Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	200	_	_	V	VGS = 0V, ID = 1.0mA
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	0.29	_	V/°C	Reference to 25°C, I _D = 1.0mA
R _{DS(on)}	Static Drain-to-Source On-State	_	_	0.18	Ω	VGS = 10V, ID = 11A (4)
	Resistance	_	_	0.25	32	VGS = 10V, ID = 18A
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	V _{DS} = V _{GS} , I _D = 250μA
9fs	Forward Transconductance	6.1	_	_	S	V _{DS} > 15V, I _{DS} = 11A ④
IDSS	Zero Gate Voltage Drain Current	_	_	25	μΑ	VDS= 160V ,VGS=0V
		_	—	250		V _{DS} = 160V,
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	1 IIA	VGS = -20V
Qg	Total Gate Charge	_	_	60		VGS =10V, ID = 18A
Qgs	Gate-to-Source Charge	_	_	14.6	nC	V _{DS} = 100V
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	_	37.6		
^t d(on)	Turn-On Delay Time	_	_	20		$V_{DD} = 100V, I_{D} = 18A,$
t _r	Rise Time	_	_	105	ns	$V_{GS} = 10V$, $R_{G} = 9.1\Omega$
^t d(off)	Turn-Off Delay Time	_	_	58	115	
tf	Fall Time	_	_	67		
Ls+Lp	Total Inductance	_	4.0	_	nH	Measured from drain lead (6mm/ 0.25in. from package) to source lead (6mm/0.25in. from package)
C _{iss}	Input Capacitance	_	1300	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance	_	400	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	130	_		

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions		
Is	Continuous Source Current (B	ody Diode)	_	_	18	Δ.			
ISM	Pulse Source Current (Body Diode) ①		_	_	72	Α			
VSD	Diode Forward Voltage		_	_	1.5	V	$T_j = 25^{\circ}C$, $I_S = 18A$, $V_{GS} = 0V$ ④		
trr	Reverse Recovery Time		_	_	500	ns	Tj = 25°C, IF = 18A, di/dt ≤ 100A/μs		
QRR	Reverse Recovery Charge		_	_	5.3	μC	V _{DD} ≤ 50V ④		
ton	Forward Turn-On Time Int	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.							

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case		_	1.0		
R _{th} JS	Case-to-sink		0.21	_	°C/W	
R _{th} JA	Junction-to-Ambient			48		Typical socket mount

Note: Corresponding Spice and Saber models are available on the International Rectifier Website. For footnotes refer to the last page

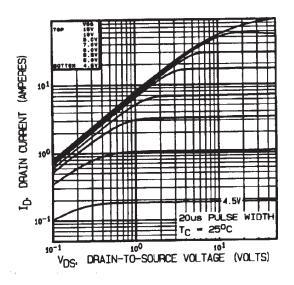


Fig 1. Typical Output Characteristics

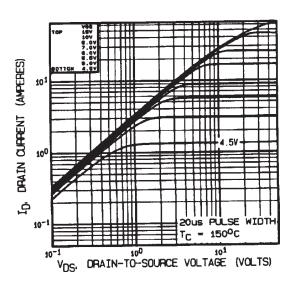
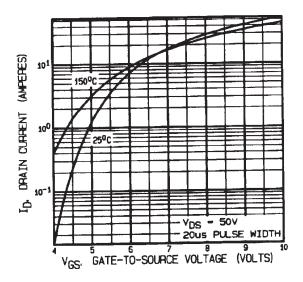
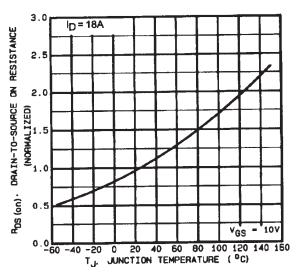
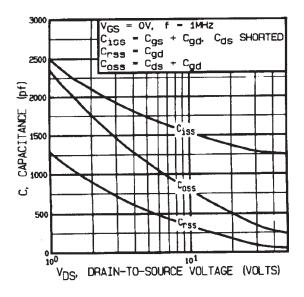
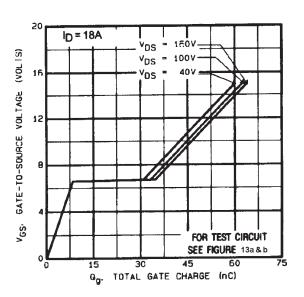


Fig 2. Typical Output Characteristics


Fig 3. Typical Transfer Characteristics

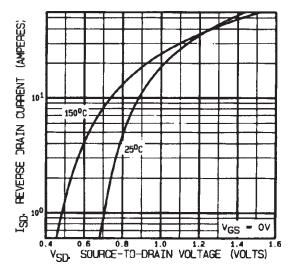

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

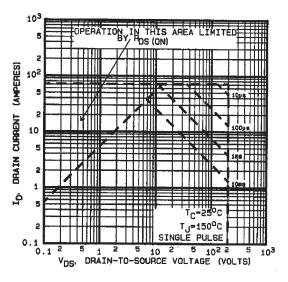
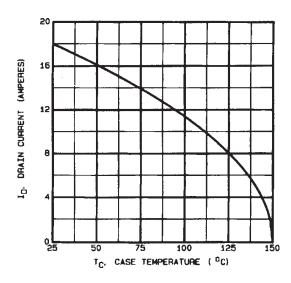



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

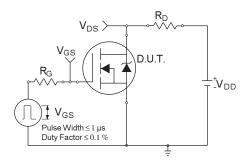


Fig 10a. Switching Time Test Circuit

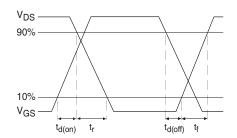


Fig 10b. Switching Time Waveforms

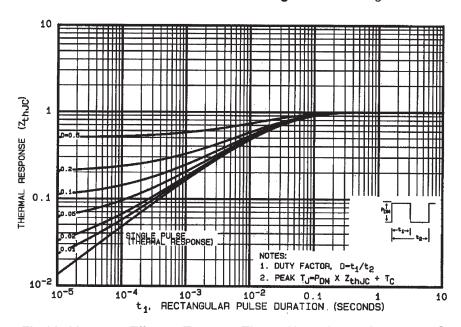


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

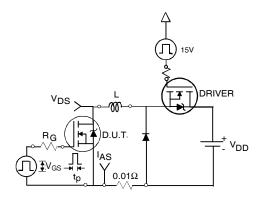


Fig 12a. Unclamped Inductive Test Circuit

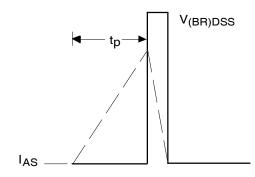


Fig 12b. Unclamped Inductive Waveforms

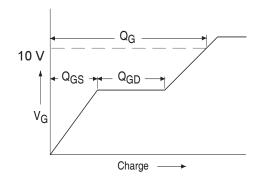


Fig 13a. Basic Gate Charge Waveform

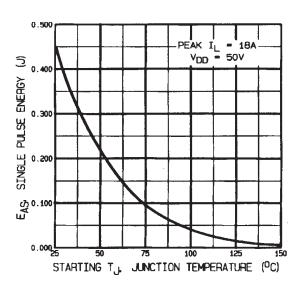
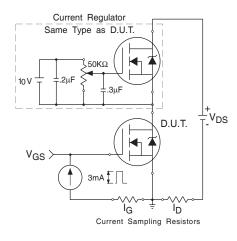
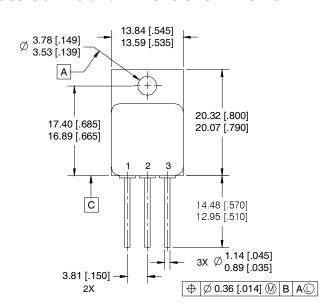
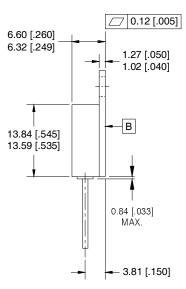


Fig 12c. Maximum Avalanche Energy Vs. Drain Current




Fig 13b. Gate Charge Test Circuit



Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\odot}$ VDD = 50V, starting TJ = 25°C, L= 1.3mH Peak IL = 18A, V_{GS} = 10V
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- 4 Pulse width $\leq 300 \ \mu s$; Duty Cycle $\leq 2\%$

Case Outline and Dimensions — TO-254AA

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. CONTROLLING DIMENSION: INCH.
- 4. CONFORMS TO JEDEC OUTLINE TO-254AA.

PIN ASSIGNMENTS

1 = DRAIN

2 = SOURCE

3 = GATE

CAUTION

BERYLLIA WARNING PER MIL-PRF-19500

Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce furnes containing beryllium.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 04/2007