

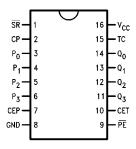
November 1988 Revised February 2000

74AC163 • 74ACT163 Synchronous Presettable Binary Counter

General Description

The AC/ACT163 are high-speed synchronous modulo-16 binary counters. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The AC/ACT163 has a Synchronous Reset input that overrides counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock.

Features

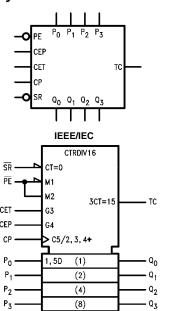

- I_{CC} reduced by 50%
- Synchronous counting and loading
- High-speed synchronous expansion
- Typical count rate of 125 MHz
- Outputs source/sink 24 mA
- ACT163 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description
74AC163SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74AC163SJ	M16D	16-Lead Small Outline Package, (SOP), EIAJ TYPE II, 5.3mm Wide
74AC163MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC163PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT163SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74ACT163SJ	M16D	16-Lead Small Outline Package, (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT163MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT163PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram


Pin Descriptions

Pin Names	Description
CEP	Count Enable Parallel Input
CET	Count Enable Trickle Input
СР	Clock Pulse Input
SR	Synchronous Reset Input
P ₀ –P ₃	Parallel Data Inputs
PE	Parallel Enable Input
Q_0-Q_3	Flip-Flop Outputs
TC	Terminal Count Output

© 2000 Fairchild Semiconductor Corporation

DS009932

Logic Symbols

Mode Select Table

SR	PE	CET	CEP	Action on the Rising
				Clock Edge (∠∕)
L	Х	Х	Х	Reset (Clear)
Н	L	Χ	Х	Load $(P_n \rightarrow Q_n)$
Н	Н	Н	Н	Count (Increment)
Н	Н	L	Χ	No Change (Hold)
Н	Н	Χ	L	No Change (Hold)

H = HIGH Voltage Level

Functional Description

The AC/ACT163 counts in modulo-16 binary sequence. From state 15 (HHHH) it increments to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: synchronous reset, parallel load, count-up and hold. Four control inputs—Synchronous Reset (SR), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)—determine the mode of operation, as shown in the Mode Select Table. A LOW signal on SR overrides counting and parallel loading and allows all outputs to $\underline{\text{go}}$ LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With PE and SR HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The AC/ACT163 uses D-type edge-triggered flip-flops and changing the \overline{SR} , \overline{PE} , CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

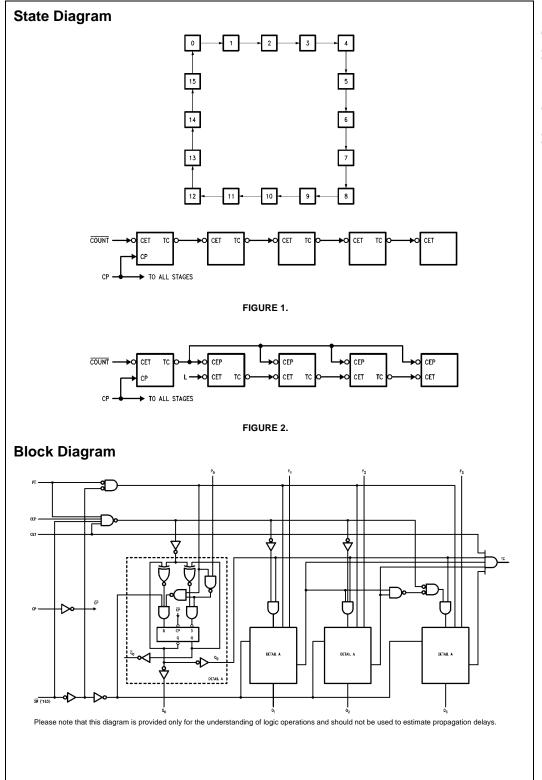

The Terminal Count (TC) output is HIGH when CET is HIGH and counter is in state 15. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways.

Figure 1 shows the connections for simple ripple carry, in which the clock period must be longer than the CP to TC delay of the first stage, plus the cumulative CET to TC delays of the intermediate stages, plus the CET to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure 2 are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 16 clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limits the clock period is the CP to $\overline{\text{TC}}$ delay of the first stage plus the CEP to CP setup time of the last stage. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or

Logic Equations: Count Enable = CEP • CET • \overline{PE} $TC = Q_0 • Q_1 • Q_2 • Q_3 • CET$

L = LOW Voltage Level

X = Immaterial

Absolute Maximum Ratings(Note 1)

 $\begin{aligned} \text{V}_{\text{I}} &= -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{I}} &= \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \end{aligned}$

DC Input Voltage (V_I) $-0.5V \text{ to V}_{CC} + 0.5V$

DC Output Diode Current (I_{OK}) $V_O = -0.5V \label{eq:VO} -20 \text{ mA}$

 $V_{\rm O} = V_{\rm CC} + 0.5 {\rm V}$ +20 mA DC Output Voltage ($V_{\rm O}$) -0.5V to $V_{\rm CC} + 0.5 {\rm V}$

DC Output Source

or Sink Current (I_O) $\pm 50 \text{ mA}$

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ± 50 mA Storage Temperature (T_{STG}) -65°C to $+150^{\circ}\text{C}$

Junction Temperature (T_J)

PDIP 140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

 $\begin{array}{ccc} AC & 2.0 V \text{ to } 6.0 V \\ ACT & 4.5 V \text{ to } 5.5 V \\ \text{Input Voltage (V_I)} & 0 V \text{ to } V_{CC} \\ \text{Output Voltage (V_O)} & 0 V \text{ to } V_{CC} \\ \end{array}$

Operating Temperature (T_A) $-40^{\circ}C$ to $+85^{\circ}C$

Minimum Input Edge Rate (ΔV/Δt)

AC Devices

 $V_{\mbox{\footnotesize{IN}}}$ from 30% to 70% of $V_{\mbox{\footnotesize{CC}}}$

V_{CC} @ 3.3V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate ($\Delta V/\Delta t$)

ACT Devices

 $V_{\mbox{\scriptsize IN}}$ from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V 125 mV/ns

140°C Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Oyillboi	r arameter	(V)	Тур	Gua	aranteed Limits	Onits	Conditions
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V
		5.5	2.75	3.85	3.85		
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V
		5.5	2.75	1.65	1.65		
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9		
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \mu A$
		5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL}$ or V_{IH}
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$
		4.5		3.86	3.76	V	I _{OH} = −24 mA
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA (Note 2)}$
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \mu A$
		5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL} \text{or } V_{IH}$
		3.0		0.36	0.44		I _{OL} = 12 mA
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN} (Note 4)	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	μΑ	$V_I = V_{CC}$, GND
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μΑ	$V_{IN} = V_{CC}$
(Note 4)	Supply Current						or GND
(Note 4)			utnut under			r.	00

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .

Symbol	Parameter	v_{cc}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
Syllibol		(V)	Тур	Gu	aranteed Limits	Units	Conditions
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	2.0	2.0	V	or V _{CC} – 0.1V
V _{IL}	Maximum LOW Level	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	0.8	0.8	V	or V _{CC} – 0.1V
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I – ΕΟΔ
	Output Voltage	5.5	5.49	5.4	5.4	V	$I_{OUT} = -50 \mu A$
							$V_{IN} = V_{IL}$ or V_{IH}
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA (Note 5)}$
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I 50 A
	Output Voltage	5.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA
							$V_{IN} = V_{IL}$ or V_{IH}
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND
ССТ	Maximum	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$
	I _{CC} /Input						
l _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μΑ	$V_{IN} = V_{CC}$
	Supply Current						or GND

Supply Current

Note 5: All outputs loaded; thresholds on input associated with output under test.

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for AC

	V _{CC}		$T_A = +25^{\circ}C$		$T_A = -40^\circ$	C to +85°C		
Symbol Parameter		(V) C _L = 50 pF			C _L = 50 pF		Units	
	(Note 7)	Min	Тур	Max	Min	Max		
Maximum Clock	3.3	70	95		60		MHz	
Frequency	5.0	110	140		95		IVITZ	
Propagation Delay, CP to Q _n	3.3	2.0	7.5	12.5	1.5	13.5		
(PE Input HIGH or LOW)	5.0	1.5	5.5	9.0	1.0	9.5	ns	
Propagation Delay, CP to Q _n	3.3	1.5	8.5	12.0	1.5	13.0		
(PE Input HIGH or LOW)	5.0	1.5	6.0	9.5	1.5	10.0	ns	
Propagation Delay	3.3	3.0	9.5	15.0	2.5	16.5		
CP to TC	5.0	2.0	7.0	10.5	1.5	11.5	ns	
Propagation Delay	3.3	3.5	11.0	14.0	2.5	15.5		
CP to TC	5.0	2.0	8.0	11.0	2.0	11.5	ns	
Propagation Delay	3.3	2.0	7.5	9.5	1.5	11.0		
CET to TC	5.0	1.5	5.5	6.5	1.0	7.5	ns	
Propagation Delay	3.3	2.5	8.5	11.0	2.0	12.5		
CET to TC	5.0	2.0	6.0	8.5	1.5	9.5	ns	
	Maximum Clock Frequency Propagation Delay, CP to Qn (PE Input HIGH or LOW) Propagation Delay, CP to Qn (PE Input HIGH or LOW) Propagation Delay CP to TC Propagation Delay CP to TC Propagation Delay CET to TC Propagation Delay CET to TC	Parameter (V) (Note 7) Maximum Clock 3.3 Frequency 5.0 Propagation Delay, CP to Qn 3.3 (PE Input HIGH or LOW) 5.0 Propagation Delay, CP to Qn 3.3 (PE Input HIGH or LOW) 5.0 Propagation Delay 3.3 CP to TC 5.0 Propagation Delay 3.3 CP to TC 5.0 Propagation Delay 3.3 CET to TC 5.0 Propagation Delay 3.3 CET to TC 5.0 Propagation Delay 3.3	Parameter (V) (Note 7) Min Maximum Clock 3.3 70 Frequency 5.0 110 Propagation Delay, CP to Qn 3.3 2.0 (PE Input HIGH or LOW) 5.0 1.5 Propagation Delay, CP to Qn 3.3 1.5 (PE Input HIGH or LOW) 5.0 1.5 Propagation Delay 3.3 3.0 CP to TC 5.0 2.0 Propagation Delay 3.3 3.5 CP to TC 5.0 2.0 Propagation Delay 3.3 2.0 CET to TC 5.0 1.5 Propagation Delay 3.3 2.5	Parameter (V) C _L = 50 pF (Note 7) Min Typ Maximum Clock 3.3 70 95 Frequency 5.0 110 140 Propagation Delay, CP to Qn 3.3 2.0 7.5 (PE Input HIGH or LOW) 5.0 1.5 5.5 Propagation Delay, CP to Qn 3.3 1.5 8.5 (PE Input HIGH or LOW) 5.0 1.5 6.0 Propagation Delay 3.3 3.0 9.5 CP to TC 5.0 2.0 7.0 Propagation Delay 3.3 3.5 11.0 CP to TC 5.0 2.0 8.0 Propagation Delay 3.3 2.0 7.5 CET to TC 5.0 1.5 5.5 Propagation Delay 3.3 2.5 8.5	Parameter (V) C _L = 50 pF (Note 7) Min Typ Max Maximum Clock Frequency 3.3 70 95 Frequency 5.0 110 140 Propagation Delay, CP to Qn (PE Input HIGH or LOW) 3.3 2.0 7.5 12.5 (PE Input HIGH or LOW) 5.0 1.5 8.5 12.0 (PE Input HIGH or LOW) 5.0 1.5 6.0 9.5 Propagation Delay 3.3 3.0 9.5 15.0 CP to TC 5.0 2.0 7.0 10.5 Propagation Delay 3.3 3.5 11.0 14.0 CP to TC 5.0 2.0 8.0 11.0 Propagation Delay 3.3 2.0 7.5 9.5 CET to TC 5.0 1.5 5.5 6.5 Propagation Delay 3.3 2.5 8.5 11.0	Parameter (V) C _L = 50 pF C _L = (Note 7) Min Typ Max Min Maximum Clock 3.3 70 95 60 Frequency 5.0 110 140 95 Propagation Delay, CP to Qn 3.3 2.0 7.5 12.5 1.5 (PE Input HIGH or LOW) 5.0 1.5 5.5 9.0 1.0 Propagation Delay, CP to Qn 3.3 1.5 8.5 12.0 1.5 (PE Input HIGH or LOW) 5.0 1.5 6.0 9.5 1.5 Propagation Delay 3.3 3.0 9.5 15.0 2.5 CP to TC 5.0 2.0 7.0 10.5 1.5 Propagation Delay 3.3 3.5 11.0 14.0 2.5 CP to TC 5.0 2.0 8.0 11.0 2.0 Propagation Delay 3.3 2.0 7.5 9.5 1.5 CET to TC 5.0 1.5	Parameter (V) (Note 7) C _L = 50 pF C _L = 50 pF Maximum Clock Frequency 3.3 70 95 60 Frequency 5.0 110 140 95 Propagation Delay, CP to Qn (PE Input HIGH or LOW) 3.3 2.0 7.5 12.5 1.5 13.5 (PE Input HIGH or LOW) 5.0 1.5 5.5 9.0 1.0 9.5 Propagation Delay, CP to Qn (PE Input HIGH or LOW) 5.0 1.5 6.0 9.5 1.5 13.0 (PE Input HIGH or LOW) 5.0 1.5 6.0 9.5 1.5 10.0 Propagation Delay 3.3 3.0 9.5 15.0 2.5 16.5 CP to TC 5.0 2.0 7.0 10.5 1.5 11.5 Propagation Delay 3.3 3.5 11.0 14.0 2.5 15.5 CP to TC 5.0 2.0 8.0 11.0 2.0 11.5 Propagation Delay 3.3 2.0 7.5 9.5	

Note 7: Voltage Range 3.3 is 3.3V ±0.3V Voltage Range 5.0 is 5.0V ±0.5V

AC Operating Requirements for AC

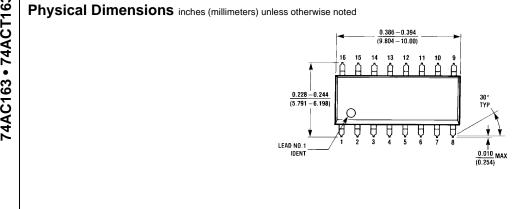
		V _{CC}	T _A = -	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
Symbol	Parameter	(V)	C _L =	50 pF	C _L = 50 pF	Units	
		(Note 8)	Тур	Guara	nteed Minimum		
t _S	Setup Time, HIGH or LOW	3.3	5.5	13.5	16.0	ns	
	P _n to CP	5.0	4.0	8.5	10.5	ns	
t _H	Hold Time, HIGH or LOW	3.3	-7.0	-1.0	-0.5		
	P _n to CP	5.0	-5.0	0	0	ns	
t _S	Setup Time, HIGH or LOW	3.3	5.5	14.0	16.5		
	SR to CP	5.0	4.0	9.5	11.0	ns	
t _H	Hold Time, HIGH or LOW	3.3	-7.5	-1.0	-0.5		
	SR to CP	5.0	-5.5	-0.5	0	ns	
t _S	Setup Time, HIGH or LOW	3.3	5.5	11.5	14.0		
	PE to CP	5.0	4.0	7.5	8.5	ns	
t _H	Hold Time, HIGH or LOW	3.3	-7.5	-1.0	-0.5		
	PE to CP	5.0	-5.0	-0.5	0	ns	
t _S	Setup Time, HIGH or LOW	3.3	3.5	6.0	7.0		
	CEP or CET to CP	5.0	2.5	4.5	5.0	ns	
t _H	Hold Time, HIGH or LOW	3.3	-4.5	0	0		
	CEP or CET to CP	5.0	-3.0	0	0.5	ns	
t _W	Clock Pulse Width (Load)	3.3	3.0	3.5	4.0	20	
	HIGH or LOW	5.0	2.0	2.5	3.0	ns	
t _W	Clock Pulse Width (Count)	3.3	3.0	4.0	4.5	no	
	HIGH or LOW	5.0	2.0	3.0	3.5	ns	

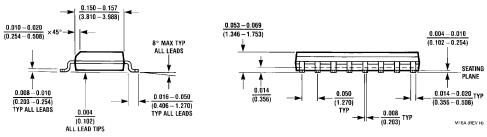
Note 8: Voltage Range 3.3 is 3.3V ± 0.3V Voltage Range 5.0 is 5.0V ± 0.5V

AC Electrical Characteristics for ACT

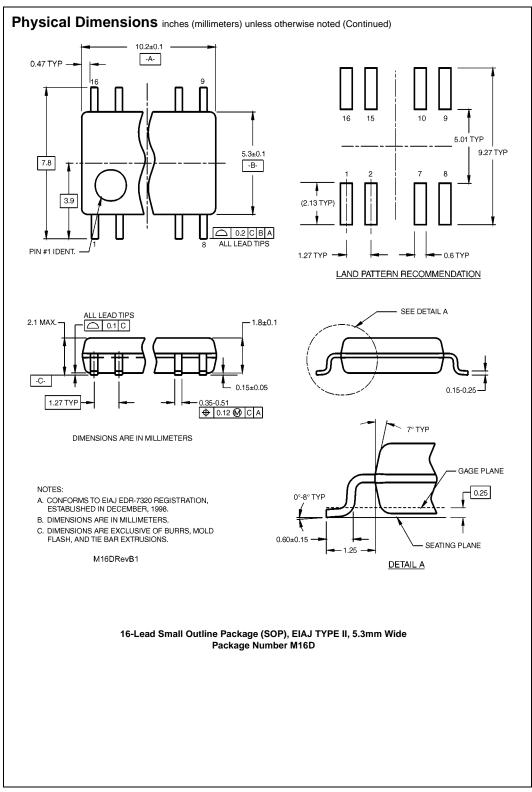
		V _{CC}		$\textbf{T}_{\boldsymbol{A}} = +25^{\circ}\textbf{C}$		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)		$C_L = 50 pF$		$C_L = 50 \text{ pF}$		Units
		(Note 9)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	5.0	120	140		105		MHz
t _{PLH}	Propagation Delay, CP to Q _n (PE Input HIGH or LOW)	5.0	1.5	5.5	10.0	1.5	11.0	ns
t _{PHL}	Propagation Delay, CP to Q _n (PE Input HIGH or LOW)	5.0	1.5	6.0	11.0	1.5	12.0	ns
t _{PLH}	Propagation Delay CP to TC	5.0	2.5	7.0	11.5	2.0	13.5	ns
t _{PHL}	Propagation Delay CP to TC	5.0	3.0	8.0	13.5	2.0	15.0	ns
t _{PLH}	Propagation Delay CET to TC	5.0	2.0	5.5	9.0	1.5	10.5	ns
t _{PHL}	Propagation Delay CET to TC	5.0	2.0	6.0	10.0	2.0	11.0	ns

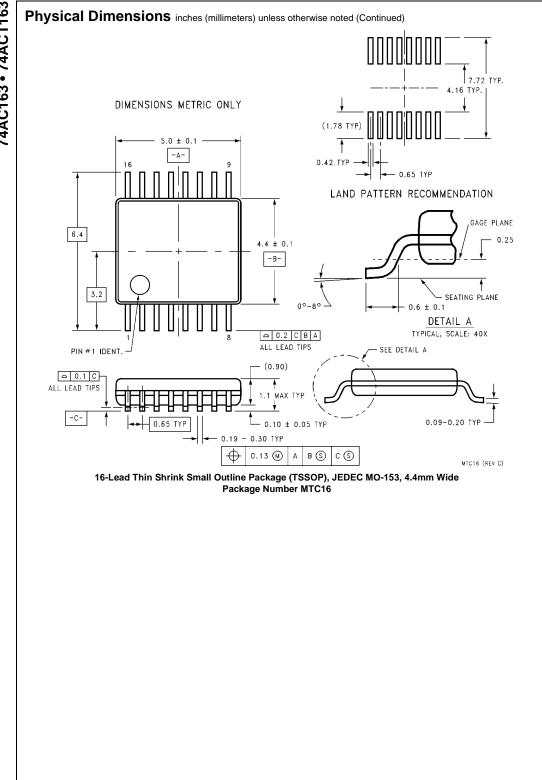
Note 9: Voltage Range 5.0 is $5.0V \pm 0.5V$

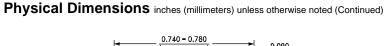

		v _{cc}	$T_A =$	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	(V)	C _L = 50 pF		C _L = 50 pF	Units
		(Note 10)	Тур	Guara	anteed Minimum	
t _S	Setup Time, HIGH or LOW P _n to CP	5.0	4.0	10.0	12.0	ns
tн	Hold Time, HIGH or LOW P _n to CP	5.0	-5.0	0.5	0.5	ns
s	Setup Time, HIGH or LOW SR to CP	5.0	4.0	10.0	11.5	ns
Н	Hold Time, HIGH or LOW SR to CP	5.0	-5.5	-0.5	-0.5	ns
s	Setup Time, HIGH or LOW PE to CP	5.0	4.0	8.5	10.5	ns
Н	Hold Time, HIGH or LOW PE to CP	5.0	-5.5	-0.5	0	ns
S	Setup Time, HIGH or LOW CEP or CET to CP	5.0	2.5	5.5	6.5	ns
Н	Hold Time, HIGH or LOW CEP or CET to CP	5.0	-3.0	0	0.5	ns
N	Clock Pulse Width (Load) HIGH or LOW	5.0	2.0	3.5	3.5	ns
N	Clock Pulse Width	5.0	2.0	3.5	3.5	ns

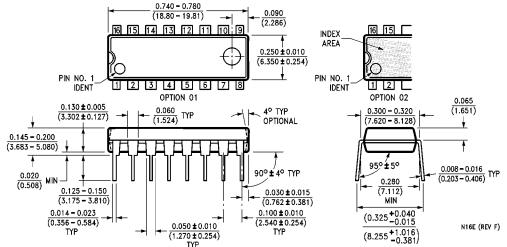

(Count) HIGH or LOW

Note 10: Voltage Range 5.0 is 5.0V ± 0.5V


Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	45.0	pF	$V_{CC} = 5.0V$





16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com