 ± 0.2	0.8	5.6		Figures 1, 3, 4
			1.8 ± 0.15	1.5	9.8	ns	., 0, 1
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	19.6		Figures 5, 7, 8
t _{PLZ} , t _{PHZ}	Output Disable Time	$C_L = 30 \text{ pF}, R_L = 500 \Omega$	$\textbf{3.3}\pm\textbf{0.3}$	0.6	3.6		
			2.5 ± 0.2	0.8	4.0		Figures 1, 3, 4
			$\textbf{1.8}\pm\textbf{0.15}$	1.5	7.2	ns	., 0, 1
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1	1.0	14.4		Figures 5, 7, 8
t _{OSHL}	Output to Output Skew	$C_L = 30 \text{ pF}, R_L = 500 \Omega$	$\textbf{3.3}\pm\textbf{0.3}$		0.5		
t _{OSLH}	(Note 10)		2.5 ± 0.2		0.5	ns	
			1.8 ± 0.15		0.75	115	
		$C_L = 15 \text{ pF}, R_L = 2k\Omega$	1.5 ± 0.1		1.5		


Note 9: For $C_L = 50_PF$, add approximately 300 ps to the AC maximum specification.

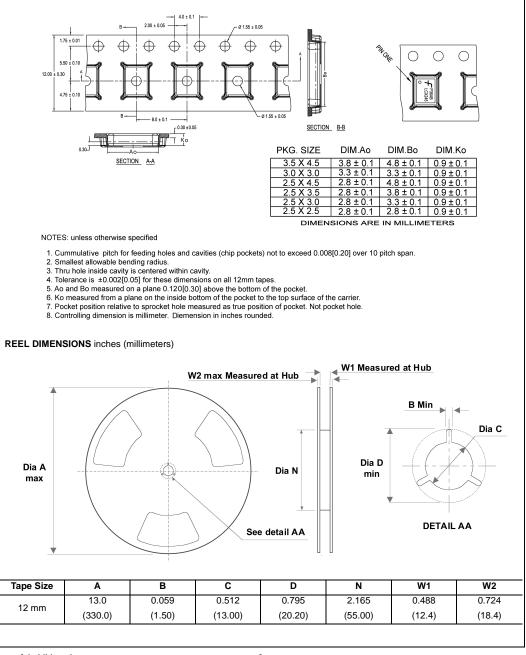

Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

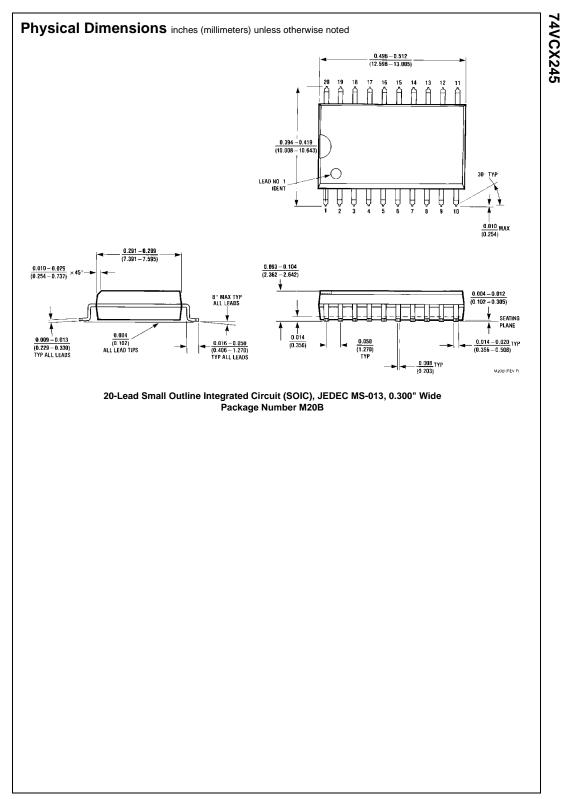
Dynamic Switching Characteristics						
Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$	Units	
Symbol	Falameter	Conditions	(V)	Typical	Units	
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, \text{ V}_{IH} = \text{V}_{CC}, \text{ V}_{IL} = 0 \text{V}$	1.8	0.3		
			2.5	0.7	V	
			3.3	1.0		
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, \text{ V}_{IH} = \text{V}_{CC}, \text{ V}_{IL} = 0 \text{V}$	1.8	-0.3		
			2.5	-0.7	V	
			3.3	-1.0		
V _{OHV}	Quiet Output Dynamic Valley VOH	$C_{L} = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.3		
			2.5	1.7	V	
			3.3	2.0		

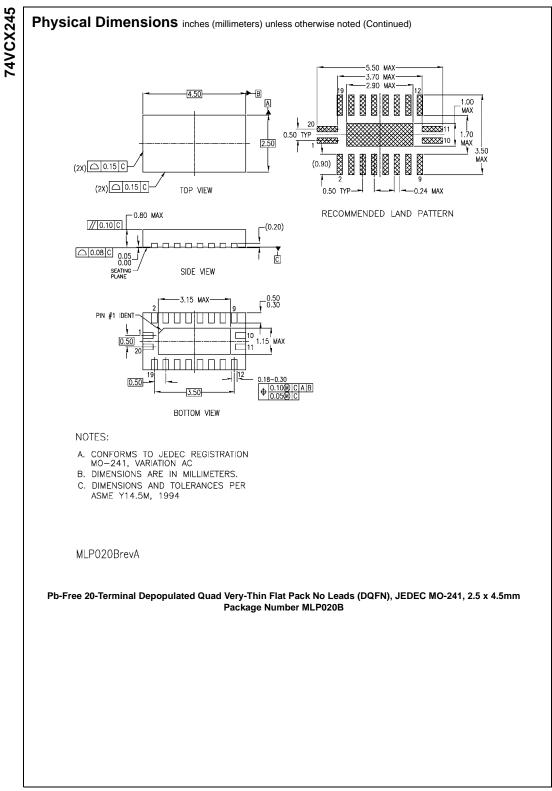
Capacitance

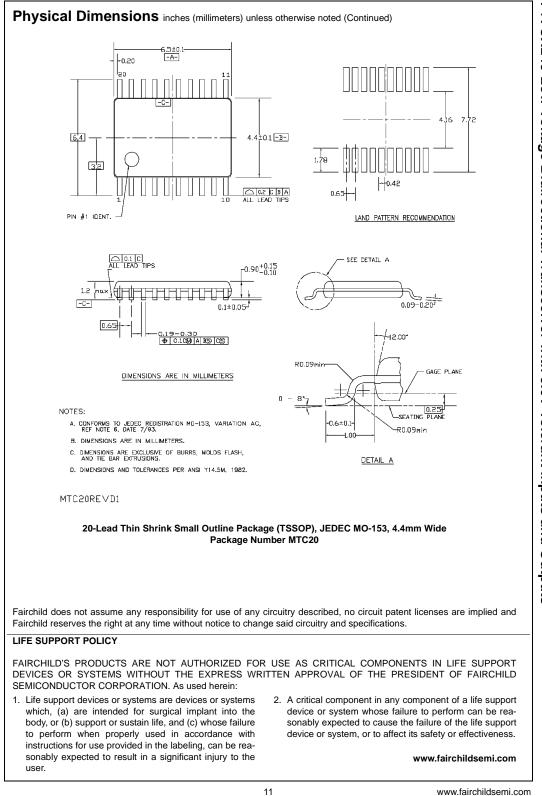
Symbol	Parameter	Conditions	T _A = +25°C Typical	Units
CIN	Input Capacitance	$V_I = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	6.0	pF
C _{I/O}	Input/Output Capacitance	V_{I} = 0V or V_{CC},V_{CC} = 1.8V, 2.5V or 3.3V	7.0	pF
C _{PD}	Power Dissipation Capacitance	V_{I} = 0V or V_{CC},f = 10 MHz, V_{CC} = 1.8V, 2.5V or 3.3V	20.0	pF

74VCX245


7




Tape and Reel Specification


Tape Format for DQFN						
Package	Таре	Number	Cavity	Cover Tape		
Designator	Section	Cavities	Status	Status		
	Leader (Start End)	125 (typ)	Empty	Sealed		
BQX	Carrier	3000	Filled	Sealed		
	Trailer (Hub End)	75 (typ)	Empty	Sealed		

TAPE DIMENSIONS inches (millimeters)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.